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Abstract: In epidemic models, the traditional approaches assume that each individual has an
equal chance, per unit of time, to communicate with each other. In this regard, the use of complex
networks can be considered a more realistic approach. Indeed, in epidemic complex networks
the contact patterns are taken into account in the study of an epidemic spreading. However,
due to the high dimensionality of the state and observation equations, the use of a classical
centralized strategy for state estimation is a challenge. For this reason, as a preliminary study,
we propose the use of distributed and decentralized information filter in order to overcome this
issue. In a simulation example, for a susceptible-infected network, we show that the distributed
and decentralized information filter is effective in state estimation as the centralized approach.
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1. INTRODUCTION

The classical dynamical analysis of epidemic systems,
known as fully mixed models, does not consider the spatial
interactions among their elements. The accuracy of the
epidemic spreading models can be improved considering
the spatial interactions, when integrating large-scale data
sets. For this reason, large-scale networks have received
increasing attention for the community of epidemic process
(Pastor-Satorras et al., 2015; Pinto et al., 2020).

The derivation of network models for epidemic spread-
ing processes relies on different theoretical approaches.
These approaches are based mainly on three field theories,
known as the degree-based mean-field approach (DBMF),
individual-based mean-field approach (IBMF), and gen-
erating function approach (GFA). According to Pastor-
Satorras et al. (2015), the DBMF theory was the first the-
oretical approach proposed for the analysis of dynamical
complex networks and does not explicitly contain neigh-
borly relationships between individuals from a population.
Thus, such relationships are expressed in the form of prob-
ability of contact between individuals (Barrat et al., 2008;
Wang et al., 2020). The IBMF theory (Pastor-Satorras
et al., 2015; Schaum and Jaquez, 2016) represents a model
simplification of epidemic spreading in networks, in which
the relation between the individuals are directly modeled
by means of the adjacency matrix. In addition, the GFA
(Pastor-Satorras et al., 2015) is used to model the late-
time properties of epidemic outbreaks.

According to Newman (2010), a large-scale network can be
understood as a high dimension system composed of a set
of interconnected nodes by means of links, in which there
is interaction between the connected nodes. Depending on
the different topological structures from networks, there
are differences in the dynamics of epidemic transmission
(Wang et al., 2020). In regular networks or statistically
homogeneous networks, each node has approximately the
same number of links. However, most real-world networks
share similar complex topological characteristics, which
are statistically heterogeneous and described by heavy-
tailed statistical distributions (Boccaletti et al., 2006;
Barabási, 2009). This means that complex networks are
heterogeneous in nature, that is, most nodes have few links
and few nodes have many connections or links. In this
last case, the large-scale networks are called scale-free and
a classical graph to generate this kind of network is the
Barabási and Albert (1999) (BA) model.

The classical state estimation, using Kalman filter (KF)
(Kalman, 1960) or the extended Kalman filter (EKF)
(Jazwinski, 1970) for nonlinear systems, yields better pre-
dictions than those produced by the free-running simula-
tions of the model. When the interest for state estimation
rises, most of the research efforts on epidemics spreading
are concerned with fully mixed models (Yang et al., 2014;
Younes and Hasan, 2020).

Recently, Wang et al. (2020) addressed the state estima-
tion problem on homogeneous epidemic networks. They
used nonlinear filters, such as EKF and unscented Kalman
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filter (UKF) in susceptible infected susceptible (SIS), sus-
ceptible infected recovered (SIR), and susceptible infected
recovered susceptible (SIRS) models, all these based on
DBMF theory, and presented a performance comparison
between the filters. The authors used a centralized state
estimation architecture and the high dimensionality prob-
lem for large-scale networks was no directly attacked.

Schaum and Jaquez (2016) dealt with the aforementioned
problem by reducing the dimensionality of the observation
equation. The authors sought to find which of the states
of the complex network must be monitored to ensure the
convergence of the estimator. Thus, by using a centralized
architecture, they proposed a detectability-based approach
for state reconstruction, in which the number of moni-
tored nodes is reduced based on the network topology.
The detectability condition and the observer design were
implemented over a complex SIS network based on the
IBMF theory.

