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Abstract
This paper aims to compare two different parallel approaches (cooperative and competitive) of
the SPEA2 for solving the environmental-economic dispatch problem. The idea is to solve the
problem by executing the SPEA2 algorithm along with three different meta-heuristics (Genetic
Algorithms, Particle Swarm Optimization, and Differential Evolution) to perform changes in the
population. The different meta-heuristics work in parallel using two different approaches. The
first one is the competitive approach, in which meta-heuristics compete for producing the best
set of candidate solutions for solving the problem. Whereas, the cooperative approach selects
the new population merging all individuals from all meta-heuristics, then selecting the solution
set for the Pareto frontier. The proposal was implemented in C++ using MPI in a master-slave
parallel model. Two study cases were used: the first one with six generators and the second one
with forty generators. Results showed that the cooperative approach presented the best Pareto
frontier for the case of 40 generators.
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1. INTRODUCTION

The environmental-economic dispatch (EED) problem is
a significant optimization problem in the power system
operation due to the growing concern about environmental
pollution caused by thermal power plants (Bora et al.,
2019). The primary purpose of the EED for electric power
generation is to program the dedicated generating unit
outputs for matching the load demand at a minimum op-
erating cost and, at the same time, to reach the minimum
pollutant emission. Therefore, we can realize that the EED
problem is a multi-objective optimization problem with
conflicting objectives, i.e., the lesser the operation cost,
the bigger the pollutant emission and vice-versa.

Literature has reported different techniques for dealing
with the EED problem. In Granelli et al. (1992), the prob-
lem is reduced to a single objective one by transforming
the emission into a constraint, in which the user can define
an allowable limit. This approach, however, has a critical
difficulty in obtaining the trade-off relations between cost
and emission (Osman et al., 2009), since the user must
be aware of the emission limits. Another approach is to
convert the EED into a single objective problem by using
a linear combination of the different objectives, i.e., com-
bining both objectives using a weighted sum, as we can see
in Aydin et al. (2014) and Bhattacharjee et al. (2014).

On the one hand, the weighted sum approach makes the
algorithm implementation easier. On the other hand, the
main drawback of this approach is the difficulty in ob-
taining the Pareto frontier because each execution can
reach only one point at a time. Therefore, we have to
execute the program at least as many times as we want
solutions, which is time-consuming and imprecise. This
scenario demands algorithms that can build Pareto fron-
tiers and presents the possible trade-offs between cost and
emission. In this context, multiobjective algorithms such as
SPEA2 (Strong Pareto Evolutionary Algorithm 2)(Zitzler
et al., 2001) come to solve this kind of problem. In fact, the
SPEA2 has been successfully used in works that deal with
multiobjective problems, such as Lanza-Gutierrez et al.
(2013); Xiao et al. (2014); Wang et al. (2015); Golchin
and Liew (2016); Qasim and Ismail (2017).

Although SPEA2 can found Pareto frontiers efficiently,
the market usually demands quick decision-make. In this
context, we can leverage hardware advances and perform
complex optimizations quickly and scalable in competitive
domains (Brown et al., 2014). One of these hardware ad-
vances is the popularization of multi-core processors, which
improves the overall throughput by executing multiple
threads in parallel on different cores (Kumar et al., 2017).
Such technology became available in the middle of 2000s.
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Since then, they became widespread even in mobile devices
such as tablets and cell phones.

In this context, the main advanced in this paper is to
explore two different parallel approaches (cooperative and
competitive) on updating populations in the SPEA2 for
solving the EED problem. The idea starts from Costa
et al. (2017), in which the population on SPEA2 can be
updated adaptively using three different meta-heuristics:
Genetic Algorithms (GA) (Michalewicz, 1999), Particle
Swarm Optimization (PSO) (Eberhart et al., 1995), and
Differential Evolution (DE) (Storn and Price, 1995). In
our proposal, we use a parallel approach. Thus, the adap-
tivity is no longer necessary because the different meta-
heuristics are executed in parallel. Thus, we aim to answer
the following question: which approach produces better
results, the cooperative or the competitive model for the
EED problem. To answer this question, we implemented
the new approach using Message Passing Interface (MPI)
MPI (2017) in C++ Language.

This paper is divided as follows: Section 2 introduces
the basic concept of multiobjective optimization using the
Pareto approach; Section 3 presents how the SPEA2 works
and how the algorithm has been parallelized; Section 4
shows the results of this paper; finally, Section 5 presents
the conclusions and future work.

