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Abstract: Over the years, new methods have emerged in order to optimize the installation
of wind turbines in distribution systems to meet the loads demand, reduce technical energy
losses and avoid exceeding the voltage limits in the system. In this context, an algorithm for
the optimal installation of wind turbines in radial distribution systems is presented here. The
Genetic Algorithm and the Cuckoo Search are used as optimization methods and, to calculate
the power flow, the Sum of Powers Method is used, respecting the voltage limits imposed by
ANEEL and not exceeding a 20% wind generation penetration. The segmented annual load curve
was used and it was considered that the load curve in all buses and the feeder are the same, as
well as the wind speed curve. The analysis of the results has shown that the proposed algorithm
has been able to install wind generators reducing the energy losses as well as estimating the
investment value of installation and operation of the turbines. The algorithm was applied to
three radial test systems (36, 134 and 1080 buses) and was successful in the case studies.

Keywords: radial distribution system; distributed generation; wind turbine; genetic algorithm;
cuckoo search.

1. INTRODUCTION

As demand increases, ways to supply it are being de-
veloped and Distributed Generation (DG) has emerged
as a solution to this problem. Among the possibilities of
DG, wind energy stands out as an alternative to reduce
or replace common generation sources, in addition to be
one of the most ecological, clean and safe resources. Due
to the increase in the number of Wind Farms (WF), it
is necessary to connect them at suitable locations in the
system, as this connection point influences the stability
of the power system and the power quality. WF should
preferably be connected to a reference bus, so as not to
affect the stability of the electrical system (Molina-Moreno
et al., 2015). The intermittent nature of the wind has
resulted in technical and economic challenges with large-
scale integration. The optimal installation minimizes the
cost of the initial investment and the operating costs of
WF (Mitchell-Colgan et al., 2015).

Data from November 2021 shows that Brazil has more
than 750 plants and the wind source has reached a 11.11%
share in the Brazilian energy matrix (ANEEL, 2021). As
a result, wind energy became the second largest source
of the Brazilian electric matrix, even though it is re-
cent and has been intensely developed only in the last
ten years (ABEEólica, 2017). At the end of 2021, the
installed capacity was approximately 20 gigawatt (GW),

⋆ This research was funded by Conselho Nacional de Desenvolvi-
mento Cient́ıfico e Tecnológico (CNPq).

which allowed Brazil to occupy the 7th position in world
generation ranking. These are some of the data that show
the importance of wind generation, its growth capacity
and the benefits that it can bring to the Brazilian electrical
system. Taking into account wind generation performance,
it was already possible to serve almost 14% of the National
Interconnected System since 2019 (ONS, 2020).

2. MATERIALS AND METHODS

A widely accepted general definition was suggested by
Ackermann et al. (2001): DG is a source of electrical energy
connected directly to the distribution network or to the
consumer. From the point of view of distribution, DG is
a viable alternative for bringing several benefits such as
short installation time and low investment risk, since it is
built in modules that can track load variation more closely.

For these reasons, technological changes are beginning to
appear internationaly, which may involve the presence
of a more consistent DG, generated in low and medium
voltages and connected directly to the distribution network
that would be characterized by good efficiency and low
pollutant emissions. However, the large-scale insertion of
DG can lead to new problems (such as the reverse flow of
power and injection of harmonics in the network) and, con-
sequently, the need for new tools for better management
of these systems (Alinejad-Beromi et al., 2007).

The distributed wind generation, if used correctly in dis-
tribution networks, can bring several advantages such as:
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reduction of technical losses, improvement in the volt-
age profile of the feeder, pollutants emission reduction,
increase in energy efficiency, power quality improvement
and increase of system reliability and security (Kazemi
and Sadeghi, 2009). However, some studies demonstrate
that the location and dimensioning of the generation in-
appropriately distributed may result in an increase of the
system’s operating costs (Hernández et al., 2007).

These problems can be avoided by using optimization
methods, as they make it possible to determine the optimal
location and dimensioning of the DG. Several researchers
have already solved problems of location and dimensioning
of DG. However, the topic is not exhausted, being a current
topic, of growing interest and deserves attention.