The great challenge in the development of state estimation
algorithms for large-scale networks is the high dimension-
ality of the global model. In this case, the centralized
state estimation using the Kalman filter does not provide
robustness and scalability. Several approaches based on
distributed state estimation methods have been proposed
in the multisensor networks field (Viegas et al., 2018;
Deshmukh et al., 2017; Cattivelli and Sayed, 2010), as
an alternative to centralized state estimation. However,
most of these researches are focused on large-scale sensor
networks for monitoring low-dimension systems. Indeed,
usually, a scalable solution is addressed based only on
the observation equation and not on the state transition
matrix (Cicala et al., 2020). In order to overcome this
issue, an earlier study (Mutambara, 1998) inspired Cicala
et al. (2020) to propose the distributed and decentralized
information filter (DDEIF) algorithm combined with a
consensus strategy using the internodal transformation
theory on the state estimation. It is important to point
out that the DDEIF is a variation of the distributed and
decentralized extended Kalman filter (DDEKF) algorithm
(Mutambara, 1998).

Given the aforementioned problems, the following question
arises: How the distributed state estimation problem can
be adapted from the multisensor system theory for large-
scale epidemic networks? In this paper, we address this
issue merging part of the epidemic network theory (Pastor-
Satorras et al., 2015) with the internodal transformation
theory (Mutambara, 1998) to obtain scalable solutions for
a class of heterogeneous epidemic models based on the
IBMF theory. In addition, with the aim of eliminating the
need of monitoring all network nodes, the previous results
(Schaum and Jaquez, 2016) have inspired us to make
Monte Carlo simulations to determine a reduced number
of observed nodes that do not affect the effectiveness of
the state estimation methods. Thus, our contribution is to
give a new direction on the state estimation of epidemic
spreading in complex networks.

This paper is organized as follows: First, the problem
formulation is given in Section 2. In Section 3, the extended
information filter (EIF) algorithm and the DDEIF are re-
visited. In Section 4, we presented the susceptible infected
(SI) network model in global and local or scalable version.

Large-Scale Network

Σi

Σi+1Σi−1

Figure 1. Illustration of a complex network.

In Section 5, we present the results of the employment of
the EIF and the DDEIF in a new perspective. Finally, in
Section 6, the conclusions are discussed.

2. PROBLEM FORMULATION

Consider an epidemic system modeled by a complex net-
work of N subsystems, or nodes, that are interconnected
as in Figure 1, where each node is denoted by Σi with
i = {1, 2, . . . , N}. Let Ni be the set of nodes connected to
Σi, known as neighborhood of the i-th node. The adjacency
matrix A represents how all N nodes are interconnected,
and their elements are given by:

Aij ,

{
1 if j ∈ Ni

0 if j /∈ Ni
. (1)

To derive a generic epidemic network model the follow-
ing considerations are necessary (Newman, 2010; Pastor-
Satorras et al., 2015):

Assumption 1. The nodes are the individuals of a pop-
ulation, and the links represent the relationships among
them.

Assumption 2. Each individual i has associated state
probabilities, such as probabilities of being susceptible and
infected. Furthermore, the network nodes have the same
number of internal states.

Assumption 3. The dynamical function at each node are
considered the same.

Assumption 4. The network is undirected, so the matrix
A is symmetric.

The modeling equations of Σi could be written as (New-
man, 2010):

dxi(t)

dt
= F (xi(t)) +

∑
j∈Ni

AijG (xi(t), xj(t)) + ωi(t),

i = 1, . . . , N, (2)

yp(t) = Cpxip(t) + υp(t), ip ∈M, p = 1, . . . ,m, (3)

where xi(t) ∈ <n is a vector of n variables with xi(t) =
[x1i (t) x2i (t) . . . xni (t)]T ; F is the intrinsic dynamics of the
i-th node, that is, it indicates how the vector xi(t) evolves
without neighbors; G is the coupling function between
variables from different nodes; ωi(t) ∈ <n is a zero-mean
white Gaussian process noise; yp(t) ∈ <l is a vector of
the p-th observation which measures the state vector of
the node ip; l represents the measurements available per
monitored node with yp(t) = [y1p(t) y2p(t) . . . ylp(t)]T ;

Cp ∈ <l×n is the local measurement matrix; M is the set
of all monitored nodes where m ≤ N and υp(t) ∈ <l is
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a zero-mean white Gaussian measurement noise. We can
highlight that ip represents the index of the monitored
node corresponding to the observation p.

