
     

Artificial Neural Network Solution for Anomalous Operation Detection in Power 
Systems 

 
Nathan Elias Maruch Barreto*, Ciro Monteiro Baer*, Mateus Jaensen Daros*, Marlon Alexsandro Fritzen*, 

Guilherme Schneider de Oliveira*, Rafael Rodrigues**, Alexandre Rasi Aoki* 


*Federal University of Paraná, Curitiba, Brazil (e-mails: nathan.maruch@ufpr.br, monteirobaer@gmail.com, 
mateus.jdaros@gmail.com, marlonalexsandro@gmail.com, guilhermesoliveira100@gmail.com, aoki@ufpr.br)   

**TECPAR, Curitiba, Brazil (e-mail: rafaelr@tecpar.br) 

Abstract: This paper presents an anomalous operation detection system for power systems using the 
artificial neural network approach while discussing its advantages and disadvantages. The initial data for 
the proposed technique is a set of simulated post-fault bus voltages and currents obtained in a sampling 
rate so as to emulate a phasor measurement unit network. Several types of faults are dealt with, such as 
three-phase to ground, two-phase, two-phase to ground and single-phase to the ground as well as line and 
load contingencies. All fault and steady-state simulations were performed on MATLAB using Graham 
Rogers’ Power System Toolbox. The artificial neural network was designed on MATLAB, using an 
architecture proper for pattern recognition with supervised learning and obtaining high accuracy 
predictions within a short amount of time. The test system used in all simulations is the IEEE 39-Bus 
New England Power System, which presents 10 generation units, 21 loads and three distinct areas 
alongside transient and sub transient models, with phasor measurement units in 14 buses. Future works 
are discussed, showing the possibilities for feature engineering in this type of problem, fault type 
detection and fault location in operation using analogous dataset and neural network structures.  

Resumo: Este artigo apresenta um sistema de detecção de operação anômala para sistemas de potência 
utilizando-se da abordagem das redes neurais artificiais com uma discussão das suas vantagens e 
desvantagens. Os dados iniciais para a técnica proposta consistem em um conjunto de tensões e correntes 
de barra pós-falta obtido visando emular uma rede de unidades de medição fasorial. Diversos tipos de 
faltas são contemplados, tais quais as trifásicas, bifásicas, bifásicas-terra e monofásicas-terra bem como 
contingências de linha e de carga. Todas as simulações foram realizadas no MATLAB usando-se da 
Power System Toolbox desenvolvida por Graham Rogers. A rede neural artificial foi desenvolvida no 
MATLAB, utilizando-se de uma arquitetura apropriada para um problema de reconhecimento de padrões 
com aprendizado supervisionado e obtendo-se predições de alta precisão dentro de um pequeno intervalo 
de tempo. O sistema utilizado em todas as simulações é o IEEE 39-Bus New England Power System, que 
possui 10 unidades geradoras, 21 cargas e 3 áreas distintas, contando com modelos de regimes transitório 
e subtransitório e 14 unidades de medição fasorial. Futuros trabalhos são discutidos, mostrando as 
possibilidades para feature engineering neste tipo de problema, detecção de tipo de falta e de localização 
de falta utilizando estruturas análogas de conjunto de dados e rede neural.   
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1. INTRODUCTION 

Nowadays, stable, sustainable, reliable and continuous 
electricity must be provided to all sorts of consumers 
throughout the world without fail. Therefore, preventing and 
allocating resources to remedy voltage collapses and power 
oscillations – all of which are direct consequences of system 
faults – becomes one of the most important and arduous tasks 
power transmission and distribution system operators face in 
their daily commute (Ajenikoko and Sangotola, 2014; Liang, 

Wallace and Nguyen, 2017). As such, a method that detects 
anomalous behaviors throughout the electrical grid would be 
of great help in assuring reliable and safe operation and 
would shorten the duration of outages on the customer’s side 
(Sanad Ahmed et al., 2017).  

Since all sorts of faults can happen anywhere, anytime 
throughout the electric grid and a fault on a given bus impact 
every other bus of the system to some extent, the need for 
constant, broad and synchronous bus voltages and currents 
monitoring arises. As a solution to this problem, the 
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sophisticated digital technology of synchronous phasor 
measurement units (PMUs) was introduced in the industry in 
the early years of the last decade and has been further 
improved ever since, substantially impacting the energy 
quality in power systems. This technology allows operators 
to synchronously monitor the voltages and currents on a 
given bus with sampling rates far exceeding those of previous 
technologies, enabling engineers to analyze dynamic events 
on the grid (Nuqui, 2001). 

