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marcus.costa@ufersa.edu.br)

∗∗∗ Department of Electrical Engineering, São Paulo State University,
Ilha Solteira - SP (e-mails: leohfmp@ieee.org,

percival@dee.feis.unesp.br)

Abstract: This paper proposes the use of the linear quadratic regulator, a systematic method
in which the controller is obtained by minimizing a quadratic performance index, to ensure
the desired damping rates of the low-frequency oscillatory modes present in an electrical power
system. The current sensitivity model is used to represent the dynamics of the system. To
validate the proposed technique, simulations were carried out using a single machine infinite bus
system. From the results obtained, it was evidenced the excellent performance of the proposed
controller, since it was able to damp the low-frequency oscillatory mode present in the test
system, accrediting it as a powerful tool in the study and analysis of small-signal stability in
electric power systems.
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1. INTRODUCTION

According to data from the national interconnected sys-
tem, more than 96% of the Brazilian electric power trans-
mission network is interconnected. Interconnected power
systems are a reality in the current conjuncture, not only
in the national scenario but also globally. There are some
advantages and disadvantages of having an interconnected
transmission system. As an advantage, it can be mentioned
the fact that if any eventuality occurs with any generating
unit, the system may have its demands supplied by other
generating units. As a disadvantage, interconnected power
systems are usually characterized by long transmission
lines, with high impedance values, which may favor the
emergence of low-frequency electromechanical oscillations
(Fortes et al., 2016).

Low-frequency oscillations can be classified according to
their frequency of occurrence and are usually classified as
local or interarea modes. Local modes occur within a range
of 0.80 to 2.00 Hz, while interarea modes occur within a
range of 0.20 to 0.80 Hz (Kundur, 1994; Sauer and Pai,
1998; Larsen and Swann, 1981).

The presence of these oscillatory modes in a power sys-
tem may compromise its operation and, in some cases,
cause the system to collapse. Therefore, control techniques

should be implemented to damp these low-frequency elec-
tromechanical oscillations (Fortes et al., 2016).

Power system stabilizers (PSS) and power oscillation
damping (POD) controllers coupled to automatic voltage
regulators (AVR) (Anderson and Fouad, 1993; Kundur,
1994) and flexible ac transmission system (FACTS) de-
vices (Hingorani and Gyugyi, 1999; Sen and Sen, 2009;
Fortes et al., 2016; Fortes et al., 2017), respectively, can
damp both the local (PSS) and interarea (FACTS-POD)
oscillatory modes present in the system.

Several optimization techniques have been successfully
used for tuning the parameters of the PSS and FACTS-
POD controllers. Metaheuristics, such as the Chu-Beasley’s
genetic algorithm, variable neighborhood search, artificial
bee colony algorithm, and novel bat algorithm, are some
examples that can be cited (Fortes et al., 2016; Martins
et al., 2017; Fortes et al., 2018; Miotto et al., 2018).

On the other hand, the concept of state feedback control
is already known and widely addressed in the literature
(Ogata, 2010). Applications in the context of wind power
generation are some examples of the use of this technique
(Costa et al., 2010; Pinto et al., 2012; Costa et al., 2012).
Recently, control techniques, such as the linear quadratic
regulator (LQR), have been used in studies related to the
stability of power systems (Jokarzadeh et al., 2019) using
the Heffron and Phillips (1952) model. It can be observed

creacteve_alessandra
Texto digitado
DOI: 10.48011/sbse.v1i1.2187



that the study of the application of state-space control
techniques is modern and current, with the potential to
be explored in studies related to the stability of power
systems using alternative modeling, such as the current
sensitivity model (CSM) Takahashi et al. (2018).

Different from the proposal presented by Jokarzadeh et al.
(2019) and as one of the main contributions of this work, it
is proposed the application of the LQR controller with the
CSM for the single machine infinite bus (SMIB) system
acting on the AVR through state feedback. For the LQR
controller in the state-space applied to the CSM, the choice
of the weighting matrices is made by tuning the matrices
Qc and Rc of the Riccati equation (Ogata, 2010) applied to
the CSM (Takahashi et al., 2018), as presented in Section
3.