Remark 1. The dimensionality of an epidemic network
scales with the increase of the number of nodes and their
state dimension. For instance, let us consider a network
defined by its adjacency matrix A and a general epidemic
process with q-state compartmentalizations; see Figure 1.
Recall that, each individual could be in a particular state,
and these states are often called compartments. The SI
model, for example, is called two-state (q = 2) model.
The states of the i-th node at time t are specified by the
random variable Xi(t) ∈ {0, 1, ..., q − 1}, where Xi(t) can
take a value from 0 to q − 1; that is, it means that i-
th node belongs to one of these compartments at time t
(Pastor-Satorras et al., 2015). Assuming that the dynamic
state of every node is statistically independent of the state
of its nearest neighbors (Pastor-Satorras et al., 2015) and
that the network has a constant population (N nodes),
the total number of states that need to be computed is
equal to (q − 1)N . If the initial infection probabilities are
known, then the state probabilities Pr[Xi(t) = αj ] at the
time t, for each i = 1, . . . , N and αj = 0, 1, . . . , q − 1,
can be obtained by solving (q − 1)N differential equations
with a parameter (linearized) set of length (q − 1)N ×
(q − 1)N . For notational simplicity, we consider that the
state probabilities are represented by the vector xi(t) in
(2).

The network presented in Figure 1 can be discretized
with fixed step size ts and written as a global function of
the discrete-time instant (kts). Thus, the compact vector
notation used in the filtering problem can be written as:

xk = fk−1 (xk−1) + ωk−1, (4)

yk = Ckxk + υk, (5)

where the term ts is omitted to simplify the global repre-
sentation; fk−1 represents the global state transition func-
tion and Ck ∈ <lm×nN is the global measurement matrix
defined according to the set M. The global state vector
xk ∈ <nN is related to (2) by means of a discretization
and stacking procedure of the state vector of each node,

as xk =
[
(x1,k)T . . . (xN,k)T

]T
. Also, yk ∈ <lm are the

stacked vectors given by yk =
[
(y1,k)T . . . (ym,k)T

]T
.

Similarly, ωk−1 ∈ <nN and υk ∈ <lm are, respectively, the
stacked vectors of process and measurement noise. We as-
sume that these are zero-mean white Gaussian noises and
satisfy the covariance matrices E

[
ωaω

T
b

]
= δa,bQa, with

Qa ∈ <nN×nN , E
[
υaυ

T
b

]
= δa,bRa, with Ra ∈ <lm×lm,

and E
[
ωaυ

T
b

]
= 0, where E [•] is the expected value, δ is

the Kronecker delta function and a, b time instants.

Our purpose is, given the measurements (3) (or equiv-
alently (5)) to estimate the states of the node xi from
a network represented by (2) (or equivalently (4)). Re-
garding the state vector dimension, there is a gap in the
state estimation of epidemic networks due to the high
dimensionality of states. In addition, most of the research
efforts in this issue deal with modeling problems. How-
ever, choosing an appropriate filtering method remains a
challenge. To deal with the above-mentioned problems, we
propose an alternative scalable solution by means of the
DDEIF (Mutambara, 1998). In addition, differently from

Schaum and Jaquez (2016), we propose to solve the prob-
lem of choosing m, i.e. the number of monitored nodes in
epidemic networks, by means of Monte Carlo simulations.

Remark 2. The state vector dimension in a state estima-
tion problem depends on the proposed filter architecture.
If the state estimation performs a classical centralized
solution, then the state vector is the global one, xk (4).
If we wish to obtain only xi(t) (2) in discrete-time by
means of a scalable solution, then we need to use tools
for decentralization and distribution of the global model,
as described in Section 3.2.

3. METHODS FOR STATE ESTIMATION

We propose to solve the problem presented in Section 2 by
using two types of state estimation architectures, namely:
centralized and decentralized. Usually, the centralized fil-
ters use the global network model in a central processor
with direct connections to all sensor devices. This ap-
proach, when applied to large-scale networks, has process-
ing limitations. In contrast, the decentralized strategies
allow all measurements and state estimates to be processed
locally. Thus, each network node has its own processor,
which can use both global and distributed models. In this
paper, the term distributed refers to the use of scalable
models, where the local models involve only locally rele-
vant states to each node and the local filters perform a ni
reduced-order operation, with ni � n × N (Mutambara,
1998; Cicala et al., 2020).

3.1 Centralized Estimation

The Extended Information Filter

According to Mutambara (1998), the EIF is derived from
EKF in terms of information measures about the states
rather than direct estimates about states and their asso-
ciated covariances. The information matrix, Z, is defined
as the inverse of the covariance matrix, Z , P−1, and the
information state vector as the product of the inverse of
the covariance matrix and the state estimate, ẑ , P−1x̂.