However, the number of samples PMUs can provide over a 
short time span makes real-time observation of instant 
anomalies too much of a task for human operators. Thus, the 
application of computational techniques that present a fair 
amount of reasoning and inference – intelligence – becomes 
of high interest in regard to the solution of such a problem. 
Given the structure of the data provided by the PMUs, one of 
the most convenient techniques available is the artificial 
neural network (ANN) with supervised learning, using data 
on previous faults for its training. To a degree of certainty, 
the ANN can provide a diagnosis on whether the system is 
being normally operated or not, what types of fault are 
occurring and in which buses – thus helping the system 
operator fulfill his tasks in a shorter amount of time and 
improving the reliability of the power supply.    

2. IEEE 39-BUS NEW ENGLAND POWER SYSTEM 

The New England power system encompasses all six states in 
the New England area of the United States of America and 
supplies major metropolis Boston, Massachusetts. It is 
currently operated by the ISO New England company and 
was better documented and structured after the Northeast 
Blackout of 1965 (Babula and Planning, 2017).  

2.1  Steady-state characteristics 

When normally operating, the New England power system 
presents 39 buses, 10 generators, 46 transmission lines and 3 
areas totaling a consumption of roughly 6.3 MW out of total 
generation capacity of 7.367 MW. A power flow simulation 
for this system was run using Graham Rogers’ Power System 
Toolbox (PST) for MATLAB (Chow and Cheung, 1992). 
More data on the system is available in Table 1.  Its diagram 
is available in Fig. 1.  

Table 1. New England Power System data 

Parameter Data 

Generation (Used) 6.298 GW 

Generation (Total) 7.367 GW 

Maximum Voltage 
Magnitude 

1.064 pu @ bus 36 

Maximum Voltage Angle 4.47 deg @ bus 36 

Minimum Voltage 
Magnitude 

0.982 pu @ bus 31 

Minimum Voltage Angle -14.54 deg @ bus 39 

2.2  Transient and sub transient characteristics  

In regards to the system’s dynamic behavior, there are 
models and parameters for the generators’ positive, negative 
and zero sequences as well for controllers such as power 
system stabilizers (PSS), automatic voltage regulators (AVR) 
and governors – all of which are taken in consideration 
during PST’s fault simulation and can be found in (Hiskens, 
2013) and (Law, 2007). Furthermore, in this paper, 
anomalous operation is defined as a situation where bus 
voltage, current and power levels differ from those measured 
in normal operation, regardless of the cause. 

2.3  PMU network emulation  

Each fault simulation has an output of 5 seconds worth of 
samples. The PMU sampling rate chosen in this paper is 10 
samples per cycle – meaning there are 500 samples per 
simulation for every variable.  

Furthermore, in a regular simulation, PST outputs all voltages 
and all currents entering and leaving every single bus in the 
system. However, in real life, there aren’t PMUs in all buses 
of the grid, as their measurements are rarely – but sometimes 
– uncertain due to possible firmware, hardware and software 
malfunction as well as possible communication system 
interferences, making system operators use state estimators in 
order the validate the current state of the systems (Oladeji 
and Adu, 2018). 

Thus, in this paper, all data asides the currents and voltages in 
buses 4, 8, 16, 28 and 30 – 39 is disregarded. As such, the 
aforementioned buses are the ones in which PMUs are 
located. The first 4 buses (4, 8, 16, 28) all have large loads 
allocated in them and are, in most part, located in different 
areas from one another or are physically close to area inter-
ties. The last 10 are all generator buses, whose measurements 
and constant monitoring are key to the system’s well-being 
and proper running and, ultimately, are the fastest way to 
indicate power surges. 

Such an arrangement provides for a sufficient overview of the 
system’s current state without the need of having PMUs 
installed in all buses – implying a lower installation and 
maintenance cost for power companies. 

Fig. 1 New England Power System electric diagram.  



 
 

     

 

3. ARTIFICIAL NEURAL NETWORK 

Artificial Neural Networks can be described as a set of 
elementary neurons that are usually connected in biologically 
inspired architectures and organized in several layers 
(Ayyagari, 2011). There are Ni neurons in a network in each 
of the in  layers and the inputs to these neurons are connected 
to the outputs of the previous layer’s neurons.  

Each of these neurons has an assigned weight, which is 
tailored through the training process – thus, making the ANN 
learn to produce a response based on the inputs given by 
adjusting the node weights. Hence, we need a set of data 
referred to as the training data set, which is used in the 
network’s training processes.  