2.1 Power Flow

The power flow determines the power traffic through
the network, starting from the generating centers until
reaching the consumers. It is a simulation of the system
operation in a steady state from which it is possible to
check if the voltages are within the permitted limits, what
is the static stability index, what is the economic and
reliable load dispatch and if the losses are not excessive.

In order to use the Power Sum Method (PSM) created by
Cespedes (1990), it is necessary to know the configuration
of the feeder, the amplitude of the substation bus voltage
and an initial power losses estimate in each bus, which
is considered null. For each iteration, the voltage per bus
must be calculated. Then, the active and reactive power
losses are calculated. The last iteration ends when the
above procedure is repeated for all buses and converges
when the difference between the total losses in an iteration
and the previous one is less than the specified tolerance
(Souza, 2005). To insert Wind Turbines (WT) as gener-
ators in the calculation of the power flow, the negative
load concept was used in order to indicate their ability to
supply power to the system (Molina-Moreno et al., 2015).

2.2 Genetic Algorithm

The Genetic Algorithm (GA) theory developed by Holland
(1992) works by discovering, emphasizing and recombining
good traces of solutions, which are combinations of bit
values that make the chains more suitable. This means
that, in a given generation, while GA is explicitly assessing
the suitability of the n chains in the population and
implicitly estimating the average suitability of a much
larger number of schemes (Mitchell, 1998).

The chromosome is filled with genes, that are the alphabets
used and can be binary, decimal or floating. The main
operators of GA are crossing, selection and mutation. A
crossing operation is processed between two chromosomes
in a population, generating two new descendants.

After the crossing comes the selection, which consists of
selecting the most suitable requirements to survive and
discarding the least able. The technique used here was the
arena combat, in which the chromosomes are randomly
selected and fight two by two. One continues to the next
generation and the other is eliminated. After that, a
mutation takes place, which occurs with low frequency

in the population. It is processed in a single individual
causing changes in their genes at random.

The mutation has an opposite effect to the crossing,
tending towards an optimal solution (which may be local
or global), while the mutation is opposed to the tendency
to stay at the optimum found. If the optimum is local, the
mutation is likely to succeed. In addition to the mutation,
there are penalties, which are ways to reduce the value of
the suitability of compliance that do not fit the restrictions
that were imposed by the problem (Souza et al., 2006).

Each GA process iteration is called by generation. Accord-
ing to Souza (1997), a GA is typically executed for any
value between 50 and 500 generations. The entire genera-
tions set is called by era or epoch. At the generation end,
there are often one or more highly suitable chromosomes
to be considered optimal solutions. Since randomness plays
an important role in each run, two runs of random numbers
often produce different behaviors.

The GA was chosen because it is a very robust and
consolidated optimization method in research.

2.3 Cuckoo Search

The evolutionary algorithm known as Cuckoo Search (CS)
was developed by Yang and Deb (2009) and is based
on the parasitic behavior of some cuckoo species. In
the reproduction process, these birds lay eggs in nests
that host other birds. As some of these eggs are similar
to the eggs in the host nest, cuckoo chicks have the
opportunity to grow into adult cuckoos. However, some
eggs are discovered and discarded by the host bird, which
in this case can still abandon the nest and build a new one
in another location. In addition, other studies at the time
showed that the use of the Lévy flight, that some birds use
to move around, had great potential in the optimization
area. To simplify the CS description, they developed 3
basic rules, and, once the algorithm was defined, they were
compared with the results of GA and Particle Swarm.

Due to its simplicity and efficiency, in addition to fast
convergence and the ability to escape local optima, CS
is commonly used in optimization problems. There are
also works that use CS in areas such as image process-
ing, scheduling, planning, feature selection and forecasting
(Yang and Deb, 2009; Biswas et al., 2014).

In CS, each solution is represented by an egg in a nest
and is evaluated according to the fitness that analyzes
its ability to solve the problem. Each new solution is
represented by a cuckoo egg. If the new solutions have
better skills, they replace the worst current solutions.
Using the Random-Walk search style, candidate solutions
are obtained in order to explore possible new solutions.
Finally, a cuckoo egg present in the worst nests is discarded
based on a probability of abandonment.

