Busca Extremal baseada em Eventos

Victor Hugo Pereira Rodrigues * Tiago Roux Oliveira ** Liu Hsu *

* Programa de Engenharia Elétrica (COPPE), Universidade Federal do Rio de Janeiro (UFRJ), RJ, Brasil (e-mail: rodrigues.vhp@gmail.com, liu@coep.ufrj.br).
** Departamento de Engenharia Eletrônica e Telecomunicações, Universidade do Estado do Rio de Janeiro, RJ, Brasil (e-mail: tiagoroux@uerj.br)

Abstract: The extremum seeking is a control strategy able to reach and keep the output of an unknown mapping into a vicinity of its extremum while event-trigger is important to deal with the management of the finite bandwidth in communication channels of the networked systems. Despite the vast number of publications on both subjects, the event-triggered extremum seeking control based on perturbation method still remains as an open problem in literature and this paper proposes a solution for this issue. The stability analysis is carried out by using the Lyapunov criteria as well as the averaging theory for discontinuous systems to a multivariable extremum seeking control for static maps into a event-triggered framework. The closed-loop exhibits the advantages of each of the individual approaches and simulation results illustrate the advantages of the proposed control strategy.

Resumo: O controle por busca extremal é capaz de alcançar e manter a saída de um mapeamento desconhecido em uma vizinhança de seu extremo enquanto o controle baseado em eventos é uma estratégia importante para lidar com o gerenciamento da largura de banda finita nos canais de comunicação dos sistemas em rede. Apesar do vasto número de publicações sobre ambos os assuntos, a busca extremal baseada em eventos ainda é tópico de pesquisa aberto na literatura e este artigo propõe uma solução para esse problema. Neste artigo, considera-se a busca extremal multivariável baseada em eventos cuja análise de estabilidade é realizada usando os critérios de Lyapunov, bem como a teoria de média para sistemas descontínuos. A malha fechada exibe as vantagens de cada uma das abordagens individuais e os resultados de simulação ilustram as vantagens da estratégia de controle proposta.

Keywords: Extremum Seeking; Event-triggered control; Network control; Averaging of Discontinuous Systems.

Palavras-chaves: Busca Extremal; Controle baseado em Eventos; Controle em Rede; Média de Sistemas Descontínuos.

1. INTRODUÇÃO

A busca de extremal é uma estratégia de controle importante que permite ao projetista alcançar e manter a saída de um mapeamento não-linear nas proximidades de seu extremo. Se os parâmetros do mapeamento não-linear estiverem disponíveis, a busca extremal torna-se uma tarefa de controle fácil, pois é possível obter exatamente o gradiente da não-linearidade e o objetivo do controle pode ser definido como a estabilização desse gradiente. Infelizmente, devido a incertezas paramétricas, o gradiente exato não pode ser obtido diretamente e a tarefa de controle não é simples.

Apesar das diversas estratégias de controle por busca extremal, *extremum seeking control* (ESC), encontradas na literatura, os métodos baseados em perturbações (sinais de dither) são os mais antigos e, ainda hoje, os mais populares em todo o mundo. Embora a concepção do ESC tenha sido creditada ao engenheiro francês Maurice Leblanc (1922), foram os Professores Krstić and Wang (2000) que forneceram pela primeira vez uma prova de estabilidade rigorosa para a busca extremal em mapeamentos nãolineares, estáticos e dinâmicos. Em poucas palavras, o ESC baseado no método de perturbação (Sternby, 1980) adiciona um sinal periódico de pequena amplitude (sinal de dither) à entrada do mapeamento não-linear e estima o gradiente usando um processo de demodulação apropriado. Finalmente, esta estimativa é utilizada no projeto de controle por realimentação.

Atualmente, o rápido progresso tecnológico no campo das redes levou os pesquisadores e engenheiros a se concentrarem na diminuição dos custos, através do projeto de sistemas de comunicação velozes e viáveis nos quais a planta e o controlador podem não estar fisicamente conectados ou mesmo em locais diferentes. Algumas vantagens dessas redes são a diminuição do custo financeiro de instalação e manutenção (Zhang et al., 2020) enquanto a principal desvantagem é o congestionamento do tráfego de dados. O congestionamento do tráfego pode levar a atrasos na rede e, pior ainda, a perdas de pacotes, ou seja, os dados podem ser perdidos durante a transmissão (Hespanha et al., 2007). Esses problemas estão altamente relacionados à restrição de largura de banda finita nos canais de comunicação dos sistemas em rede. Para superar ou pelo menos mitigar tais problemas, pode-se empregar uma estratégia de controle baseado em eventos, *event-triggered controller* (ETC).

