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Abstract: In the literature, there are several methodologies to estimate technical losses in electrical 
distribution networks. The range of techniques is broad, ranging from basic techniques (based on loss 
factor, for example) to sophisticated ones (based on artificial intelligence). These methodologies are 
important, because the costs of technical losses represent a huge part of the total operation costs of 
distribution network operators (DNOs). However, the presence of clandestine connections, common in 
developing countries, was not considered in the methodologies encountered in the literature. Clandestine 
connections occur when a consumer has made his/her connection without DNO permission. In these cases, 
the amount of energy consumed by a clandestine "consumer" is a nontechnical loss (and, therefore, should 
be correctly computed as nonbilled energy). Therefore, a new methodology is proposed to consider the 
presence of clandestine connections in energy loss estimation in distribution systems. 
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1. INTRODUCTION 

The costs of losses (technical and nontechnical) in electrical 
distribution networks represent an important part of the total 
operation costs of distribution network operators - DNOs (Fu 
et al. 2016, Ahmadimanesh and Kalantar 2017, Ahmad and Ul 
Hasan 2016). For this reason, the regulatory agencies are 
establishing challenging targets for loss levels. In general, 
nontechnical losses are obtained through subtraction of 
technical losses from the total losses, and detection depends on 
knowledge of local socioeconomic aspects (Aranha Neto and 
Coelho 2013, Faria et al. 2016). Total losses are easily 
obtained from a border meter (belonging to DNOs). However, 
technical losses cannot be easily measured, and new methods 
for their correct estimation are necessary to determine how 
good the operational performance of the electrical distribution 
networks is (Leal et al. 2009, Dashtaki and Haghifam 2013). 

In the literature, there are several methodologies to perform 
technical loss estimation. Methods strongly based on statistical 
analysis typically need few data about the network and loads. 
However, they tend to show results with low accuracy. 
Methods that are deterministic or weakly based on statistical 
analysis, typically based on power flow tools, provide results 
with high accuracy. The choice between both types of method 
depends on the data available in the DNOs' data centers and 
the target proposed by the DNOs' planners. In both cases, the 
methods can include all electrical segments (service 
connections, secondary and primary networks, distribution 
transformers, high-voltage/medium-voltage transformers, 
energy meters, capacitor banks, and voltage regulators) or only 

some segments. In the latter case, several methodologies 
should be applied together to obtain a complete power loss 
estimation. 

The range of techniques is broad. Artificial neural networks 
(ANNs) have been used (Leal et al. 2009, Hong-Rui et al. 
2007, Ni and Yu 2009, Lee et al. 2011) to estimate technical 
losses in a distribution system. In other research (Lasso et al. 
2006), a technique named “stratified sampling” was used to 
estimate technical losses in the secondary energy distribution 
network. In another study (Poursharif et al. 2018), domestic 
smart meter readings were used to estimate the actual losses in 
low-voltage networks. The relationship between the demand 
data time resolution and errors in the estimated losses on 
secondary networks has been investigated (Urquhart and 
Thomson 2015). In other research (Huilan et al. 2007), a 
genetic algorithm was used in line loss calculation for a 
distribution network. In other studies (Aranha Neto and 
Coelho 2013, Shulgin et al. 2012), a stochastic approach was 
used to calculate energy losses. A finite-element technique was 
used in loss calculation of distribution transformers (Yazdani-
Asrami et al. 2013). In other work (Delfanti et al. 2013, Ayres 
et al. 2014), the impact of dispersed generation on distribution 
network losses was evaluated. Regression analysis was used to 
estimate technical losses in distribution systems or in some 
parts of them (Queiroz et al. 2009, Rao and Deekshit 2006, 
Madrigal et al. 2015). Clustering approaches were applied 
(Grigoras et al. 2010, Dashtaki and Haghifam 2013) to perform 
loss calculation. In another study (Yang et al. 2014), 
adjustment factors were used to estimate line loss in secondary 
networks. A new parameter named the “loss coefficient” was 
created to improve loss estimation (Queiroz et al. 2012). 
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Despite several methodologies using sophisticated techniques, 
one of the oldest and most widely used method is the 
utilization of a loss factor, which represents the ratio of 
average power loss to the peak load power loss over a given 
period of time (Nickel and Braunstein 1981, de Oliveira et al. 
2008). For example, in previous research (Oliveira and 
Padilha-Feltrin 2009, Poryan 2009, Grigoras et al. 2012), 
technical losses in distribution systems were estimated through 
loss-factor-based techniques. The deficiencies of methods 
based on the loss factor have been presented and discussed 
(Onen et al. 2014). Two formulas were proposed for 
calculation of the loss factor to improve the classical method, 
based on the minimum load factor and the load factor (Fu et 
al. 2016). 