According to Yang and Deb (2009), there are 3 basic rules
in CS: 1. Each cuckoo lays an egg at a time in a randomly
chosen nest; 2. The best nests are maintained for the
next generation; 3. Each nest contains only one egg, the
number of available nests is fixed and the egg deposited
by the cuckoo is discovered by the host bird with a certain
probability value.
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2.4 Load Levels

The methodology consists of determining the optimal
installation of WT in radial distribution systems in order
to minimize energy losses and respecting the following
restrictions: do not exceed the voltage limits adopted
by Agência Nacional de Energia Elétrica (ANEEL), the
Brazilian electrical energy agency; maximum of 20% DG
penetration (Diuana, 2017); do not locate turbines on the
substation bus. Three load levels were used by segmenting
the feeder load duration curve over a year, located at
the substation output. The load curves at each bus were
considered identical to that of the feeder. The wind speed
curve was also segmented into three levels.

As the possible installation locations for WT are the sys-
tem buses, the problem is characterized as a combinatorial
optimization. Thus, the objective function of the method
was developed according to (1).

minimize ∆E =
m∑
j=1

Tj

n∑
k=1

∆Pjk, (1)

Where ∆E are the energy losses; m is the number of levels
in which the load duration curve is segmented; Tj is the
load level j duration; n is the number of feeder sections;
∆Pjk are the active losses in section k, which ends at the
bus k at load level j.

The active power losses are the result of computing the
load flow of the PSM, which is used repeatedly for the m
load levels. The GA was a heuristic goal used to solve the
combinatorial optimization problem. The average demand
was estimated from the installed load, demand factor and
feeder load factor, where the mean and peak values of the
feeder were taken from the load curve at the substation
output. Finally, it was considered that the load curves
on all buses follow the feeder load curve. For a better
representation of the load variation over time, the annual
load duration curve of the feeder was segmented in m
intervals in order to have an average power value in the
k−bus (k = 1, 2, ..., n) for each load level j (j = 1, 2, ...,m).

The original and segmented load curves that correspond
to a given daily load curve are shown in Figure 1.

Figure 1. Daily load curve, load duration and segmented
load duration.

In order to characterize the active loads in each bus, the
annual load duration curve of the feeder was segmented
in a certain number of intervals, in which the load was

considered constant. Such intervals are equivalent to load
levels and represent different levels, the number of levels
being defined according to the application and the desired
precision degree (Oliveira et al., 2017). The segmentation
problem of the duration curve is solved using a GA, as
proposed by Souza et al. (2002). The reactive load duration
curve follows the same segmentation as the active load
duration curve. As shown in Figure 1, the load levels are
well identified by the duration Tj and Pj , j = 1, 2, ...,m.

2.5 Generation Model

According to Safari et al. (2013), the active power pro-
duced by the turbine respects (2):

PWind(v) =


0, v < vc, vf < v

pr
v − vc
vr − vc

, vc ≤ v ≤ vr

pr, vr ≤ v ≤ vf

, (2)

where PWind(v) is the active power generated (kW ); pr
is the turbine rated power (kW ); vc is the turbine cut-in
speed (m/s); vf is the turbine cut-out speed (m/s); vr is
the rated wind speed (m/s); v is the wind speed (m/s).

2.6 Proposed Algorithm

The energy losses computed in the distribution network
requires the execution of the PSM for each established load
level. These calculations need to be repeated whenever
there is a change in the bus where the turbines are located.

The proposed algorithm starts by loading WT data and
the selected system data (nominal voltage, active and
reactive power load curves, configuration vector, sections
impedance and installed loads). Then, the number of m
load durations is read, the curves are segmented and
the PSM is performed according to (1) in order to find
the initial energy losses ∆E. The data loading and the
optimization technique choice in the algorithm constitute
a preliminary stage that is only necessary in the first
iteration. The remaining steps are performed according to
the flowchart of the proposed algorithm in Figure 2

Figure 2. Flowchart of the proposed algorithm.
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The flowchart of the proposed algorithm starts by loading
the data from the turbine models, the test systems and
selecting the optimization technique (GA or CS), as well as
loading their respective data. If the GA is chosen, the first
individuals of the GA population are created randomly.
With the help of the PSM, the skills of individuals are
calculated and penalties are applied, if necessary. The
crossing operation with the initial population is carried out
in order to obtain a population growth. New individuals
have their skills calculated with the help of the PSM. Once
the population has reached its maximum limit, the algo-
rithm performs the GA selection operation to reduce the
population. After these operations, the mutation is per-
formed in some individuals of the “surviving” population.
After the mutation, the process is repeated until the end
of the pre-established Eras occurs. When the execution of
the last Era occurs, the results obtained by the algorithm
are made available to the user and the processing ends.