2. MULTIOBJECTIVE FUNDAMENTALS

A multiobjective optimization problem (MOP) has to deal
with two or more conflicting objective function Deb and
Kalyanmoy (2001) at the same time. These functions must
be in conflict in order to build a Pareto frontier, where
there are no solutions better than others; otherwise, the
answer to the problem would be only one point in the
search space. Thus, assuming that a solution to a MOP
is a vector in a search space X with m elements. A
function f : X → Y evaluates the quality of solutions
mapping it into an objective space. Therefore, a multiob-
jective problem is defined as Max or Min y = f(x) =
(f1(x1, ..., xm), ..., fn(x1, ..., xm)), where f is a vector of
objective functions, m is the dimension of the problem
and n the number of objective functions.

In order to determine whether a solution belongs to the
Pareto frontier or not, we need the concept of optimality,
which state that given two vectors x, x∗ ∈ < and x 6= x∗,
x dominates x∗ (denoted by x � x∗) if fi(x) is not worse
than fi(x∗),∀ i and ∃ at least one i where fi(x) > fi(x∗) in
maximization cases and fi(x) < fi(x∗) otherwise. Hence,
a solution x is said Pareto optimal if there is no solution
that dominates x, in such case, x is called non-dominated
solution. Mathematically, assuming a set of non-dominated
solutions ℘, a Pareto frontier(pf) is represented as pf =
{fi(x) ∈ R | x ∈ ℘}.

2.1 Environmental-Economic Dispatch

The environmental economic dispatch is a bi-objective
problem in which both fuel cost and pollution emission
have to be minimized. The cost is computed using Equa-
tion 1 while the emission is calculated by Equation 2,
where Pi is the power in the ith generator, ai, bi, ci, αi,
βi, and γi are operation coefficients.

min Fc =

n∑
i=1

(aiP
2
i + biPi + ci) (1)

min E =

n∑
i=1

(αiP
2
i + βiPi + γi) (2)

subject to

max∑
min

Pi ≥ Pd (3)

Pmin ≤ Pi ≤ Pmax (4)

The constraint presented in Equation 3 is the required
demand, i.e., the sum of all powers has to be equal or
greater than a specific demand. The constraint shown
in Equation 4 depicts the operation boundaries of each
generator.

3. SPEA2

The SPEA2 was proposed by Zitzler et al. (2001). The
main difference between SPEA2 and the previous version
is the narrowing of the archive to save some memory space.
Either, the archive is always filled up whether there are
enough non-dominated points or not. Thus, the selection
process was modified to order the solutions according
to their importance. The Algorithm 1 outlines how the
SPEA2 works.

archive size← input size(n)
archive← ∅
pop← init population(funk, pop size, dim)
archive < −non dominated sol(pop)
for (i=1 to max it) do

Rt← mix(pop, archive)
s← compute s(Rt)
raw ← compute raw(s)
d← compute density(Rt)
fitness← raw + d
indexes← (fitness < 1)
archive tmp← Rt[indexes, ]
if (#non dom == archive size) then

archive← archive tmp
else if (#non dom < archive size) then

archive← archive tmp
archive← fill()

else
archive← clustering()

end if
pop← gen operators()

end for

Algorithm 1. SPEA2 Pseudo Code

The SPEA2 starts with an empty archive of size n and
a random population for k objective functions (k ≥ 2).
Then, the first set of non-dominated solutions is deter-
mined and assigned to the archive. Then, a temporary
population Rt is made by combining the current popu-
lation and the archive. Afterwards, the algorithm needs
to compute the s vector according to Equation 5, which



means the cardinality of a point i in terms of dominance,
i.e., how many solutions i dominates in Rt.

s(i) = |{j|j ∈ Rt ∧ i � j}| (5)

The next step is to calculate the raw vector, which
represents the strength of each non-dominated solution as
presented in Equation 6. In other words, if a solution i
is dominated by solutions j1, j2 and j3, then its raw is
s[j1] + s[j2] + s[j3]. Therefore, all non-dominated solutions
present raw = 0. On the other hand, a high raw[i] value
means to be dominated by many individuals.

raw[i] =
∑

j∈Rt,j≺i
s(j) (6)

Although the raw fitness provides a sort of niching mech-
anism based on the concept of Pareto dominance, it may
fail when there are too much dominated solutions. Thus,
additional density information is incorporated to discrim-
inate between individuals having identical raw fitness val-
ues as shown in Equation 7, where σ is the distance to
the kth individual. Usually, k is calculated according to
k = |

√
pop size|.

d(i) =
1

σk
i + 2

(7)