Similar to the EKF that uses the global state transi-
tion (4) in the forecast step, the EIF provides the one-
step-ahead forecast estimate, x̂k|k−1, where x̂k|k−1 =
E [xk|y1, y2, . . . , yk−1]. Also, the covariance matrix is given

by Z−1k|k−1 = Pk|k−1 = E[
(
xk − x̂k|k−1

) (
xk − x̂k|k−1

)T |
y1, y2, . . . , yk−1 ] . In the data-assimilation step the EIF
provides a recursive estimate x̂k at time k, by means
of ẑk, given all information up to time k, where x̂k =
E [xk|y1, y2, . . . , yk] and Z−1k = Pk = E[

(
xk − x̂k

)(
xk − x̂k

)
T

|y1, y2, . . . , yk ] .

The information state contribution ik obtained from an
observation yk, and its associated information matrix Ik
are defined, respectively, as follows:

ik , CT
k R
−1
k yk, (6)

Ik , CT
k (Rk)

−1
Ck. (7)

Let us consider Fk−1 the Jacobian of fk−1 in (4) evaluated
at x̂k−1. The EIF runs the EKF in the information space,
as described in the Algorithm 1. Although the EIF is
algebraically equivalent to EKF, EIF has advantages in
decentralization and distribution of state estimates. Due
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to the high dimension of the network, such characteristics
are relevant during the filtering procedure.

Algorithm 1 The Extended Information Filter

Consider the state space model given by (4)-(5). Define x̂0
and Z0, for every time instant k, compute:
Step 1: Forecast

Zk|k−1 =
[
Fk−1 (Zk−1)

−1
(Fk−1)

T
+Qk−1

]−1
,

x̂k|k−1 = fk−1 (x̂k−1) ,

ẑk|k−1 =Zk|k−1x̂k|k−1,

Step 2: Data-Assimilation

ẑk = ẑk|k−1 + ik,

Zk =Zk|k−1 + Ik,
where ik is given by (6) and Ik is given by (7).

3.2 Distributed and Decentralized Estimation

To proceed with the distributed and decentralized state
estimation strategy we must decentralize the information
and distribute the global state vectors in local state
vectors. So the states or the information states can be
estimated by means of internodal transformation theory,
as described as follows (Mutambara, 1998).

Decentralizing the Observer

The measurement equation (5) can be represented in a
decentralized way as a function of xk, as follows:

yp,k = Cp,kxk + υp,k, p = 1, . . . ,m, (8)

where yp,k ∈ <l and υp,k ∈ <l; Cp,k ∈ <l×nN is
related to Ck in (5) by means of a stacking procedure,

as Ck =
[
(C1,k)

T
. . . (Cm,k)

T
]T

. We also assume that the

observation noises are independent between the nodes, so
the global covariance matrix of the observation noises can
be written as Rk = diag [R1,k, R2,k, . . . , Rm,k], where diag
is the operator of creation a diagonal matrix and Rp,k ∈
<l×l.

Thus, (6) and (7) can be expressed, respectively, by a linear
combination of the local information state contributions ip
and the local information matrices associated Ip, accord-
ing to:

ik =
m∑

p=1

ip,k ,
m∑

p=1

(Cp,k)
T

(Rp,k)
−1
yp,k, (9)

Ik =
m∑

p=1

Ip,k ,
m∑

p=1

(Cp,k)
T

(Rp,k)
−1
Cp,k. (10)

Remark 3. Usually, the network using this type of mea-
surement architecture is a fully connected network. Where
the observations from each measured node are shared
among all local processors.

Model Distribution

Following some procedures (Berg and Durrant-Whyte,
1991), it is possible to obtain a local state vector with
only locally relevant states. In this way, there is a dynamic

equivalence between the local and global models (Mutam-
bara, 1998). The local state vector from the i-th node, xi,k,
is related to global state vector, xk, by means of:

xi,k = Ti,kxk, (11)

where Ti,k ∈ <ni×nN is the nodal transformation matrix
with ni necessary states to estimate x̂i,k. The idea is to
identify which nodes should be locally known and then
distribute the global model by means of Ti,k. Thus, if
the global state transition matrix Fk−1 and the adjacency
matrix A in the time k are known, the matrix Ti,k can
be constructed by null and unitary indexes, where the
unitary indexes correspond to the neighbors of the i-th
node (Mutambara, 1998).

From (11) we get xk = (Ti,k)
†
xi,k, where (•)† is the Moore-

Penrose generalized inverse. (Ti,k)
†

reconstructs all states
locally relevant to global space. Thus, by using (4) we can
derive a reduced order state equation to the i-th node, as
follows:

xi,k = Ti,kfk−1
(

(Ti,k−1)
†
xi,k−1

)
+ ωi,k−1, i = 1, . . . , N,

(12)
where xi,k ∈ <ni and ωi,k−1 = Ti,kωk−1 ∈ <ni . Also,

E
[
ωi,a (ωj,b)

T
]

= Qi,aδa,bδi,j with Qi,a ∈ <ni×ni .