If CS is chosen, the initial population is created randomly
and its fitness is calculated with the help of the PSM.
Then, new possible solutions are generated through the
Lévy flight and their fitness evaluated. If the stopping
criterion is not met, the process is repeated from the Lévy
flight. However, if the stop criterion is reached, the results
obtained by the algorithm are displayed on the screen and
the processing ends.

2.7 Data and Hypotheses

The active and reactive power load curves data used refer
to 2017 and were provided by Energisa Borborema. The
wind speed curves data used are for the year 2017 and were
provided by Instituto Nacional de Meteorologia – INMET.

The present work used the decimal alphabet for chromo-
somes and cuckoo eggs and in one studies cases consists of
a 6-position vector, where the first half (from 1 to 3) refers
to the system bus where the turbines will be located and
their values vary according to the number of system buses,
while the second half (from 4 to 6) refers to the turbine
models that will be installed in each bus and their values
vary according to the used turbine catalog, as shown in
Figure 3. Thus, all chromosomes and cuckoo eggs used in
this work have an even number in the solution size, as well
as the same variation in values for the second half of the
vector (ranging from 0 to 6 turbines for all test systems).

Figure 3. Example of chromosome and cuckoo egg used in
case studies.

To calculate costs, values were used based on the work
on renewable generation costs for the year 2018 carried
out by IRENA (2018). Data for Brazil indicate that the
installation cost is approximately US$/kW 1,830 and it
costs US$/kWh 0.06 to operate the turbines. In order to
perform the simulations, curves of active power, reactive
power and wind speed were used. Each system has its own
curves originated from the curves provided by Energisa,

totaling 3 sets of curves for each system that will be
explored later. The selected systems data were: the 36-
bus system used by Ribeiro (2017), which is a variation of
the IEEE 37 bus system; and the 134-bus and 1080-bus
test systems found in UNESP (2021).

The data used in the MSP are a maximum of 100 iterations
and a tolerance of 10−4 , the turbines data used can be seen
in Table 1 and, finally, the segmented wind speed data
are in Table 2. The characteristics of the WT presented
in Table 1 were chosen based on Dantas (2020) in order
to provide different ways of analyzing the results in each
simulation, since the turbines are different from each other.

Table 1. Turbine data

Manufacturer Model
Rated

power (kW)
Rated

speed (m/s)

Enercon E82/2300 2,300 14.0
Gamesa G128/4500 4,500 12.5
Nodex N90/2500 2,500 13.5

Repower MM82 2,000 15.0
Vestas V112/2300 3,000 15.5

Table 2. Wind speed data

Load Duration (days)
Average

speed (m\s)
Maximum
speed (m/s)

Peak 132,4 4,88 7,5
Mid 135,8 3,36 4,0
Light 96,8 1,87 2,6

Although the cut-in and the cut-out speeds are not shown,
they were considered in the simulations and these values
can be found in Power (2020). The wind speed data is
segmented into three levels in the same way as the active
power load curves.

3. RESULTS

In order to evaluate the accuracy of the method, the
routine was performed ten times for each case. In all
systems, demand, energy losses and energy generated are
for one year. Finally, a routine was programmed to install
WT in the system buses in order to minimize energy losses.
The results obtained for each system will be compared with
the best results obtained by Dantas (2020).

It is important to highlight that the results of heuristic
methods application depend directly on the initial popu-
lation, that is, on the initial estimate. This is due to the
fact that they incorporate several random processes, such
as crossing, selection, mutation, Lévy flight and abandon-
ment probability. As a way to obtain reliable results, ten
executions were carried out for each system in order to
verify the convergence of the results.