The remainder of this work is organized as follows: Section
2 presents the CSM, with theoretical concepts of the CSM
applied to SMIB system; Section 3 presents the proposed
control strategy, in which the LQR theory is presented,
as well as the proposed application of the LQR to the
AVR model; Section 4 presents the results for the tests,
comparing the system before and after the compensation;
finally, Section 5 presents the conclusions of the work and
suggestions for future works.

2. CURRENT SENSITIVITY MODEL

2.1 Basic Equations of the CSM

Fig. 1 shows a salient pole synchronous generator G
connected to an infinite bus, represented by ∞, through a
transmission line with impedance Z̄e, in which a current I
circulates.

G

E′

x′

d IG

Vt

I

Że

V∞

Il

L

Figure 1. Single-line diagram of the SMIB system.

In Fig. 1, E′, Vt, and V∞ are, respectively, the internal
voltage, the terminal voltage of the synchronous generator
G, and the voltage at the infinite bus. In addition, x′

d is
the direct axis transient reactance of generator G, IG is
the current delivered by generator G at bus t, and Il is the
current drained by the load connected to bus t.

From Fig. 1, through inspection, it is possible to obtain
(1)−(4).

Vd = V sin(δ − θ) (1)

Vq = V cos(δ − θ) (2)

Id =
E′

q − Vq

x′

d

(3)

Iq =
Vq

xq

(4)

In (1)−(4), xq is the quadrature axis transient reactance
of generator G, δ is internal angle of generator G, and
θ is the voltage angle at bus t. In addition, E′

q, Vq, and
Vd are, respectively, the quadrature axis internal voltage,
the in-phase voltage, and the quadrature axis voltage of
generator G (Anderson and Fouad, 1993).

2.2 Currents Generated by the Synchronous Machine

By applying the transformation matrix (Anderson and
Fouad, 1993) to (3) and (4), (5) and (6) are obtained.

IGr
= sin(δ)

(
E′

q − Vq

x′

d

)

+ cos(δ)

(
Vd

xq

)

(5)

IGm
= − cos(δ)

(
E′

q − Vq

x′

d

)

+ sin(δ)

(
Vd

xq

)

(6)

In (5) and (6), IGr
and IGm

are, respectively, the real and
imaginary components of the current of the synchronous
generator G.

2.3 Current on the Transmission Line

To calculate the current I, that circulates between the
terminal bus of the generator and the infinite bus (see Fig.

1), consider Że = re + jxe and Vt = V cos(θ) + jV sin(θ).

By analyzing Fig. 1, (7) and (8) are obtained.

Ir =
re(V cos(θ)− V∞) + xeV sin(θ)

|Że|2
(7)

Im =
reV sin(θ)− xe(V cos(θ)− V∞)

|Że|2
(8)

Equations (7) and (8) represent, respectively, the real and
imaginary components of the current that circulates on the
line connecting the terminal bus of the generator and the
infinite bus.

2.4 Load Currents

Considering the existence of a load connected to the
terminal bus of the generator (see Fig. 1) which demands a

complex power Ṡl = Pl+ jQl, it is possible, by inspection,
to obtain the current (Il) as presented in (9) and (10).

Ilr =
Pl cos(θ) +Ql sin(θ)

V
(9)

Ilm = −

(
Ql cos(θ)− Pl sin(θ)

V

)

(10)

Equations (9) and (10) represent, respectively, the real and
imaginary components of the current demanded by a load
connected at the terminal bus of the generator.

2.5 Nodal Current Balance in the SMIB System

The fundamental principle of the CSM is to apply the
nodal current balance to each bus of the system. Math-
ematically, the current balance can be defined as shown in
(11) and (12).

IGr
− Ir − Ilr = 0 (11)

IGm
− Im − Ilm = 0 (12)

Equations (11) and (12) are algebraic expressions that
represent, in their fundamental form, the nodal balance
of currents at the terminal bus of the generator.



2.6 Internal Voltage of the Synchronous Machine

According to Kundur (1994), the variations of the internal
voltage of the synchronous machine are expressed by (13).

Ė′

q =
1

T ′

d0

[

Efd −
xd

x′

d

E′

q +

(
xd

x′

d

− 1

)

V cos(δ − θ)

]

(13)

In (13), T ′

d0
is the transient direct axis open-circuit time

constant, Efd represents the excitation voltage of the
synchronous machine, and xd is the direct axis transient
synchronous reactance of the generator.