Remark 4. Although each node has n states directly re-
lated to Σi, as described in (2), the scalability condition
establishes that the state vector of the i-th node is com-
posed by its directly connected neighbors. Thus, the local
state vector xi,k in (12) is the local state vector xi in (2),
in discrete-time, expanded to contain the neighborhood of
the i-th node, where ni > n.

The matrix Cp in (3) is also expand to composed the neigh-
borhood of the p-th measured node. Thus, the distributed
observation equation, in the discrete-time version, can be
written as:

yp,k = Cp,kxip,k + υp,k, ip ∈M, p = 1, . . . ,m, (13)

where Cp,k ∈ <l×ni . We must highlight that (13) is
obtained from the local state vector xip,k, the partitioned
observation matrix Cp,k, in (8), is related to Cp,k by means
of the transformation Cp,k = Cp,kTip,k (Mutambara, 1998).

Internodal Transformation

The local information matrix and the information state
vector in the i-th node can be defined as (Mutambara,
1998):

Zi,k|k−1 ,
(
Pi,k|k−1

)−1
, (14)

ẑi,k|k−1 ,
(
Pi,k|k−1

)−1
x̂i,k|k−1. (15)

Let us first deal with the state estimation problem of the
i-th node based on the observations of the j-th node.
The information contribution from the i-th node due to
current observations from j-th node is defined by ii,k|yj,k

.
Also, the global information contribution due to global
observation is defined by ik|yk

= ik. Analogously, the
associated local information matrix is given by Ii,k|yj

k
and

the global associated information matrix is Ik|yk
= Ik.

Thus, the local error covariance at the i-th node based
only on current observations from the j-th node is defined
as:
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Pi,k|yj,k
,
[
Ii,k|yj,k

]†
. (16)

In addition, the local state estimate at the i-th node based
only on current observations from the j-th node can be
defined as:

x̂i,k|yj,k
, Pi,k|yj,k

ii,k|yj,k
. (17)

In the information space, given only the observations from
the j-th node, yj,k, we need to transform the information
contribution and its associated matrix from the j-th node
to the corresponding information contribution and associ-
ated matrix at the i-th node, or even (Mutambara, 1998):

ij,k|yj,k
7−→ ii,k|yj,k

,∀j 6= i, (18)

Ij,k|yj,k
7−→ Ii,k|yj,k

∀j 6= i. (19)

Figure 2 shows the transformation steps performed in
the information space to transform from the subspace
information contribution at the j-th node , ij,k|yj,k

, to the
subspace relative to the i-th node, ii,k|yj,k

, where:

Tji,k = Ii,k|yj,k
Vji,k

[
Ij,k|yj,k

]†
(20)

is the information space internodal transformation matrix
that maps the relevant information from the j-th informa-
tion subspace to the i-th information subspace, and

Vji,k = Ti,k (Tj,k)
†

(21)

is the state space internodal transformation matrix that
maps the estimated states from the j-th state subspace to
the i-th state subspace.

Finally, the solutions for (18) and (19) can be derived
to obtain (Mutambara, 1998; Berg and Durrant-Whyte,
1991):

ii,k|yj,k
= Tji,kij,k|yj,k

, (22)

and

Ii,k|yj,k
=
[
Pi,k|yj,k

]†
=

{
Ti,k

[
(Tj,k)

T Ij,k|yj,k
Tj,k

]†
(Ti,k)

T

}† , (23)

where ij,k|yj,k
and Ij,k|yj,k

are, respectively, the informa-
tion contribution and its associated matrix calculated lo-
cally from local measures and given by:

ij,k|yj,k
, (Cj,k)

T
(Rj,k)

−1
yj,k, (24)

Ij,k|yj,k
, (Cj,k)

T
(Rj,k)

−1
Cj,k. (25)

The matrix Cj,k is obtained according to the set M.

The Distributed and Decentralized Extended Information
Filter

Let us consider Fi,k−1 the Jacobian of fk−1 in (4) eval-
uated at x̂i,k−1. By using the scalability and internodal
transformation relationships, we can present the DDEIF
described in the Algorithm 2 (Mutambara, 1998; Cicala
et al., 2020).