The figure of the three system-tests (36, 134 and 1080
buses) are shown in Figures 4 and 5, and the parameters
are in Table 3.
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Figure 4. Power system 36 bus.

Figure 5. Power system 134 bus.

Table 3. CS parameters for the system-tests

System-test
Cuckoo
eggs

Total
iterations

Number
of nets

Probability
of abandonment

36 6 250 25 25
134 10 1500 35 35
1080 14 2000 50 50

These characteristics were determined in advance and
through executions prior to the case studies.

3.1 Results of System-Test 36

Initially, the 36-bus test system was selected. The system
topology, resistances, reactances, active and reactive pow-
ers installed per bus can be consulted in Ribeiro (2017),
as well as the total power installed in the system and
the demand. The GA characteristics used in the method
were chosen based on the system’s search space and tests
previously performed. Finally, the active and reactive load
levels of the 36-bus system, as well as their segmentation,
can be found in Dantas (2020).

A chromosome with 6 genes was chosen for the 36-bus
system, since in Dantas (2020) the optimum found occured
when 3 turbines were installed. The results obtained in the
simulations are shown in Table 4.

Table 4. Results of the 36-bus system

Results Genetic Algorithm Cuckoo Search

Bus 14 29 29 10 14 29
Turbines 4 3 0 0 4 3

Installed Power (kW) 4,500 4,500
Energy (GWh) 2.46 2.46
Penetration (%) 19.54 19.54
Losses (MWh) 106.32 106.32
Reduction (%) 34.74 34.74

Cost Installation (US$) 8,235,000 8,235,000
Cost Operation (US$) 147.60 147.60
Time elapsed (minutes) 1.36 0.43

3.2 Results of System-Test 134

The 134-bus test system has a configuration in accordance
with Safari et al. (2013), the characteristics of GA are in
Dantas et al. (2020) and of CS are presented in Table 3.
Finally, the active and reactive load levels can be found
in Dantas (2020). The results obtained by the method are
shown in Table 5.

Table 5. Results of the 134-bus system

Results Genetic Algorithm Cuckoo Search

Bus 70 83 87 94 106 70 83 94 106 110
Turbines 4 4 0 4 1 4 4 4 1 0

Installed Power (kW) 8,300 8,300
Energy (GWh) 4.89 4.89
Penetration (%) 19.56 19.56
Losses (MWh) 358.33 358.33
Reduction (%) 37.10 37.10

Cost Installation (US$) 15,189,000 15,189,000
Cost Operation (US$) 293.40 293.40
Time elapsed (minutes) 11.09 5.30

3.3 Results of System-Test 1080

Finally, the 1080 test system is based on the system found
in UNESP (2021) and data on resistance, reactance, active
and reactive power and system are presented in Dantas
(2020). The parameters of GA are in Dantas et al. (2020)
and of CS are shown in Table 3. The parameters of AG
and CS were chosen based on the execution time of the
routine and not on the search space criterion according
to the other systems. In this way, values were empirically
selected to facilitate the routine execution process.

Due to the considerations made, it was expected that
the routine would not converge to the same optimum in
all executions. However, the proposed method reached a
70% accuracy in the GA executions and 60% in the CS
executions. The results are shown in Table 6.
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Table 6. Results of the 1080-bus system

Results Genetic Algorithm Cuckoo Search

Bus
65 234 244
420 615 736

65 234 244 420
564 615 736

Turbines
1 1 1 0
1 1 1

1 1 1 1
0 1 1

Installed Power (kW) 13,800 13,800
Energy (GWh) 15.61 15.61
Penetration (%) 9.99 9.99
Losses (MWh) 74.89 74.89
Reduction (%) 64.56 64.56

Cost Installation (US$) 25,254,00 25,254,000
Cost Operation (US$) 936.60 936.60
Time elapsed (hours) 3.70 1.94

4. DISCUSSION

For the 36-bus system, all executions reached the same
optimum, as can be seen in Table 4. The two methods
suggest the installation of two turbines, on bus 14 should
be installed turbine 4 (Repower-MM82) and on bus 29, tur-
bine 3 (Nordex-N90/2500), totaling 4,500 kW of installed
power and generating approximately 2.46 GWh of electric-
ity with a 19.54% penetration. This configuration achieves
a 34.74% reduction in energy losses and did not exceed
the voltage limits established by ANEEL, in addition to
costing approximately US$ 6,052.50 to install the turbines
and US$ 147.60 to operate them for a year. The best result
was obtained by the proposed algorithm that used CS as
optimization method. The focus is the electrical energy
losses reduction and the CS achieves a reduction equal to
that found by GA, however, quicker.