Thus, the final Rt fitness is equivalent to fitness = raw+
d. Being d < 1 and raw = 0 in all non-dominated
solutions; consequently, all non-dominated solutions will
present fitness < 1. If the number of non-dominated
points is equal to the archive size, then the temporary
archive replaces the old one. If the length of the temporary
archive is less than the archive size, then the new archive
has to be filled up with non-dominated solutions chosen
from the smallest to the highest fitnesses. Otherwise, the
non-dominated solutions have to be clustered, in which
the closer the solutions, the greater the probability of
being eliminated, maintaining the diversity in the archive.
Finally, the population undergoes genetic operators to
move along the search space. Typically, these operators
are crossover and mutation, and therefore, the same ones
originated from genetic algorithms can be applied.

3.1 The Parallel Version: Competitive and Cooperative

The competitive approach works similarly to a Master-
Slave model (Dubreuil et al., 2006). In this model, the
SPEA2 algorithm is executed by a master process. While
the master process executes methods such as raw and
density computation, for example, three slaves are waiting
for receiving the main population from the master process.
The entire population is sent to slaves. Each slave executes
a different meta-heuristic. For instance, process 1 runs a
GA, process 2 executes a PSO, and process 3 executes a
DE algorithm. After that, the slaves sent their populations
to the master process, which selects the best one based on
their hypervolume. In other words, the master process will
keep the population of the meta-heuristic that presents the
best hypervolume. Finally, the chosen population undergo
the regular SPEA2 algorithm.

In the cooperative approach, the communication architec-
ture is similar to the competitive model; however, when
the master process receives all populations, the algorithm
selects the population performing a clustering algorithm,
which selects non-dominated solutions from the popula-
tions of all three slaves. Regarding the parallelism, it
is essential to perform the clustering algorithm that all
populations be available to the master process. Doing so
demands the use of a barrier to guarantee the availability
of data.

4. COMPUTATIONAL EXPERIMENTS

All tests were executed 31 times in a computer with a
core i5 processor of 4 cores, 2 real and 2 logic (with
hyperthreading), 2.70 GHz frequency, and 6GB of RAM.
The number of executions was chosen based on the central
limit theorem, which stands that any sample with more
than thirty trials tends to be normal. Two metrics have
been used: hypervolume and spread. The first one repre-
sents the area of dominated solutions, i.e., the better the
hypervolume, the better the Pareto frontier (in theory).
The second metric is the spread, in which higher values
indicate a better distribution of the solutions along the
Pareto frontier. All experiments were executed 50 times
with 300 iterations. Table 1 shows the parameters of each
meta-heuristic.

Table 1. Meta-Heuristic’s parameters

GA Pm = 0.1 and Pc = 0.8

PSO w = 0.9 and c1 = c2 = 0.5

DE CR = 0.5 and F = 1.0

4.1 Case Study 1: 6 Generators

Table 2 presents the coefficients and boundaries for the
case of 6 generators. Data were obtained from Singh and
Kumar (2016) and Cortes et al. (2014) work.

Regarding hypervolume and the spread metrics, Table
3 shows the results obtained by both cooperative and
competitive approaches for the demands of 500MW and
700MW. Even though the competitive approach presents
a better hypervolume, the cooperative algorithm presents
a better spread. Visually, the cooperative approach seems
to present more non-dominated solutions for 500MW, as
shown in Figure 1. On the other hand, the competitive al-
gorithm shows more solutions when the cost of production
is lower.

Figure 2 shows the Pareto frontiers for 700MW. In this
case, the competitive mode dominates the cooperative
when the lowest generation cost is considered as we can
see in the solutions presented in Table 4. That is the
reason why the competitive approach presents a better
hypervolume.

4.2 Case Study 2: 40 Generators

Table 5 presents the data for the 40 generators case study,
and Table 6 shows de metric results attending a demand
for 10500MW in which the competitive approach reached
the best results. However, a detail in the Figure 3 shows
that, even though the competitve approach presents the



Table 2. Generators and cost coefficients

i Pmin Pmax a b c α β γ

1 10 125 0.01 2 10 0.00419 0.32767 13.85932

2 10 150 0.012 1.5 10 0.00419 0.32767 13.8593

3 35 225 0.004 1.8 20 0.00683 -0.54551 40.26690

4 35 210 0.006 1 10 0.00683 -0.54551 40.26690

5 130 325 0.004 1.8 20 0.00461 -0.51116 42.89553

6 125 315 0.01 1.5 10 0.00461 -0.51116 42.89553

Table 3. Metrics for the EED: Hypervolume
and Spread

Hypervolume

Demand Cooperative Competitive

500MW 62.28 64.71

700MW 3369.37 3828.38

Spread

Demand Cooperative Competitive

500MW 601.29 588.981

700MW 783.869 756.262

Figure 1. Cooperative vs Competitive Pareto frontiers with
demand of 500MW

Figure 2. Cooperative vs Competitive Pareto frontiers with
demand of 700MW

best outcomes, the cooperative one dominates part of
the competitive frontier reaching a better trade-off within
the interval [134000, 142000] of the Generation axis as
presented in Figure 4.