O ETC executa a tarefa de controle aperiodicamente conduzida por uma condição de disparo projetada com o estado ou a saída (Coutinho and Palhares, 2021; Moreira et al., 2019). Dessa forma, além das propriedades de estabilidade assintótica Tabuada (2007), a estratégia garante o menor esforço dos recursos da rede uma vez que a atualização do controle e a transmissão dos dados só ocorrem se forem realmente necessários (Borgers and Heemels, 2013). Apesar das vantagens, a busca extremal baseada em eventos ainda é um tópico de pesquisa em aberto na literatura e este artigo propõe uma solução para esse problema. Neste artigo, considera-se a busca extremal multivariável baseada em eventos cuja análise de estabilidade é realizada usando os critérios de Lyapunov, bem como a teoria de média para sistemas descontínuos. A malha fechada exibe as vantagens de cada uma das abordagens individuais e os resultados da simulação ilustram as vantagens da estratégia de controle proposta.

O artigo está organizado da seguinte forma. A seção 2 apresenta as notações e definições empregadas no artigo. A seção 3 formula o problema de controle a ser resolvido. Os resultados de estabilidade e convergência são apresentados na Seção 4. Os resultados da simulação são apresentados na Seção 5. A seção 6 apresenta as conclusões deste manuscrito.

2. PRELIMINARES

Ao longo do manuscrito, a norma 2 (euclidiana) de vetores e a norma induzida de matrizes são denotadas por barras duplas $\|\cdot\|$ enquanto o valor absoluto das variáveis escalares são denotados por barras simples $|\cdot| \in \lambda_{\min}(\cdot) \in \lambda_{\max}(\cdot)$ denotam os autovalores mínimo e máximo de uma dada matriz, respectivamente. Dado $\varepsilon \in [-\varepsilon_0, \varepsilon_0] \subset \mathbb{R}$, o mapeamento $\delta_1(\varepsilon) \in \delta_2(\varepsilon)$ onde $\delta_1 : [-\varepsilon_0, \varepsilon_0] \to \mathbb{R}$ e $\delta_2 : [-\varepsilon_0, \varepsilon_0] \to \mathbb{R}$, afirma-se que $\delta_1(\varepsilon)$ possui magnitude de ordem de $\delta_2(\varepsilon), \delta_1(\varepsilon) = \mathcal{O}(\delta_2(\varepsilon))$, se existem constantes positivas $k \in c$ tal que $|\delta_1(\varepsilon)| \le k |\delta_2(\varepsilon)|$, para todo $|\varepsilon| < c$ (Khalil, 2002).

3. FORMULAÇÃO DO PROBLEMA

A Figura 1 mostra um diagrama de blocos da busca extremal baseada em eventos para o mapeamento estático e não-linear

$$Q(\theta(t)) = Q^* + \frac{1}{2} (\theta(t) - \theta^*)^T H^*(\theta(t) - \theta^*), \quad (1)$$

onde $H^* = H^{*T} \in \mathbb{R}^{n \times n}$ é a matriz Hessiana, $\theta^* \in \mathbb{R}^n$ é a entrada otimizadora (desconhecida), o vetor $\theta(t) \in \mathbb{R}^n$ é projetado com a estimativa em tempo real $\hat{\theta}(t) \in \mathbb{R}^n$ de θ^* e o vetor de *dither* aditivo S(t),

$$\theta(t) = \hat{\theta}(t) + S(t) \,. \tag{2}$$

A variável t_k denota uma sequência ilimitada e monotonamente crescente de instantes de evento, *i.e.*,

$$0 = t_0 < t_1 < \ldots < t_k < \ldots, \quad k \in \mathbb{Z}^+, \lim_{k \to \infty} t_k = \infty,$$
(3)

com intervalos de amostragem variáveis $\tau_k = t_{k+1} - t_k > 0$.