The input layer is fed with the excitation signals – all the 
parameters established in the dataset and the samples – and 
the output layer returns the ANN’s judgment concerning the 
task at hand. Namely, the output is a non-linear function of 
the sum of all neuron’s outputs. There may be several 
“hidden” intermediate layers each with a possibly distinct 
number of neurons whose meanings and node weights are not 
easily (nor commonly) understood by humans.  

A common structure for a generic ANN is depicted in Fig. 2. 

Fig. 2 A generic three-layer architecture of a feedforward 
ANN. 

3.1  Dataset obtainment and structure   

As mentioned in the previous section, all data used in this 
paper is the PST fault simulation results. The simulated faults 
were 3ϕ, 2ϕ, 2ϕ – G, ϕ – G alongside with line and load 
contingencies in all 39 buses and 46 transmission lines of the 
IEEE 39 bus New England power system. Thus, 280 distinct 
fault, line and load contingency simulations and a normal 
operation power flow simulation were performed. A binary 
system operation condition index was added to each 
simulation, indicating whether the system is operating 
normally or if there is any sort of anomaly in it.  

The dataset is structured so that the columns represent the 
PMU buses and the lines are the samples of every simulation. 
Since the samples were all ordered in timestamp and the 
number of simulations, a MATLAB script was coded in order 
to process all samples into the aforementioned arrangement 
of 14 PMUs and randomize the order of the lines in the .mat 
file. All bus voltages and currents were normalized to values 
between 0 and 1.  

A more cohesive understanding of the dataset’s structure can 
be reached by observing Table 2.  

Table 2. Dataset format example 

Bus 
Voltage 

Magnitude 

Bus 
Voltage 
Angle 

Bus 
Current 

Magnitude 

Bus 
Current 

Angle 

Operation 
State 
Index 

500 samples per simulation, each sample in a line 
indicating its timestamp 

0 – Normal 
Operation 

1 – 
Anomalous 
Operation 

 

3.2  Artificial Neural Network design 

The learning process selected for the ANN architecture is 
supervised learning, which shows good results when the task 
involves pattern recognition (Ayyagari, 2011). Thus, there 
must be an input dataset – containing information on bus 
voltages and currents – and an output dataset – containing 
information on whether that sample represents a normal or 
anomalous operation. Such a process is depicted in Fig. 3.  

Fig. 3 Supervised learning for artificial neural networks.  

In pursuance of the best evaluation of a machine learning 
model’s performance, one can make use of the accuracy, 
precision, recall and  F1 Score metrics – all of which make 
use of the number of true and false positives and negatives 
yielded at the end of any training method. (Haque, Rahman 
and Siddik, 2019). Other metrics such as negative predictive 
value and true negative rate can also be analyzed. 

Accuracy is a metric used to ascertain the quality of the 
predictions of an ANN, regardless if they’re positive or 
negative. Precision, in its stead, is used to measure the quality 
of an ANN’s predictions based only on what it claims to be 
positive. Recall, on the other hand, is used to measure such 
quality in respect to the mistakes commited by the predictor. 



 
 

     

 

F1 Score, being the weighted average of precision and recall, 
has a range between 0 and 1 and conveys the balance 
between the both of them. 

F1 Score is widely accepted as a more realistic measure of a 
predictor’s quality when compared to accuracy alone, since a 
good balance between precision and recall means that the F1 
Score tends to 1 and the classifier has a high degree of 
generalization.  

Through an empirical procedure, an ANN was designed to 
have an input layer with 56 entries (14 PMU bus voltages and 
currents magnitudes and angles), a hidden layer with 12 
neurons and a sigmoid transfer function and an output layer 
with 2 neurons and a SoftMax transfer function, as seen in 
Fig. 4. 

Fig. 4 Designed feedforward ANN diagram.  

In order to better validate the robustness of this model and 
assure net generalization, a 10-fold cross validation was 
applied. This ensures all samples inside the dataset were used 
at least once in a testing process – thus, being more robust to 
biases that may come from the selection of a particular set of 
data and ultimately preventing overfitting.  

In regards to the neural network’s neuron weights for all 
layers and its biases, the Scaled Conjugate Gradient method 
was used for the traning process with Cross-Entropy as a 
performance measure (loss function). Out of all samples, 
70% were used for training, 15% for the validation process 
and 15% for the testing process.  

In order to lessen the effects of random initialization in 
regards to the neurons’ weights and biases, the training-
validation-testing process was repeated a total of 50 times. 
The network that presented the lowest Cross-Entropy (CE) 
value was chosen for application.  