Remark 5. In data-assimilation step, in order to perform
the transformations (20)-(23), the i-th node must receive
from the others j measured nodes the local information
ij,k|yj,k

, Ij,k|yj,k
and Tj,k. This means that all nodes that

are neighbors, even if they are indirectly connected, must
have a fully connected estimation architecture.

ij,k|yj,k
ii,k|yj,k

x̂i,k|yj,k
x̂k|yj,k

x̂j,k|yj,k

Node j Node i

global

(
Ij,k|yj,k

)† Ii,k|yj,k

Tji,k

(Tj,k)
† Ti,k

Vji,k

Information Space

State Space

Figure 2. Information space transformation. Adapted from
Mutambara (1998).

Algorithm 2 The Distributed and Decentralized Ex-
tended Information Filter
Consider the state transition equation for the i-th node
given by (12) and the measured equations given by (8).
Define x̂i,0 and Zi,0, for every time instant k, compute:
Step 1: Forecast

Zi,k|k−1 =
[
Fi,k−1 (Zi,k−1)

−1
(Fi,k−1)

T
+Qi,k−1

]−1
,

x̂i,k|k−1 = Ti,kfk−1
(

(Ti,k−1)
†
x̂i,k−1

)
,

ẑi,k|k−1 =Zi,k|k−1x̂i,k|k−1,

Step 2: Data-Assimilation

ẑi,k = ẑi,k|k−1 +
m∑
j=1

ii,k|yj,k
,

Zi,k =Zi,k|k−1 +
m∑
j=1

Ii,k|yj,k
,

where ii,k|yj,k
and Ii,k|yj,k

are obtained by the transfor-
mations (20)-(23). When m 6= N , ij|yj

and Ij|yj
, given by

(24) and (25), are respectively replaced by iij |yj
and Iij |yj

;
in addition, Tj,k ≡ Tij ,k in (21) and (23), where ij ∈ M
for j = 1, . . . ,m, with ij been the index of the monitored
node corresponding to the observation j.

4. THE SI MODEL IN NETWORK SYSTEMS

In the simplest mathematical version of an epidemic, two
states represent the spreading dynamic: susceptible and
infected. An individual in a susceptible state is someone
who does not yet have the disease but can become infected
if he or she comes into contact with someone who does.
An individual in the infected state has the disease and can
transmit it if he or she contacts a susceptible individual
(Newman, 2010).
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As introduced in Section 2, in epidemic network models
the dynamic analysis revolves around the time evolution
of the probabilities for nodes to be in specific disease
states. Thus, according to Remark 1, the states of the
SI model are defined by a set of random variables Xi(t),
where Xi(t) = 0 for a susceptible node and Xi(t) = 1
for an infected node (Pastor-Satorras et al., 2015). Let
us consider an infectious disease spreading through a
population of N individuals. At time t = 0, most people
are in the susceptible state and only a small fraction, or a
single node, in the infected state. Let Pr[Xi = 1] ≡ ρi(t)
be the probability that the i-th node becomes infected
between times t and t + dt, and Pr[Xi = 0] ≡ Si(t) is the
probability of the i-th node be susceptible in the same
time interval, so ρi(t) + Si(t) = 1. To become infected, an
individual must catch the disease from a neighbor j, who
is infected. This means that the j-th node must be infected
with probability ρj(t) = 1− Sj(t), and must transmit the
disease, during a given time interval, with probability βdt.
β is the infection probability, i.e. the probability that a
contact of an infected node with a susceptible one yields
infection (Schaum and Jaquez, 2016). In addition, the i-
th node is also required to be susceptible with probability
Si(t). So the total probability of i-th node getting infected

is βSi(t)
∑
j

Aijρj(t). Thus, ρi(t) obeys the coupled set of

N nonlinear differential equations, given by:

dρi(t)

dt
= βSi(t)

∑
j∈Ni

Aijρj(t) = β (1− ρi(t))
∑
j∈Ni

Aijρj(t),

i = 1, . . . , N. (26)

The model (26) is known as first order approximation.
In such approximation, it is implicitly assumed that the
product of the averages is equal to the average of the
product of the quantities Si(t) and ρj(t). This is an
approximation, as the odds are not independent (Newman,
2010).

Remark 6. Equation (26) is an example of the system
described in (2), where F = 0 and G = β(1 − ρi(t))ρj(t).
Note that the state vector has one variable per node
(n = 1).

4.1 The Discrete SI Global Model

In order to derive the global state equations, (26) can be
discretized at ts sample rate, and rewritten by stacking the
state equations for all nodes, to obtain:

ρk = ρk−1 + tsβ (diag [1− ρk−1]Aρk−1) + ωk−1, (27)

where ρk ∈ <N and ωk−1 ∈ <N . Let us assume a zero-
mean white Gaussian process noise satisfying E

[
ωaω

T
b

]
=

δa,bQa, with Qa ∈ <N×N .