2.7 Field Voltage of the Synchronous Machine

To consider the effects of the field winding of the syn-
chronous machine in the model, the generator must be
equipped with an AVR (Anderson and Fouad, 1993). In
this work, a first-order AVR is used to represent the varia-
tion of the excitation voltage of the synchronous machine,
as it can be observed in Fig. 2.

Vref

+

−

V

Kr

1+sTr

Efd∑

Figure 2. Block diagram of the AVR.

By analyzing Fig. 2 it is possible to obtain (14). This
equation represents the field voltage in the time domain.

Ėfd = −
1

Tr

Efd +
Kr

Tr

Vref −
Kr

Tr

V (14)

In (14), Kr and Tr are, respectively, the gain and time
constant of the AVR and Vref is the reference voltage of
the generator.

2.8 Electromechanical Equations

For a complete representation of the SMIB system, it
is necessary to describe the mechanical quantities of the
synchronous machine, i.e., the angular velocity of its rotor
(ω) and its internal angle (δ).

According to Demello and Concordia (1969) the electrome-
chanical equations of the generator are represented in (15)
and (16).

ω̇ =
1

M
(Pm − PG −Dω) (15)

δ̇ = ω0ω (16)

In (15) and (16), M = 2H and represents the inertia
constant of the generator, Pm is the mechanical input
power, PG is the active power generated by the syn-
chronous machine, D is the damping torque coefficient of
the electromechanical loop, and ω0 = 377 rad/s.

2.9 Time Domain Representation of the SMIB system
through the CSM

As presented in Subsections 2.1−2.8, the CSM is used
to represent a set of differential equations, (5)−(10) and
(13)−(16) as well as algebraic equations, (11) and (12),

which model the system’s dynamics. The CSM preserves
the external network, facilitates the inclusion of new de-
vices in the system, and preserves the terminal bus of the
generator, characteristics that are not present in the model
of Heffron and Phillips (1952), that are determining points
for choosing the CSM.

By admitting small variations around an equilibrium
point, (5)−(16) can be linearized and, therefore, repre-
sented as shown in (17)−(20).

∆x =
[
∆ω ∆δ ∆E′

q ∆Efd

]t
(17)

∆u = [∆Pm ∆Vref ∆Pl ∆Ql]
t

(18)

∆z = [∆θ ∆V ]
t

(19)
[
∆ẋ
0

]

=

[
J1 J2
J3 J4

] [
∆x
∆z

]

+

[
B1
B2

]

[ ∆u ] (20)

In (17)−(19), the state variables are represented by ∆x,
the input represented by ∆u, and the algebraic variables by
∆z. In addition, J1, J2, J3, J4, B1, and B2 are described
in (21)−(23).

J1=










− D
M

−K1

M
−K2

M
0

ω0 0 0 0

0 −KA
T ′

d0

− xd

x′

d
T ′

d0

1

T ′

d0

0 0 0 − 1

Tr










J2=










K1

M
K3

M

0 0

KA
T ′

d0

KV
T ′

d0

0 −Kr

Tr










(21)

J3 =

[

0 R2G R1G 0

0 M2G M1G 0

]

J4 =

[

Ar Br

Am Bm

]

(22)

B1 =









1

M
0 0 0

0 0 0 0

0 0 0 0

0 Kr

Tr
0 0









B2 =

[

0 0 −C3r −C4r

0 0 −C3m −C4m

]

(23)

Equation (20) can be rearranged as shown in (24).

∆ẋ = A∆x+B∆u (24)

In (24), the matrix A = (J1 − J2J4−1J3) is the state
matrix and B = (B1 − J2J4−1B2) is the input matrix.
More information on the coefficients shown in (21)−(23)
can be found in Appendix A.

3. CONTROL STRATEGY

The LQR is a systematic method in which the controller is
obtained by minimizing the quadratic performance index.
According to Ogata (2010), this regulator is defined by
(25).

J∞ (x, u, t) =

∞∫

0

[
xT (t)Qcx (t) + uT (t)Rcu (t)

]
dt (25)

In (25), Qc = Qc
T ≥ 0 and Rc = Rc

T > 0 are
real weighting matrices that can be adjusted to improve
performance of the system.

In this paper, the state-space model is represented by (26).

∆ẋ = A∆x+BVS
uV s +B∆u (26)

In (26), BV s is the state space vector obtained from (14)
and the AVR shown in Fig. 2, being defined in (27).