To avoid the use of loss factors, methodologies were proposed 
(Meffe and de Oliveira 2009, Donadel et al. 2009) to estimate 
technical losses per segment of a power distribution system. 
Such methodologies are based on typical daily load profiles for 
each kind of customer (divided in 24 steps), using a load flow 
tool. Adjusting the differences between the energy from the 
estimated load profile and the energy from the measured load 
profile (such a difference is named “nonbilled energy”) was 
proposed, based on measurements performed in the peak load 
time, considering a uniform distribution of nonbilled energy 
(Meffe and de Oliveira 2009) and a nonuniform distribution of 
nonbilled energy (Donadel et al. 2009). The latter one was 
based on estimations of illegal consumers — consumers who 
are recorded in the DNO's database and have a meter system 
provided by their DNO, but who tamper with it. In the same 
way, a method that considers that DNOs have hourly flow 
measurements at each of their feeders and make these 
measurements available to their engineers was presented 
(Onen et al. 2014). In this case, the shape of load curves can 
be adjusted too, to achieve more accuracy. 

However, the presence of clandestine connections, common in 
developing countries, was not considered in methodologies 
encountered in the literature. Clandestine connections occur 
when a consumer has made his/her connection without DNO 
permission. In these cases, the amount of energy consumed by 
a clandestine "consumer" is a nontechnical loss (and, 
therefore, should be correctly computed as nonbilled energy). 
Therefore, an improved methodology is proposed to consider 
the presence of clandestine connections in energy loss 
estimation of a power distribution system. 

The remainder of this work is organized as follows. In 
Section 2, the proposed methodology is presented, including 
the mathematical formulation. In Section 3, numerical results 
are presented, and the results obtained by the application of the 
proposed methodology are deeply discussed. The conclusions 
are presented in Section 4. 

2. ENERGY LOSS ESTIMATION METHODOLOGY 

Consideration of the presence of clandestine connections in the 
energy loss estimation of a power distribution system is 
proposed. To do this, it is necessary to know (or estimate) 
where clandestine connections are located and how big their 
electrical energy consumption is (clandestine consumer 
connection point and consumption can strongly affect the 

results of load flow studies). In an ideal scenario, in which data 
on clandestine-connection locations/consumptions are known, 
load flow studies result in a correct value of energy losses. 
Because of practical reasons (e.g., financial aspects), these 
data are not completely available. Therefore, available data 
about clandestine connections should be used to estimate their 
condition in the entire distribution system and, therefore, their 
impact on distribution system energy losses. Thus, good 
estimates of clandestine-connection locations/consumption 
lead to good estimates of energy losses. 

Brazilian DNOs used to perform inspections of their electrical 
distribution networks to detect clandestine connections and 
generate a database from the data obtained from these 
inspections. In a long term, performed inspections help DNO 
to reduce clandestine connections. However, in a 
short/medium term, data from performed inspections can be 
used as a good estimator of clandestine connections. 
Commonly, the data available are: area identifier (area ID), 
date of inspection, and number of clandestine connections 
detected in each inspection. Area represents the region where 
clandestine connections were detected; it commonly coincides 
with a neighborhood’s limits, and it is represented by a 
polygon in the DNO’s geographic information system (GIS).  