Supõe-se que o sensor sempre atua instantaneamente, enquanto o controlador e o atuador atuam de uma maneira acionada por evento (ou seja, eles respondem instantaneamente aos dados recém-chegados). O atuador transforma a entrada de controle de tempo discreto U_k em uma entrada de controle contínua u(t). Ao assumir que não há atrasos nos ramos Sensor-Controlador e Controlador-Atuador,

$$\begin{split} u(t) &= U_k = U(t_k)\,, \ t \in \ [t_k\,, t_{k+1}[\,, \ k \in \mathbb{Z}^+\,, \ (4) \\ \text{e a função linear por partes } \tau(t) \text{ com derivada temporal} \\ \dot{\tau}(t) &= 1, \ \forall t \neq t_k \ (\text{ver Figura 2}) \ \acute{\text{e}} \end{split}$$

$$\tau(t) = t - t_k, \quad t \in [t_k, t_{k+1}], \quad k \in \mathbb{Z}^+.$$
 (5)

Então, da Figura 1, a saída do mape
amento não-linear(1)pode ser escrita como

$$y(t) = Q(\theta(t)) = Q^* + \frac{1}{2} (\theta(t) - \theta^*)^T H^*(\theta(t) - \theta^*).$$
 (6)

Define-se o erro de estimação

$$\tilde{\theta}(t) = \hat{\theta}(t) - \theta^* , \qquad (7)$$

$$\hat{G}(t) = M(t)y(t), \qquad (8)$$

com vetores de dither

$$S(t) = [a_1 \sin(\omega_1 t), \dots, a_n \sin(\omega_n t)]^T , \qquad (9)$$

$$M(t) = \left[\frac{2}{a_1}\sin(\omega_1 t), \dots, \frac{2}{a_n}\sin(\omega_n t)\right]^T, \qquad (10)$$

com amplitudes $a_i>0.$ As frequências de sondagem ω_i são selecionadas como

$$\omega_i = \omega'_i \omega \,, \quad i \in \{1, \dots, n\} \,, \tag{11}$$

onde ω é uma constante positiva e ω_i' é um número racional.

De (2) e (7),

$$\theta(t) = \tilde{\theta}(t) + S(t) + \theta^*, \qquad (12)$$

e, portanto, substituindo (12) em (6), a saída y(t)pode ser expressa como

$$y(t) = Q^* + \frac{1}{2} (\tilde{\theta}(t) + S(t))^T H^*(\tilde{\theta}(t) + S(t))$$

= $Q^* + \frac{1}{2} \tilde{\theta}^T(t) H^* \tilde{\theta}(t) + S^T(t) H^* \tilde{\theta}(t) + \frac{1}{2} S^T(t) H^* S(t)$. (13)

Então, a estimativa do Gradiente é

$$\hat{G}(t) = M(t)Q^* + \frac{1}{2}M(t)\tilde{\theta}^T(t)H^*\tilde{\theta}(t) + M(t)S^T(t)H^*\tilde{\theta}(t) + \frac{1}{2}M(t)S^T(t)H^*S(t).$$
(14)

Definindo

$$H(t) := M(t)S^{T}(t)H^{*} = H^{*} + \Delta(t)H^{*}, \qquad (15)$$

onde os elementos de $\Delta(t) \in \mathbb{R}^{n \times n}$ são dados por

$$\Delta_{ii}(t) = -\cos(2\omega_i t), \qquad (16)$$
$$\Delta_{ii}(t) = 2\frac{a_j}{\sin(\omega_i t)} \sin(\omega_i t) \sin(\omega_i t)$$

$$\Delta_{ij}(t) = 2 \frac{J}{a_i} \sin(\omega_i t) \sin(\omega_j t)$$

= $\frac{a_j}{a_i} \cos((\omega_i - \omega_j)t) - \frac{a_j}{a_i} \cos((\omega_i + \omega_j)t), \quad \forall i \neq j.$
(17)

Figura 1. Diagrama de blocos da Busca Extremal em Rede

Figura 2. Piecewise-continuous function $\tau(t)$.