The signal ∆u is an exogenous disturbance to the system
represented via the CSM. Therefore, the AVR modeled
in the state space aims to guarantee the damping of
these disturbances for the stabilization of the synchronous
generator.

BV s =
[

0 0 0 Kr

Tr

]T

(27)

To stabilize the SMIB system in the state space, consider
that the control signal uV s is defined as shown in (28).

uV s = −KLQR∆ẋ (28)

In (28), the gain KLQR is obtained by solving the Riccati
equation (29) and (30) (Ogata, 2010).

ATP + PA+Qc − (PBVS
)TR−1

c (PBVS
) = 0 (29)

KLQR = R−1
c BT

V sP (30)

Fig. 3 illustrates the proposed block diagram for the state
feedback control of the AVR, hereinafter referred to as
the state space automatic voltage regulator (SS-AVR),
conceived from Fig. 2.

∆x
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q ∆Efd

Kω Kδ KE′

q
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+

−

V
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Figure 3. Block diagram of the proposed control strategy.

By analyzing Fig. 3 it is concluded that the state vari-
ables are essential parameters for the design of the LQR
controller. The SS-AVR representation presented on Fig.
3 is based on the state feedback in (28), in which the gains
are directly associated with the state variables ∆x.

4. TESTS AND RESULTS

The simulations were carried out in a SMIB system, which
data is shown in Table B.1 of Appendix B. Initially, the
SMIB system is simulated as modeled in Section 2 and
the eigenvalue of interest is λi = 0.3190 ± j7.2773, with
ωn = 1.15 Hz, and ξi = −0.04, in which ωn is the frequency
value, and ξi is the damping value for the eigenvalue of
interest in the SMIB system before the compensation.

It can be verified that the system has eigenvalues with
positive real part for the given operating point, which
characterizes the test system as unstable.

For the operation of the system to become stable, the
control strategy presented in Section 3 is used, where (31)
and (32) are obtained.

KLQR =






−8.14× 104

−3.99× 104

3.73× 101

4.30× 10−3






T

(31)

BV s =
[
0 0 0 2× 105

]T
(32)

In (31) the numerical gains of the LQR controller, obtained
by state feedback from (29) and (30), are shown, while (32)
is the numerical vector of the states obtained from (27),
in which Qc = diag(1, 1, 1, 0) and Rc = 1 were obtained
experimentally.

After adopting the control parameters shown in (31) and
(32), the SMIB system is tested again, and the results
of the simulation for the system compensated by the
LQR controller are as follows: the eigenvalue of interest is
λi = −3.7912±j8.2150, with ωn = 1.44 Hz, and ξi = 0.41.

One of the inherent advantages of the LQR control is the
systematic stabilization process based on the weighting
matrices. By analyzing the results, it can be verified that
the inherent characteristics of the proposed LQR, in (29)
and (30), ensured the stabilization of the test system with
the value of the frequency of the dominant eigenvalue of
the compensated system close to the same value in the
system before the compensation, in the left side of the
complex plane and highly damped.

Fig. 4 shows the time response of the compensated system,
with a constant perturbation in ∆Pm of 0.05 p.u. from the
time t = 300 ms.
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Figure 4. Time response of the compensated LQR model:
(a) variation of the angular velocity of the syn-
chronous generator and (b) variation of the control
signal of the actuator.

By looking at Fig. 4 (a), it can be verified that the red
curve is characterized by increasing amplitudes after the
disturbance of 0.05 p.u. on the mechanical power of the
synchronous machine. This was expected since in this
case, the SMIB system was unstable. After using the
LQR control, the system becomes stable, with a peak
value of 3.98 × 10−4 rad/s, as evidenced by the blue
curve, demonstrating a high margin of stability at small
disturbances (0.41 p.u. of damping). In Fig. 4 (b), it can be



seen that the control signal ∆uV s has a peak value of 5.35×
10−3 p.u. at t = 360 ms, showing that the control strategy
adopted in this work guarantees the stabilization of the
system with smooth action of the control signal, without
compromising the operating conditions of the generator.

5. CONCLUSION

In this work, the linear quadratic regulator (LQR) was
used to provide a control signal to stabilize a single
machine infinite bus system. To model the dynamics of
the electric power system, the current sensitivity model
(CSM) was used.