The proposed methodology is based on typical daily load 
profiles for each kind of customer (divided into 24 steps), 
using a load flow tool, as in previous research (Meffe and de 
Oliveira 2009, Donadel et al. 2009). It proposes adjusting the 
nonbilled energy based on measurements performed in the 
peak load time, considering a nonuniform distribution of 
nonbilled energy from estimations of clandestine connections. 
The methodology strategy is shown in Fig. 1. The 
methodology's steps are presented below. 

Step 1. Load data from the DNO's GIS: electric power 
substations' boundaries, areas' boundaries, historical data of 
performed inspections, electrical networks' topologies, and 
historical data of consumers.  

Step 2. Define 𝐸௉ௌ — the set of electric power substations of 
interest. The proposed methodology should be applied to each 
electric power substation 𝑖, 𝑖 ∈  𝐸௉ௌ, individually (from Step 
3 to Step 8). 

Step 3. Electrical distribution networks are not restricted to a 
specific area, i.e., one electric power substation can supply 
consumers in distinct areas. In this step, the set of areas (𝐴ோ) 
which are partially or totally supplied by each electric power 
substation 𝑖 is determined from geographical data. 

Step 4. For practical reasons, clandestine-connection 
estimations obtained from historical data cannot be compared 
to field data for validation purposes. Therefore, in this step, it 
is verified whether the number of inspections performed in 
each area 𝑘 (𝑘 ∈  𝐴ோ) is statistically representative, leading to 
a reliable average value for the number of clandestine 
connections. This step guarantees the accuracy of estimated 
data. From the central limit theorem, the minimal number of 
inspections is given by (1) (Sprent and Smeeton 2007, Fleiss 
et al. 2003). 



 
 

     

 

 

Fig. 1 Methodology proposed in this study 
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Where: 

𝑛௞ Minimal number of inspections for area 𝑘 
𝑁௖,௞ Number of consumers of area 𝑘 
𝑧ఊ ଶ⁄  𝑧-value, corresponding to the desired confidence level 

() 
𝜎௞ Population standard deviation (approximated by 

sample standard deviation) of area 𝑘 
𝐸 Margin of error 

If the minimum number of inspections for area 𝑘 is not 
achieved, area 𝑘 is joined with another area/areas to create a 
bigger area with a sufficient number of inspections. 

Step 5. Each area 𝑘 can be supplied from distinct electric 
power substations. This step aims to calculate the participation 
factor of the analyzed electric power substation 𝑖 in each 
covered area 𝑘 determined in Step 3. The participation factor 
is given by (2). 

𝑃𝐹௜,௞ =
𝐶௞,௜

𝐶௞,௧௢௧௔௟

 (2) 

Where: 

𝑃𝐹௜,௞ Participation factor of electric power substation 𝑖 in 
area 𝑘 

𝐶௞,௜ Number of consumers in area 𝑘, connected to the 
analyzed electric power substation 𝑖 

𝐶௞,௧௢௧௔௟ Number of consumers in area 𝑘 

Step 6. Estimate the number of clandestine connections for 
each covered area 𝑘, connected to the analyzed electric power 
substation 𝑖, given by (3). If  𝑛௜௡௦௣,௞ < 𝑛௞, data from similar 
areas are used, since they have 𝑛௜௡௦௣,௞ ≥ 𝑛௞. 

𝑁௖௖,௞,௜ = 𝑃𝐹௜,௞

∑ 𝑁௖௖,௞,௝
௡೔೙ೞ೛,ೖ

௝ୀଵ

𝑛௜௡௦௣,௞

 (3) 

Where: 

𝑁௖௖,௞,௜ Number of clandestine connections estimated for 
area 𝑘 connected to the analyzed electric power 
substation 𝑖 

𝑁௖௖,௞,௝ Number of clandestine connections detected in 
each inspection 𝑗 for area 𝑘 

𝑛௜௡௦௣,௞ Number of inspections performed in area 𝑘 

Step 7. Add the estimated clandestine connections for each 
area 𝑘 connected to the analyzed electric power substation 𝑖. 
Clandestine connections are uniformly distributed.  
Clandestine-connection consumption was estimated by the 
DNO in previous studies (performed in field) in the range 150-
200 kWh and they are typically connected in a secondary 
network. Therefore, in this study, for simplification purposes, 
clandestine-connection consumption has a uniform probability 
density function varying between 150 and 200 kWh. All 
clandestine connections were connected to a secondary 
network. 