The linearized model of (27) can be obtained by Taylor
expansion. Thus, the terms (row= i and column= j) of the
Jacobian matrix, associated with state transition matrix,
are given by:

F ij
k−1 =

(
δij

[
1− tsβ

(∑
v∈Ni

Aivρv

)]
+ tsβ (1− ρi)Aij

)
,

(28)

where i = 1, . . . , N and j = 1, . . . , N . The variables
(ρi, ρv) = (ρ̂i,k−1, ρ̂v,k−1) are the operation points where
the Jacobian matrix Fk−1 ∈ <N×N is evaluated.

The SI network observation equation can be defined as a
direct measure of the m observed states with a source of
noise, given by:

yk = Ckρk + νk, (29)

where Ck = 1m×N is a m × N matrix with 1’s on the
diagonal and zeros elsewhere and νk ∈ <m. Let us assume
a zero-mean white Gaussian measurement noise satisfying
E
[
υaυ

T
b

]
= δa,bRa, with Ra ∈ <m×m, and E

[
ωaυ

T
b

]
= 0.

4.2 The Discrete SI Distributed Model

To proceed with the purpose of estimating the states of the
i-th node by means of a scalable solution, as the problem
formulated in Section 2, we can use the transformation

relationship ρk = (Ti,k)
†
ρi,k, given by (11), in (27), similar

we proceeded to derive (12). Also, to make the analysis
more simplified we consider that the network topology is
constant over time, which means that Ti,k−1 ≡ Ti,k ≡ Ti.
Thus, the local state transition equation is given by:

ρi,k = ρi,k−1 + tsβ{Tidiag
[
1N − (Ti)† ρi,k−1

]
A (Ti)†

×ρi,k−1}+ ωi,k−1, i = 1, . . . N, (30)

where ρi,k ∈ <ni and ωi,k−1 ∈ <ni . Furthermore, 1N indi-
cates a unit vector of length N . Let us assume a zero-mean

white Gaussian process noise satisfying E
[
ωi,a (ωj,b)

T
]

=

Qi,aδa,bδi,j , with Qi,a ∈ <ni×ni .

The terms of the Jacobian matrix, associated with the local
model (30), are given by:

F row,col
i,k−1 = δrow,col

[
1− tsβ

(∑
v∈Ni

Arow,vρv

)]
+tsβ (1− ρrow)Arow,col, i = 1, . . . N, (31)

where row = 1, . . . , ni and col = 1, . . . , ni. The variables
(ρrow, ρv) = (ρ̂row,k−1, ρ̂v,k−1) are the values in which the
Jacobian matrix Fi,k−1 ∈ <ni×ni is evaluated. In addition,
the local observation equation can be written as:

yp,k = Cp,kρip,k + νp,k, ip ∈M, p = 1, . . .m, (32)

where Cp,k = 1l×ni
with l = 1, means that the measured

node ip has one observation. We assume a zero-mean white

Gaussian measurement noise satisfying E
[
υp,a (υj,b)

T
]

=

Rp,aδa,bδp,j , with Rp,a ∈ <l×l.

5. RESULTS AND DISCUSSIONS

A scale-free network for the BA model (Barabási and
Albert, 1999) is simulated with N = 300 nodes using
the SFNG funcion for Matlab (George, 2020). Thus, the
SI network was obtained for at ts = 0.01 sampling rate,
β = 0.3 and the initial distribution ρi,0 = 1, with i set
by a random number generator, indicates that node i is
infected in k = 0.

We run Monte Carlo simulations for Algorithm (1) to
investigate the effect that the number of sensors, chosen
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to measure m randomly nodes, has on the estimation
of network states. So, the EIF was performed on the
global model (27)-(29) for each m = 1, . . . 300. For Qk =(
10−3

)
1N×N , Rk =

(
10−1 )1m×m and the initial matrix

Z0 = 1N×N we obtain the mean value of the estimated
state distribution in the superior window on Figure 3,
where ρ̂k and ρk are defined by:

ρ̂k =
1

10N

10∑
M=1

N∑
i=1

ρ̂i,k, ρk =
1

10N

10∑
M=1

N∑
i=1

ρi,k, (33)

whereM indicates the number of Monte Carlo simulations.
The Root Mean Square Error (RMSE) from ρ̂k and ρk for
a given number of sensors is shown in the inferior window
of Figure 3. In this figure, we have shown the results for
somem values, because for different values the convergence
of the estimated states is too slow, and the RMSE is
too large. According to our results, a good performance
in state estimation is obtained from monitoring around
half of the nodes in the network. Thus, for m = 160
and ρ2,0 = 1 a realization of the EIF algorithm provides
the estimated state evolution for each node, as illustrated
in Figure 4. As we discussed in Section (3.1), for this
centralized algorithm, we must estimate all state network
nodes to obtain an estimative about a single node.
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Figure 3. State estimation by means of EIF for a SI
scale-free network with N = 300, β = 0.3 and
∆t = 0.01, a mean result of 10 simulated networks
with a random initial distribution. Estimated mean
state for each number of sensors m (upper window)
and corresponding estimated RMSE (lower window).