By analyzing the obtained results, it was observed that
the system compensated by the proposed controller, via
state feedback for the automatic voltage regulator, demon-
strated efficiency in the system stabilization. The analysis
of the obtained results allows concluding that the LQR can
be accredited as a powerful tool in the study of small-signal
stability of electric power systems.

As future work proposal, the feasibility of applying the
LQR with the CSM for small-signal stability studies in
multi-machine systems will be verified. For the studies
related to new control strategies, it will be verified the
feasibility of using the LQR applied to the CSM optimized
by heuristic methods.
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Appendix A. COEFFICIENTS OF THE CSM FOR
THE SMIB SYSTEM

K1 =
∂PG

∂δ

=
V

x′

d

cos(δ − θ) · E′

q + V 2 cos(2δ − 2θ)

(

−
1

x′

d

+
1

xq

)

(A.1)

K2 =
∂PG

∂E′

q

=
V

x′

d

sin(δ − θ) (A.2)

K3 =
∂PG

∂V

=
sin(δ − θ)·E′

q

x′

d

+V sin(2δ − 2θ)

(

−
1

x′

d

+
1

xq

)

(A.3)

KA =
∂E′

q

∂θ
= V

(
xd − x′

d

x′

d

)

sin(δ − θ) (A.4)

KV =
∂E′

q

∂V
=

(
xd − x′

d

x′

d

)

cos(δ − θ) (A.5)

R1G =
∂IGr

∂E′

q

=
1

x′

d

sin(δ) (A.6)

R2G =
∂IGr

∂δ
=

1

x′

d

E′

q cos(δ) +

(
1

xq

−
1

x′

d

)

V cos(2δ − θ)

(A.7)

R3G =
∂IGr

∂V

= −
1

x′

d

sin(δ)cos(δ − θ)+
1

xq

cos(δ)sin(δ − θ) (A.8)

R4G =
∂IGr

∂θ

= −
1

x′

d

V sin(δ) sin(δ − θ)−
1

xq

V cos(δ) cos(δ − θ)

(A.9)

M1G =
∂IGm

∂E′

q

= −
1

x′

d

cos(δ) (A.10)

M2G =
∂IGm

∂δ

=
1

x′

d

E′

q sin(δ)+

(
1

xq

−
1

x′

d

)

V sin(2δ − θ) (A.11)

M3G =
∂IGm

∂V

=
1

x′

d

cos(δ)cos(δ − θ)+
1

xq

sin(δ)sin(δ − θ) (A.12)

M4G =
∂IGm

∂θ

=
V

x′

d

cos(δ)sin(δ − θ)−
V

xq

sin(δ)cos(δ − θ) (A.13)

R1 =
∂Ir

∂V
=

1

|Że|2
[re cos(θ) + xe sin(θ)] (A.14)

R2 =
∂Ir

∂θ
= −

V

|Że|2
[re sin(θ)− xe cos(θ)] (A.15)

M1 =
∂Im

∂V
=

1

|Że|2
[re sin(θ)− xe cos(θ)] (A.16)

M2 =
∂Im

∂θ
=

V

|Że|2
[re cos(θ) + xe sin(θ)] (A.17)

C1r =
∂Ilr
∂θ

= −

(
Pl sin(θ)−Ql cos(θ)

V

)

(A.18)

C2r =
∂Ilr
∂V

= −

(
Pl cos(θ) +Ql sin(θ)

V 2

)

(A.19)

M1r =
∂Ilm
∂θ

=
Pl cos(θ) +Ql sin(θ)

V
(A.20)

M2r =
∂Ilm
∂V

= −

(
Pl sin(θ)−Ql cos(θ)

V 2

)

(A.21)

Ar = R4G −R2− C1r (A.22)

Br = R3G −R1− C2r (A.23)

Am = M4G −M2− C1m (A.24)

Bm = M3G −M1− C2m (A.25)

Appendix B. PARAMETERS OF THE SMIB SYSTEM

Table B.1. Parameters of the SMIB system

Parameters Value Unity

H 5 kgm2

D 0 kW· s/kVA
T ′

d0
6 s

|Vt| 1.0 p.u.
Pl 0 p.u.
Ql 0 p.u.
Kr 40 p.u.
Tr 0.001 s
x′

d
0.32 p.u.

xd 1.6 p.u.
xq 1.55 p.u.
re 0 p.u.
xe 0.30 p.u.