Step 8. Estimate energy losses according to the methodology 
described in a previous study (Meffe and de Oliveira 2009), 
using a load flow tool. However, energy losses values in kWh 
(or MWh) cannot be presented (they are considered classified 
information). Therefore, results will be presented in terms of 
the percentage variation of energy losses between the 
methodology used as reference by local DNO, and the 
methodology presented in this study. 

All processed data were available in Comma Separated Values 
(CSV) files. Microsoft Access was used to manipulate these 
files and a commercial load flow tool (Pertec) was used to 
calculate power and energy losses. 

3. NUMERICAL RESULTS AND DISCUSSION 

The methodology presented in Section 2 was applied at 16 
electric power substations with unbalanced load (Donadel et 
al. 2009) over 12 months. The feeders supply an urban/rural 
region, having different characteristics. This region was 
chosen because it has a broad database of historical data of 
performed inspections. These data have been kept unchanged 
in the analyzed period. 

Fig. 2 shows the energy loss variations between the 
methodology described in a previous study (Meffe and de 
Oliveira 2009), used as a reference method by the local DNO, 
and the methodology presented in this work. The energy loss 



 
 

     

 

variations presented in Fig. 2 refers to all electric power 
substations, stratified by month. 

 
Fig. 2 Energy loss variations between a methodology 
described elsewhere (Meffe and de Oliveira 2009), used as 
reference method by local DNO, and the methodology 
presented in this study 

In general, energy loss variations between the methodology 
described previously (Meffe and de Oliveira 2009) and the 
methodology proposed in this work (Fig. 2) are small, varying 
in the range between -0.99% and +0.46%. Therefore, the 
difference between the energy losses obtained from a uniform 
distribution of nonbilled energy and energy losses obtained 
from a nonuniform distribution of nonbilled energy (this 
methodology) varies in the range between -0.99% and 
+0.46%. Although the energy loss variations are small, there 
is a smooth trend of reduction of energy loss values. The 
energy loss variations’ average value is -0.31%, when the 
values obtained with the previous method (Meffe and de 
Oliveira 2009) are compared to the values obtained with the 
proposed methodology, being negative in 83% of the analyzed 
months. In a global way, small values of energy loss variations 
between methods were expected, because the methodology 
proposed in the present study promotes a spatial redistribution 
of nonbilled energy (and, consequently, a spatial redistribution 
of energy losses associated with it) in the analyzed region, but 
the amount of nonbilled energy remains the same. However, 
an increase in these differences is expected when the analysis 
is performed in subregions (e.g., analyzed by feeder or 
neighborhood).  

Energy losses can be evaluated by segment. For comparison 
purposes, the segments adopted in this study were the same 
segments adopted in the previous one (Meffe and de Oliveira 
2009). They are meters, service connections, secondary 
network, distribution transformers, primary network, capacitor 
banks, and voltage regulators. Fig. 3 shows energy loss 
variations accumulated over one year, stratified by segment, 
between the methodology described previously (Meffe and de 
Oliveira 2009) and the methodology presented here.  