Então, a equação (14) torna-se

$$\hat{G}(t) = H(t)\tilde{\theta}(t) + M(t)Q^* + \frac{1}{2}H(t)S(t) + \vartheta(t), \quad (18)$$

$$\vartheta(t) := \frac{1}{2} M(t) \tilde{\theta}^T(t) H^* \tilde{\theta}(t) \,. \tag{19}$$

O termo $\vartheta(t)$ dado por (19) e mostrado em (18) é quadrático em $\tilde{\theta}(t)$ e, portanto, não é importante para uma análise local Ariyur and Krstić (2003). Dessa forma, daqui por diante, o mesmo será negligenciado e a estimativa do gradiente é apresentada como

$$\hat{G}(t) = H(t)\tilde{\theta}(t) + M(t)Q^* + \frac{1}{2}H(t)S(t)$$
. (20)

Por outro lado, da derivada temporal de (7), a dinâmica que governa $\hat{\theta}(t)$, assim como $\tilde{\theta}(t)$, é

$$\dot{\tilde{\theta}}(t) = \dot{\hat{\theta}}(t) = u(t).$$
(21)

Tomando-se a derivada temporal de (20) e considerando as equações (15) e (21), chega-se a

$$\hat{G}(t) = f(t, \tilde{\theta}(t), u(t))$$

= $H(t)u(t) + w(t, \tilde{\theta}(t)),$ (22)

$$w(t,\tilde{\theta}(t)) = \dot{\Delta}(t)H^*\tilde{\theta}(t) + \dot{M}(t)Q^* + \frac{1}{2}\dot{\Delta}(t)H^*S(t) + \frac{1}{2}H^*\dot{S}(t) + \frac{1}{2}\Delta(t)H^*\dot{S}(t).$$
(23)

A lei de controle é projetada como

$$U(t) = K\hat{G}(t_k), \quad \forall t \in [t_k, t_{k+1}], \quad k \in \mathbb{N},$$
(24)
se introduz o vetor de erro

$$e(t) := \hat{G}(t_k) - \hat{G}(t), \quad \forall t \in [t_k, t_{k+1}], \quad k \in \mathbb{N}.$$
 (25)

Ao se utilizar a lei de controle baseada em eventos (24), adicionando e subtraindo o termo $H(t)K\hat{G}(t)$ em (22) e adicionando e subtraindo o termo $K\hat{G}(t)$ em (21), chegase a uma representação *Input-to-State Stable* (ISS) das dinâmicas $\hat{G}(t)$ e $\tilde{\theta}$ com relação ao vetor de erro e(t)

apresentado na equação (25) e perturbação variante no tempo $w(t, \tilde{\theta}(t))$, em outras palavras,

$$\dot{\hat{G}}(t) = H(t)K\hat{G}(t_k) + H(t)K\hat{G}(t) - H(t)K\hat{G}(t) + w(t,\tilde{\theta}(t))$$

$$= H(t)K\hat{G}(t) + H(t)K_0(t) + w(t,\tilde{\theta}(t))$$
(26)

$$\dot{e}(t) = -H(t)K\hat{G}(t) - H(t)Ke(t) - w(t, \tilde{\theta}(t)), \qquad (27)$$

$$\dot{\tilde{\theta}}(t) = K\hat{G}(t_k) + K\hat{G}(t) - K\hat{G}(t)$$

$$= KH(t)\tilde{\theta}(t) + Ke(t) + KM(t)Q^* + \frac{1}{2}KH(t)S(t).$$
(28)

Em uma implementação convencional de dados amostrados, os tempos de transmissão são distribuídos equidistantemente no tempo, o que significa que $t_{k+1} = t_k + h$, para todo $k \in \mathbb{N}$, e algum intervalo h > 0. No controle baseado em eventos essas transmissões são orquestradas por um mecanismo que invoca as transmissões quando a diferença entre o valor atual da saída e seu valor transmitido anteriormente se torna muito grande em um sentido apropriado (Heemels et al., 2012). Nas seções subsequentes, dois mecanismos de execução são analisados usando o vetor auxiliar

$$z(t) = \begin{bmatrix} z_1(t) \\ z_2(t) \end{bmatrix} := \begin{bmatrix} \hat{G}(t) \\ e(t) \end{bmatrix}, \qquad (29)$$

cuja dinâmica é

$$\dot{z}_1(t) = H(t)Kz_1(t) + H(t)Kz_2(t) + w(t,\dot{\theta}(t)), \qquad (30)$$

$$\dot{z}_2(t) = -H(t)Kz_1(t) - H(t)Kz_2(t) - w(t,\tilde{\theta}(t)), \quad (31)$$

A ideia principal é estabelecer os instantes acionados por eventos,

$$t_{k+1} = \min \left\{ t \in \mathbb{R}^+ : t > t_k \land z^T(t) \Psi z(t) = 0 \right\}, \quad (32)$$

$$t_0 = 0, \quad (33)$$

onde Ψ é uma matriz apropriada, para recalcular a lei de controle (24) e atualizar o atuador na Figura 3 de modo que a estabilidade assintótica do sistema de malha fechada seja alcançada.