In the 134-bus system, executions converged in 90% of
the cases when using the GA and in 100% of the cases
when using the CS, and this result is shown in Table 5.
From the GA’s ten executions, a single one found a
reduction of 36.66% in energy losses, which is close to
the 37.10% suggested by the other 9 executions. The
algorithm suggested as an optimal result the installation
of model 1 (Enercon-E82/2300) on bus 102 and model 4
(Repower-MM82) on buses 70, 83 and 108 of the system.
This configuration will result in 8,300 kW of installed
power, generating 19.56 GWh of electricity for one year,
reducing 37.10% the energy losses, costing approximately
US$ 15,189,00 to install the turbines and US$ 293.40 to
operate them. Again, CS excelled in relation to GA since
it was able to converge in all executions, being twice faster
than GA.

For the 1080 bus system, 70% of the GA executions
culminated in the optimum shown in Table 6, while in
the CS only 60% of the simulations culminated in the
same optimum found by the GA method. The optimum
result found by GA and CS suggest using 6 turbines of
model 1 (Enercon-E82/2300), with 13,800 kW of installed
power and a generation of approximately 15.61 GWh.
With a penetration of only 9.99%, losses are reduced by
64.56%, costing approximately US$25,254,000 to install
the turbines and US$ 936.60 to operate them in the period
of one year. The proposed CS method is considerably faster
to converge than the GA method.

In all systems, after the installation of the turbines, the
voltages of some buses have changed. As the test systems

do not have voltage regulators, lower voltages are com-
monly found at the end of the feeder, and these have
obtained voltage gains. It is worth mentioning that in
none of the buses the voltage exceed the limits required
by ANEEL (2010), where the minimum threshold is 0.93
pu and the maximum is 1.05 pu.

It is important to highlight that the method reduces the
technical losses of energy, which are inherent to the energy
distribution process, being caused due to the passage of
electric current in the various elements that make up a
distribution network.

5. CONCLUSIONS

An optimal method of dimensioning and locating wind
turbines to minimize energy losses in radial distribution
systems has been proposed. The method used two meta-
heuristic targets separately, Genetic Algorithm (GA) and
Cuckoo Search (CS).

Unlike most works presented in the bibliographic review,
the problem was solved considering the segmentation of
the load duration curve in three levels, in addition to the
segmentation of the wind speed curve, also in three levels,
one for each level of load.

The methodology was applied to three different test sys-
tems: 36-bus, 134-bus and 1080-bus, in which the algo-
rithm defined the quantity and the optimum models of
turbines to be located in the system. As in practice it
is not advisable to use a penetration greater than 20%,
this restriction has been incorporated into the problem by
applying a penalty function to unanswered solutions.

It was concluded that the proposed algorithm, when using
the Cuckoo Search as optimization method, proved to be
adequate to solve the problem of optimal installation of
wind turbines for the test systems of 36-bus and 134-bus,
since it did not need a large amount of data and complex
load representation models. Besides, it is simple, fast and
effective. Even with a performance reduction when applied
to the 1080-bus system, the algorithm was able to install
the turbines in a satisfactory manner. However, it is still
necessary to improve the method by using better initial
estimates instead of random values or restricting the search
space to install turbines close to large load centers.
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eólica. URL http://www.ons.org.br/
paginas/conhecimento/acervo-digital/
documentos-e-publicacoes?categoria=Boletim+
Mensal+de+Gera\%C3\%A7\%C3\%A3o+E\%C3\%B3lica.
(accessed on 09 July 2021).

Power, T.W. (2020). Energia eólica chega a sétima
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