Table 4. Lowest solutions - 6 generators: pro-
duction cost vs emission cost

500MW

Cooperative Competitive

Generation ($1188.36, $264.363) ($1188.43, $264.569)

Emission ($1197.11, $255.93) ($1197.37, $255.947)

700MW

Cooperative Competitive

Generation ($1736.76, $469.647) ($1731.82, $469.213)

Emission ($1810.72, $417.901) ($1816.46, $418.417)

Figure 3. Cooperative vs Competitive Pareto frontiers with
demand of 10500W

Figure 4. Cooperative vs Competitive Pareto frontiers with
demand of 10500W - Zoom

Concerning solutions of the case study 2, the best solutions
in terms of generation and emission costs are presented
in Table 7. As we can see, the best solutions are non-
dominated ones in both cooperative and competitive.
However, when we analyze a trade-off we can see how the



Table 5. Generators and cost coefficients for 40 generators

i Pmin Pmax a b c α β γ

1 36 114 0.0069 6.73 94.705 0.0057 0.033 7.248

2 36 114 0.0069 6.73 94.705 0.0046 0.0458 19.834

3 60 120 0.02028 7.07 309.54 0.0025 0.0469 18.317

4 60 190 0.00942 8.18 369.03 0.0028 -0.0446 19.22

5 47 97 0.0114 5.35 148.89 0.0058 0.0008 10.18

6 68 140 0.01142 8.05 222.33 0.0053 0.0481 14.774

7 110 300 0.00357 6.99 278.71 0.0052 0.0167 6.007

8 135 300 0.00492 6.6 391.98 0.0056 0.0478 17.934

9 135 300 0.00573 6.6 455.76 0.0057 0.0499 14.468

10 130 300 0.00605 12.9 722.82 0.0052 0.0411 17.984

11 94 375 0.00515 12.9 635.2 0.0033 -0.0553 11.002

12 94 375 0.00569 12.8 654.69 0.0059 0.0281 21.727

13 125 500 0.00421 12.5 913.4 0.0047 0.01 16.742

14 125 500 0.00752 8.84 1760.4 0.0047 -0.0319 5.492

15 125 500 0.00708 9.15 1728.3 0.004 0.0498 17.754

16 125 500 0.00708 9.15 1728.3 0.0056 0.046 19.684

17 220 500 0.00313 7.97 647.85 0.0059 -0.0208 13.608

18 220 500 0.00313 7.97 649.69 0.0043 -0.0417 6.374

19 242 550 0.00313 7.97 647.83 0.0051 -0.0034 17.277

20 242 550 0.00313 7.97 647.81 0.0049 0.0463 6.81

21 254 550 0.00298 6.63 785.96 0.0024 0.0092 20.634

22 254 550 0.00298 6.63 785.96 0.004 0.0387 11.574

23 254 550 0.00284 6.66 794.53 0.005 0.0479 9.36

24 254 550 0.00284 6.66 794.53 0.0036 0.0462 19.848

25 254 550 0.00277 7.1 801.32 0.0027 0.0497 12.101

26 254 550 0.00277 7.1 801.32 0.0038 0.0356 18.162

27 10 150 0.52124 3.33 1055.1 0.0056 0.0054 21.305

28 10 150 0.52124 3.33 1055.1 0.006 0.0088 18.734

29 10 150 0.52124 3.33 1055.1 0.0025 0.0472 19.399

30 47 97 0.0114 5.35 148.89 0.0024 -0.0435 14.765

31 60 190 0.0016 6.43 222.92 0.0029 0.0491 5.914

32 60 190 0.0016 6.43 222.92 0.0049 -0.0328 7.28

33 60 190 0.0016 6.43 222.92 0.0051 0.0311 7.546

34 90 200 0.0001 8.95 107.87 0.0042 -0.0313 20.767

35 90 200 0.0001 8.62 116.58 0.005 0.0069 22

36 90 200 0.0001 8.62 116.58 0.006 -0.0009 9.143

37 25 110 0.0161 5.88 307.45 0.0058 0.03 7.102

38 25 110 0.0161 5.88 307.45 0.0022 0.0423 11.21

39 25 110 0.0161 5.88 307.45 0.0056 0.0327 11.206

40 242 550 0.00313 7.97 647.83 0.0026 -0.0408 6.195

Table 6. Metrics for the EED: Hypervolume
and Spread. The case of 40 generators.