3.1 Escalamento temporal do Sistema

Da equação (11), as frequências de dither em (9) e (10), bem como suas combinações em (16) e (17), são racionais e, então, existe o período

$$T = 2\pi \times \text{MMC}\left\{\frac{1}{\omega_i}\right\}, \quad \forall i \{1, 2, \dots, n\}, \qquad (34)$$

onde MMC denota o mínimo múltiplo comum tal que é possível escalonar temporalmente as dinâmicas (26)–(28), (30) e (31) com a transformação $\bar{t} = \omega t$, assim

е

$$\omega := \frac{2\pi}{T} \,. \tag{35}$$

Então,

$$\frac{d\hat{G}(\bar{t})}{d\bar{t}} = \frac{1}{\omega}\hat{\mathcal{G}}\left(\bar{t},\hat{G},e,\tilde{\theta},\frac{1}{\omega}\right),\qquad(36)$$

$$\frac{de(\bar{t})}{d\bar{t}} = \frac{1}{\omega} \mathcal{E}\left(\bar{t}, \hat{G}, e, \tilde{\theta}, \frac{1}{\omega}\right) , \qquad (37)$$

$$\frac{d\tilde{\theta}(\bar{t})}{d\bar{t}} = \frac{1}{\omega} \tilde{\Theta}\left(\bar{t}, \hat{G}, e, \tilde{\theta}, \frac{1}{\omega}\right) , \qquad (38)$$

$$\frac{dz_1(\bar{t})}{d\bar{t}} = \frac{1}{\omega} \mathcal{Z}_1\left(\bar{t}, z_1, z_2, \tilde{\theta}, \frac{1}{\omega}\right), \qquad (39)$$

$$\frac{dz_2(t)}{d\bar{t}} = \frac{1}{\omega} \mathcal{Z}_2\left(\bar{t}, z_1, z_2, \tilde{\theta}, \frac{1}{\omega}\right), \qquad (40)$$

nas quais

$$\hat{\mathcal{G}}\left(\bar{t},\hat{G},e,\tilde{\theta},\frac{1}{\omega}\right) = H(\bar{t})K\hat{G}(\bar{t}) + H(\bar{t})Ke(\bar{t}) + w(\bar{t},\tilde{\theta}(\bar{t})), \qquad (41)$$

$$\mathcal{E}\left(\bar{t},\hat{G},e,\tilde{\theta},\frac{1}{\omega}\right) = -\hat{\mathcal{G}}\left(\bar{t},\hat{G},e,\tilde{\theta},\frac{1}{\omega}\right),\qquad(42)$$

$$\tilde{\Theta}\left(\bar{t},\hat{G},e,\tilde{\theta},\frac{1}{\omega}\right) = KH(\bar{t})\tilde{\theta}(\bar{t}) + Ke(\bar{t}) + KM(\bar{t})Q^* + \frac{1}{2}KH(\bar{t})S(\bar{t}), \quad (43)$$

$$\mathcal{Z}_1\left(\bar{t}, z_1, z_2, \tilde{\theta}, \frac{1}{\omega}\right) = \hat{\mathcal{G}}\left(\bar{t}, z_1, z_2, \tilde{\theta}, \frac{1}{\omega}\right), \qquad (44)$$

$$\mathcal{Z}_2\left(\bar{t}, z_1, z_2, \tilde{\theta}, \frac{1}{\omega}\right) = \mathcal{E}\left(\bar{t}, z_1, z_2, \tilde{\theta}, \frac{1}{\omega}\right).$$
(45)

3.2 Sistema Médio

Agora, definindo o estado aumentado

$$X^{T}(\bar{t}) := \left[\hat{G}^{T}(\bar{t}), e^{T}(\bar{t}), \tilde{\theta}^{T}(\bar{t}), z^{T}(\bar{t})\right], \qquad (46)$$
chega-se à dinâmica

$$\frac{dX(\bar{t})}{d\bar{t}} = \frac{1}{\omega} \mathcal{F}\left(\bar{t}, X, \frac{1}{\omega}\right) , \qquad (47)$$

$$\mathcal{F}^{T} = \begin{bmatrix} \hat{\mathcal{G}}^{T}, \mathcal{E}^{T}, \tilde{\Theta}^{T}, \mathcal{Z}_{1}^{T}, \mathcal{Z}_{2}^{T} \end{bmatrix}.$$
(48)