The usage of genetic algorithms envisioning the optimization 
of the number of hidden layers and its respective neurons is a 
fairly common practice in all fields of knowledge concerning 
artificial intelligence (Yang, Zhao and Chen, 2017). 
However, in this paper, such an approach was not considered 
because of the binary nature of the problem and its samples.  

4. APPLICATION AND RESULTS 

The 10-fold cross validation for the proposed model yielded 
means of 0.905 accuracy, 0.640 precision and 1.0 recall in 
regards to the normal operation class and 0.78 F1 Score – 
thus, validating the robustness of the ANN structure 
presented on Fig. 4.  

Upon the training, validation and testing processes’ end 
described in section 3.2, the best CE value found equaled 
0.0851. Therefore, the model instance associated with this 

value was chosen for application. Furthermore, its 
performance can be evaluated. The training took 432 
iterations (epochs) in order to reach an acceptable margin of 
Cross-Entropy in a time span of 28 seconds. 

The validated performance plot of the proposed neural 
network is depicted in Fig. 5., in which it can be graphically 
seen that the ANN achieved a desired low CE value by the 
end of the process.  

 

Fig. 5 Validation performance plot for the ANN proposed in 
this paper. 

One of the most common means of visualizing the 
performance of an ANN is by plotting the confusion matrices 
for all phases of the network's learning process. All of them 
are depicted in Figs. 6 - 9.  

The diagonal cells in green indicate the number of cases that 
have been classified correctly – true positives and negatives – 
by the neural network and the off-diagonal cells that are in 
red indicate the number of cases that have been wrongly 
classified – false positives and negatives – by the ANN.  

Once again, the usage of accuracy alongside precision, recall 
and F1 Score is substantial to ascertain an acceptable 
functioning of the designed network.                                   

              

Fig. 6 Training confusion matrix of the proposed ANN.  



 
 

     

 

              

Fig. 7 Validation confusion matrix of the proposed ANN.  

              

Fig. 8 Test confusion matrix of the proposed ANN.  

              

Fig. 9 Overall confusion matrix for the proposed ANN.  

By inspecting the overall confusion matrix (Fig. 9), it can be 
seen that the neural network achieved an accuracy of 0.905 
with 0.634 precision and 1.0 recall in regards to the normal 
operation class, yielding a 0.776 F1 Score. The negative 
predictive value (NPV) equals 1 and  the true negative rate 
(TNR) equals 0.886. 

5. CONCLUSIONS 

In this paper, an artificial neural network that can detect how 
the power system is being operated is presented without the 
need of pre-fault data. The network depends on post-fault 
data that formulates a pattern recognition problem in regard 
to the operation state. 

The presented ANN can infer correctly on whether a system 
is in normal or anomalous operation in 90.5% of the time. It 
can correctly indentify normal operation in 100% of all cases, 
being correct 63.4% of the time. On the other hand, it 
correctly identifies anomalous operation 88.6% of all cases, 
being correct 100% of the time.  

One of the reasons as to why precision levels regarding 
normal operation prediction aren’t higher is the fact that some 
simulated faults present post-fault data that are very similar to 
normal operation levels. Another reason is that the first ten 
samples of each fault simulation are what one might consider 
“normal operation”.  

In order to assess this problem, considering the temporal 
nature of PMU data, future developments of this work can 
involve feature engineering in order to further improve the 
presentation of the data to the proposed model – thus, 
yielding the best possible prediction results.  

However, the presented metrics are sufficiently high to 
consider the designed network as a solution to the proposed 
problem. 

Furthermore, this paper can also be considered as a study of 
how ANNs can work together with the PMU technology in 
order to further develop power systems around the world and 
better supply all clients – from industrial to residential – 
contemplated by power companies.  

In an analogous fashion, with the proper changes to the 
dataset structure for the desired outputs in the learning 
process, one can use ANN – or any other optimization or 
intelligent computational technique, as a matter of fact – in 
order to do a fault type detection system. 

Further developments in this area of work can also lead to 
artificial intelligence or an algorithm that not only detects the 
type of fault happening in a system but that also locates 
where the fault is taking place through a PMU network that 
doesn’t encompass every single bus and line in the power 
system.  

Therefore, system operators would be able to rapidly detect 
what type of fault or contingency is or might happen and 
where so as to have an assisted judgment and assessment on 
the situation in regards to what preventive or remedial 
measures can be taken in order to evade or solve any sorts of 
problems that might affect the consumers.  

This paper’s work, however, can also assist system operators 
by automating alarms to be triggered whenever the system 
enters in anomalous operation – thus speeding and easing the 
problem solution as a whole as well.  
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