Historically, the majority of illegal consumers and clandestine 
connections are in low-voltage networks (or secondary 
networks). Therefore, the methodology presented in this work 
tends to increase the amount of energy to be allocated in low-
voltage networks. This redistribution process leads to an 
energy loss increase in low-voltage segments (service 
connections, secondary network, and distribution 
transformers). Service connections had their energy losses 

increased by 5.38%, secondary networks had their energy 
losses increased by 3.51%, and distribution transformers had 
their energy losses increased by 1.27%. Distribution 
transformers had the lower increasing rate because part of their 
energy losses is not variable with load. However, energy losses 
in medium-voltage segments (primary network) tend to 
decrease (-5.21% in Fig. 3). Although the entire amount of 
redistributed energy is still flowing through primary network, 
it is spread on the feeder, because the low-voltage consumers 
are spread on the feeder. Energy losses in meters, capacitor 
banks, and voltage regulators do not depend on the power flow 
through them. In these segments, energy losses are modeled as 
a constant value. Therefore, the total energy loss value depends 
only on the number of devices connected to the network. The 
number of capacitor banks and voltage regulators does not 
change (the network topology was kept unchanged). The 
methodology presented here includes new consumers without 
meters, an inherent characteristic of clandestine connections. 
Therefore, the total number of meters does not change. 

 
Fig. 3 Energy loss variations accumulated over one year, by 
segment, between a methodology described in previous 
research (Meffe and de Oliveira 2009) and the methodology 
presented in this study 

When the analysis is performed for each single substation 
(numbered from #1 to #16), energy loss variations between the 
previous methodology (Meffe and de Oliveira 2009) and the 
methodology proposed in this study vary in the range between 
-4.06% and 2.82%, as shown in Table 1. For example, energy 
losses for Substation #1 were 0.06% higher with the proposed 
methodology; however, energy losses for Substation #10 were 
0.86% lower with the proposed methodology. 

As expected, higher variations can be observed when an 
analysis by feeder is performed (varying in the range between 
-8.50% and 12.61%, between the previous study (Meffe and 
de Oliveira 2009) and this one). Energy loss variations 
increase more when the analysis is made by area. Fig. 4 shows 
energy loss variations for 17 areas selected as an example (the 
entire analyzed region has more than 300 areas), varying in the 
range between -5.30% and 36.59% when the values obtained 
from the previous method (Meffe and de Oliveira 2009) are 
compared to the values obtained in this study. These results 
represent a powerful tool for DNOs' planners, because they can 
choose the priority areas to receive financial resources from 
DNOs to reduce energy losses. 



 
 

     

 

Table 1. Energy Loss Variations for Each Electric Power 
Substation 

Substation 
Energy loss variations between 

Meffe and de Oliveira (2009) and 
this work 

#1 -0.06% 
#2 -0.57% 
#3 0.52% 
#4 -1.58% 
#5 -0.91% 
#6 -0.02% 
#7 -2.29% 
#8 -0.15% 
#9 -3.70% 

#10 0.86% 
#11 2.49% 
#12 -0.49% 
#13 -0.94% 
#14 -4.06% 
#15 2.82% 
#16 1.61% 

Fig. 4 Energy loss variations for 17 areas between the 
methodology described in previous research (Meffe and de 
Oliveira 2009) and the methodology presented in this study 

4. CONCLUSIONS 

Methodologies for energy loss estimation are important, 
because the costs of technical losses represent a huge part of 
the total operation costs of DNOs. The methodologies should 
have high accuracy to help DNOs' planners in their decisions. 
A new methodology for energy losses estimation was 
proposed. It can consider the presence of clandestine 
connections in the network, while keeping the advantages of 
previous methodologies proposed in the literature: the 
estimation of energy losses by segment and considering a 
nonuniform distribution of nonbilled energy. The main 
advantages of the proposed methodology are as follows. 

- It presents a higher accuracy when compared to existing 
methods because it considers a more realistic perspective, in 

which losses are not evenly distributed along the distribution 
network. 

- It promotes a nonuniform redistribution of the nonbilled 
energy, based on historical data of clandestine connections, 
bringing the methodology closer to the situations that occur in 
practice. 

- It enables DNOs' planners to stratify the energy loss values 
by segment, feeder, substation, and area, improving DNOs' 
technical planning process. 

- It enables DNOs' planners to choose the priority 
areas/feeders/substations to receive financial resources from 
DNOs to reduce energy losses. 

Naturally, the proposed methodology can express the 
behavior of losses considering the confidence level desired in 
each case, as expected for statistical methods. 
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