O sistema aumentado (47) tem um pequeno parâmetro 1/ ω assim como uma função T-periódica $\mathcal{F}\left(\bar{t}, X, \frac{1}{\omega}\right)$ em

 \bar{t} , portanto, admite-se o teoria de média para análise de estabilidade calculando-se $\mathcal{F}\left(\bar{t},X,\frac{1}{\omega}\right)$ at $\lim_{\omega\to\infty}\frac{1}{\omega} = 0$, conforme apresentado nas referências (Plotnikov, 1980; Khalil, 2002), *i.e.*,

$$\frac{dX_{\rm av}(\bar{t})}{d\bar{t}} = \frac{1}{\omega} \mathcal{F}_{\rm av}(X_{\rm av}) , \qquad (49)$$

$$\mathcal{F}_{\mathrm{av}}\left(X_{\mathrm{av}}\right) = \frac{1}{T} \int_{0}^{T} \mathcal{F}\left(\delta, X_{\mathrm{av}}, 0\right) d\delta \,. \tag{50}$$

Basicamente, a teoria de média determina em que sentido o comportamento do sistema não-autônomo (47) se aproxima do comportamento do sistema autônomo (49) de modo que (47) pode ser representado como uma perturbação de (49) (Khalil, 2002).

Agora, nota-se que os termos médios são

$$S_{\rm av}(\bar{t}) = \frac{1}{T} \int_0^T S(\delta) d\delta = 0, \qquad (51)$$

$$\dot{S}_{\rm av}(\bar{t}) = \frac{1}{T} \int_0^T \dot{S}(\delta) d\delta = 0, \qquad (52)$$

$$M_{\rm av}(\bar{t}) = \frac{1}{T} \int_0^T M(\delta) d\delta = 0, \qquad (53)$$

$$\dot{M}_{\rm av}(\bar{t}) = \frac{1}{T} \int_0^T \dot{M}(\delta) d\delta = 0, \qquad (54)$$

$$\Delta_{\rm av}(\bar{t}) = \frac{1}{T} \int_0^T \Delta(\delta) d\delta = 0, \qquad (55)$$

$$\dot{\Delta}_{\rm av}(\bar{t}) = \frac{1}{T} \int_0^T \dot{\Delta}(\delta) d\delta = 0, \qquad (56)$$

e, consequentemente,

$$H_{\rm av}(\bar{t}) = \frac{1}{T} \int_0^T H(\delta) d\delta$$

= $\frac{1}{T} \int_0^T H^* d\delta + \frac{1}{T} \int_0^T \Delta(\delta) H^* d\delta$
= $H^* + \Delta_{\rm av}(\bar{t}) H^* = H^*$, (57)

$$\dot{H}_{\rm av}(\bar{t}) = \frac{1}{T} \int_0^{\cdot} \dot{H}(\delta) d\delta$$
$$= \dot{\Delta}_{\rm av}(\bar{t}) H^* = 0.$$
(58)

Portanto, tratando o estado aumentado $X(\bar{t})$ como constante em (47) e (48), e usando os valores médios (51)–(58), chega-se a

$$\frac{d\hat{G}_{\rm av}(\bar{t})}{d\bar{t}} = \frac{1}{\omega} H^* K \hat{G}_{\rm av}(\bar{t}) + \frac{1}{\omega} H^* K e_{\rm av}(\bar{t}) , \qquad (59)$$

$$\frac{de_{\rm av}(\bar{t})}{d\bar{t}} = -\frac{1}{\omega} H^* K e_{\rm av}(\bar{t}) - \frac{1}{\omega} H^* K \hat{G}_{\rm av}(\bar{t}) , \qquad (60)$$

$$\frac{d\theta_{\rm av}(\bar{t})}{d\bar{t}} = \frac{1}{\omega} K H^* \tilde{\theta}_{\rm av}(\bar{t}) + \frac{1}{\omega} K e_{\rm av}(\bar{t}) \,, \tag{61}$$