10500MW

Demand Cooperative Competitive

Hypervolume 95157152 125900356

Spread 166496 178593

cooperative solution dominates the competitive one, which
is seen in Figure 4 as well.

Table 7. Lowest solutions - 40 generators: pro-
duction cost vs emission cost

10500MW

Cooperative Competitive

Generation ($120368, $17877) ($120368, $17877)

Emission ($164647, $15071.5) ($176281, $14959.9)

Trade-off ($135871, $15139.9) ($136779, $15181.9)-

4.3 Sppedup

Table 8 shows the speedup for 6 generators. The best
speedup was obtained by the competitive approach reach-
ing a speedup of 2.45 that leads to an efficiency of 82%. The

cooperative approach presents a worse speedup because
the master process has to process all populations to obtain
the Pareto frontier, and update the archive to the next
iteration.

Table 8. Speedup - 6 Generators

Serial Parallel Serial Parallel
Coop. Coop. Comp. Comp.

Mean 177.818 146.253 139.871 57.201

Std. Dev. 3.192 1.478 6.911 11.765

Speedup - 1,22 - 2,45

Efficiency - 0,41 - 0,82

Table 9. Speedup - 40 Generators

Serial Parallel Serial Parallel
Coop. Coop. Comp. Comp.

Mean 13569.13 3540.186 14496.97 3385.48

Std. Dev. 892.003 53.952 2751.189 102.68

Speedup - 3.8328 - 4.282

Efficiency - 0.9582 - 1.0705



5. CONCLUSIONS

This work presented two parallel approaches to the SPEA2
algorithm for solving the EED problem. The competi-
tive approach presented better hypervolumes in all case
studies. Especially for the demand of 700MW in the six
generators case and 100500MW in 40 generators case,
which are problems more challenging to solve. However,
the cooperative approach present a better Pareto frontier
in the 40 generators case. Regarding the speedup, the six
generators case reached a speedup of 2.45 in the compet-
itive mode and 4.28 in the case of 40 generators. Because
the second case study is computationally intense, both
approaches reaches almost the ideal speedup.

Future work includes increasing the scalability of the
algorithm allowing to execute as many meta-heuristic as
the number of cores. Then, devise an algorithm to select
which meta-heuristic goes to which core. Also, a fuzzy-
based meta-heuristic selection can be implemented.
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Aydin, D., Özyön, S., Yaşar, C., and Liao, T. (2014).
Artificial bee colony algorithm with dynamic popula-
tion size to combined economic and emission dispatch
problem. International Journal of Electrical Power &
Energy Systems, 54, 144–153.

Bhattacharjee, K., Bhattacharya, A., and nee Dey, S.H.
(2014). Solution of economic emission load dispatch
problems of power systems by real coded chemical
reaction algorithm. International Journal of Electrical
Power & Energy Systems, 59, 176–187.

Bora, T.C., Mariani, V.C., and Coelho, L.S. (2019). Multi-
objective optimization of the environmental-economic
dispatch with reinforcement learning based on non-
dominated sorting genetic algorithm. Applied Thermal
Engineering, 146, 688 – 700.

Brown, L., Beria, A.A., Cortes, O.A.C., Rau-Chaplin, A.,
Wilson, D., Burke, N., and Gaiser-Porter, J. (2014).
Parallel mo-pbil: Computing pareto optimal frontiers
efficiently with applications in reinsurance analytics.
In 2014 International Conference on High Performance
Computing Simulation (HPCS), 766–775.

Cortes, O.A.C., Rau-Chaplin, A., Wilson, D., Cook, I.,
and Gaiser-Porter, J. (2014). A study of VEPSO
approaches for multiobjective real world applications.
In Proceedings of The Third International Conference
on Data Analytics, 42–48.

Costa, J.P.A., Cortes, O.A.C., and Júnior, E.C. (2017).
An adaptive algorithm for updating populations on
SPEA2. In Simpósio Brasileiro de Automação In-
teligente (SBAI).

Deb, K. and Kalyanmoy, D. (2001). Multi-Objective
Optimization Using Evolutionary Algorithms. John
Wiley & Sons, Inc., New York, NY, USA.
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