On the other hand, we can obtain a scalable solution by
means of the DDEIF algorithm, in which the state of the
i-th node is estimated taking into account, in the forecast
step, only the states of its neighboring nodes including
itself. For example, let us consider that we wish to estimate
the states ρ̂1,k ⊂ N1, ρ̂6,k ⊂ N6, ρ̂13,k ⊂ N13 and ρ̂16,k ⊂
N16. In our simulations, such nodes are neighbors among
themselves and they are not observed by the sensors.
Thus, the DDEIF, Algorithm (2), can be applied to the
distributed network models described by (30)-(32). We
consider that Qi,k = 10−31ni×ni and Zi,0 = 1ni×ni , for
i = 1, 6, 13, 16. Also, to make a comparison we can do the
same measurement conditions applied on EIF (results from
Figure 4), i.e. Ri,k = 10−1 with i = 1, . . . ,m, for m = 160
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Figure 4. Global state estimation by means of EIF for a SI
scale-free network with N = 300, β = 0.3, ∆t = 0.01,
m = 160 and ρ2,0 = 1. State distribution of each node
(upper window) and estimation error module of each
node (lower window).
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Figure 5. Comparison between the true states (-.) and the
local estimated states (-) by means of DDEIF, for a SI
scale-free network with N = 300, β = 0.3, ∆t = 0.01,
m = 160 and ρ2,0 = 1.

and ρ2,0 = 1, to obtain the results presented in Figure
5. This results show that the local estimated states (blue
curves) are very close to the actual state of the epidemic
system (red curves).

In addition, Figure 6 shows a comparison between the state
estimation error module for the global and the scalable
methods. These results indicate that local estimates (blue
curves) are similar to the results obtained by the estimator
based on the global network model (red curves). Beyond
these qualitative analyses, Table 1 brings comparisons
between the RMSE indexes of the EIF and the DDEIF.
Differences in the RMSE values are due to numerical
errors and nonlinear approximations. Indeed, as previously
argued (Mutambara, 1998; Cicala et al., 2020), if the
network is connected then the DDEIF is equivalent to the
EIF centralized algorithm. Observe that a network is said
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Table 1. RMSE index comparison for EIF and
DDEIF.

ρ̂1 ρ̂6 ρ̂13 ρ̂16
EIF 0.3838 0.2714 0.5111 0.2524

DDEIF 0.5042 0.5127 0.6581 0.3483
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Figure 6. Comparison between estimation error module
due to DDEIF (-) and EIF (-) for the nodes i =
4, 5, 76, 276.

to be connected if there is a path between every pair of
nodes.

6. CONCLUSIONS

Most state estimation techniques in network systems are
based on decentralized approaches which take into account
the global state transition matrix in the forecast step
(Viegas et al., 2018; Deshmukh et al., 2017; Cattivelli and
Sayed, 2010). In this research, we seek to estimate the
states for complex epidemic networks by means of scalable
solutions. For this purpose, the internodal transformation
theory is combined with distributed or local models. The
distributed models are obtained by scaling the network
into local subsystems, and these local subsystems can
overlap each other. We can highlight that the local models
are defined by the neighborhood of the node in which it is
desired to estimate the states.

The results obtained from the simulation example of a
SI network suggest that the distributed and decentralized
approach is effective in state estimation. As reported in
the literature (Mutambara, 1998; Cicala et al., 2020), if
the network is connected, then the results of the central-
ized and decentralized approaches are equivalent. However,
despite the order reduction in the global transition ma-
trix, the decentralized and distributed approach described
herein requires that all observations be shared between
the local processors. In addition, we do not need to spread
information among two non-connected nodes. In a scenario
wherein the available observations are no shared between
the local processors from a cluster (group of connected
nodes), the decentralized estimation is not equivalent to
the centralized one (optimal estimative).

For future researches, we will investigate the distributed
and decentralized state estimation in epidemic complex
networks with more than one variable, or state, per node,

as the SIR network. Moreover,the establishment of math-
ematical conditions is of interest in order to reduce the
number of required sensors of the connected network.
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