$$\frac{dz_{1_{av}}(t)}{d\bar{t}} = \frac{1}{\omega} H^* K z_{1_{av}}(\bar{t}) + \frac{1}{\omega} H^* K z_{2_{av}}(\bar{t}), \qquad (62)$$
$$\frac{dz_{2_{av}}(\bar{t})}{d\bar{t}} = -\frac{1}{\omega} H^* K z_{2_{av}}(\bar{t}) - \frac{1}{\omega} H^* K z_{2_{av}}(\bar{t}) \qquad (63)$$

$$\frac{dz_{2_{\rm av}}(t)}{d\bar{t}} = -\frac{1}{\omega} H^* K z_{2_{\rm av}}(\bar{t}) - \frac{1}{\omega} H^* K z_{1_{\rm av}}(\bar{t}) , \qquad (63)$$

uma vez que o valor médio de $w(t, \theta(t))$ em (23) é

$$w_{\rm av}(\bar{t}, \theta_{\rm av}(\bar{t})) = \Delta_{\rm av}(\bar{t})H^*\theta_{\rm av}(\bar{t}) + M_{\rm av}(\bar{t})Q^* + + \frac{1}{2}\dot{\Delta}_{\rm av}(\bar{t})H^*S_{\rm av}(\bar{t}) + + \frac{1}{2}H^*\dot{S}_{\rm av}(\bar{t}) + \frac{1}{2}\Delta_{\rm av}(\bar{t})H^*\dot{S}_{\rm av}(\bar{t}) = 0.$$
(64)

Portanto, a partir de (59) é fácil verificar a relação ISS de $\hat{G}_{\rm av}(\bar{t})$ com respeito ao erro médio de medição $e_{\rm av}(\bar{t})$. Além do mais, a média das equações (20), (25) e (29), gera

$$\hat{G}_{\rm av}(\bar{t}) = H^* \tilde{\theta}_{\rm av}(\bar{t}) , \qquad (65)$$

$$\hat{\theta}_{\rm av}(\bar{t}) = H^{*-1}\hat{G}_{\rm av}(\bar{t}), \qquad (66)$$

$$e_{\rm av}(\bar{t}) = \hat{G}_{\rm av}(\bar{t}_k) - \hat{G}_{\rm av}(\bar{t}), \qquad (67)$$

$$z_{\rm av}(\bar{t}) = \begin{bmatrix} z_{1_{\rm av}}(t) \\ z_{2_{\rm av}}(\bar{t}) \end{bmatrix} := \begin{bmatrix} G_{\rm av}(t) \\ e_{\rm av}(\bar{t}) \end{bmatrix} .$$
(68)

Na escala de tempo $\bar{t},$ versão média da lei de execução baseada em eventos torna-se

$$\bar{t}_{k+1} = \min\left\{\bar{t} \in \mathbb{R}^+ : \bar{t} > \bar{t}_k \land z_{av}^T(\bar{t})\Psi z_{av}(\bar{t}) = 0\right\},$$

$$\bar{t}_0 = 0,$$
(69)
(70)

deve ser capaz de garantir a convergência exponencial de $\hat{G}_{\rm av}(\bar{t})$ e, consequentemente, de $\tilde{\theta}_{\rm av}(\bar{t})$ para a origem invocando a teoria da média Khalil (2002).

$3.3~Hip {{\delta}teses}$

As seguintes hipóteses são consideradas ao longo do artigo:

- (H1) O vetor otimizador $\theta^* \in \mathbb{R}^n$ e o escalar Q^* mostrados no mapeamento não-linear (1) são parâmetros desconhecidos pelo projetista.
- (H2) A matriz Hessiana H^* é simétrica, tem sinal definido (tem posto completo) e conhecido.
- **(H3)** O produto matricial H^*K é Hurwitz tal que para qualquer matriz $Q = Q^T > 0$ existe $P = P^T > 0$ que satisfaz a equação de Lyapunov

$$K^T H^{*T} P + P H^* K = -Q.$$
 (71)

(H4) A soma das normas induzidas das matrizes $K^T H^{*T} P$ e PH^*K é majorada por uma constante conhecida β ,

$$\|K^T H^{*T} P\| + \|PH^* K\| \le \beta.$$
(72)

(H5) O menor autovalor da matriz Q é limitado inferiormente por uma constante positiva, e conhecida, α ,

$$\lambda_{\min}(Q) \ge \alpha \,. \tag{73}$$
(H6) As frequências de sondagem satisfazem

$$\omega_i' \notin \left\{ \omega_j', \ \frac{1}{2} (\omega_j' + \omega_k'), \ \omega_j' + 2\omega_k', \ \omega_k' \pm \omega_l' \right\}, \quad (74)$$

para todo $i, j, k \in l$.

(H7) Apenas $\hat{G}(t)$ está disponível para o projeto da execução baseada em eventos.

4. ANÁLISE DE ESTABILIDADE

4.1 Busca Extremal baseada em Eventos com Matriz Hessiana Conhecida

Esta seção assume um conhecimento parcial do mapa nãolinear (1) tal que a matriz Hessiana H^* seja um parâmetro conhecido. Embora essa hipótese pareça simplificar o problema, deve-se notar que a estratégia de busca extremal ainda se justifica uma vez que o vetor otimizador θ^* e o parâmetro Q^* são desconhecidos.

O Teorema 1 mostra como a matriz de eventos

$$\Psi = \frac{1}{\omega} \begin{bmatrix} (\sigma - 1)Q & PH^*K \\ K^T H^{*T}P & 0_{n \times n} \end{bmatrix},$$
(75)

na qual $\sigma\in]0,1[,$ pode ser empregada em malha fechada para garantir a estabilidade assintótica da busca extremal baseada em eventos.

Teorema 1. Considere a dinâmica média de malha fechada da estimativa do gradiente (59) e o mecanismo execução por evento médio dado por (69). Suponha que as Hipóteses (H1)–(H8) sejam satisfeitas e que a matriz Hessiana H^* seja um parâmetro <u>conhecido</u>. Se a matriz de eventos Ψ é dada por (75) e ω em (35) é uma constante suficientemente grande para os parâmetros de (59), a versão média da estimativa do gradiente, $\hat{G}_{\rm av}(\bar{t})$, dada por (59) é localmente exponencialmente estável e, consequentemente, $\tilde{\theta}_{\rm av}(t)$ converge exponencialmente para zero. Portanto, existem constantes $\omega^* \in [0, \omega[$ e $m, M_{\hat{C}}, M_{\theta}, M_y > 0$ tal que

$$\|\hat{G}(t)\| \le M_{\hat{G}} \exp(-mt) + \mathcal{O}\left(\frac{1}{\omega}\right),\tag{76}$$

$$\|\theta(t) - \theta^*\| \le M_{\theta} \exp(-mt) + \mathcal{O}\left(a + \frac{1}{\omega}\right), \qquad (77)$$

$$|y(t) - Q^*| \le M_y \exp(-mt) + \mathcal{O}\left(a^2 + \frac{1}{\omega^2}\right), \quad (78)$$

nas quais $a = \sqrt{\sum_{i=1}^{n} a_i^2}$, e as constantes $M_{\hat{G}}$, $M_{\theta} \in M_y$ dependem da condição inicial $\tilde{\theta}_{av}(0)$. Além do mais, existe um limitante inferior τ^* para o intervalo entre execuções $t_{k+1}-t_k$ para todo $k \in \mathbb{N}$ evitando o comportamento Zeno.

 ${\bf Prova.}$ Considere a seguinte candidata à função de Lyapunov,

$$V_{\rm av} = \hat{G}_{\rm av}^T(\bar{t}) P \hat{G}_{\rm av}(\bar{t}) \,, \tag{79}$$

cuja derivada temporal, satisfeita a Hipótese (H3), pode ser escrita como

$$\dot{V}_{\rm av} = -\frac{1}{\omega} \hat{G}_{\rm av}^{T}(\bar{t}) Q \hat{G}_{\rm av}(\bar{t}) + \frac{1}{\omega} e_{\rm av}^{T}(\bar{t}) K^{T} H^{*T} P \hat{G}_{\rm av}(\bar{t}) + \frac{1}{\omega} \hat{G}_{\rm av}^{T}(\bar{t}) P H^{*} K e_{\rm av}(\bar{t}) .$$
(80)

De (80), a ausência do erro de medição e(t), $e(t) \equiv 0 \forall t > 0$, implica na implementação clássica da busca extremal e, neste caso, a equação (80) torna-se

$$\dot{V}_{\rm av} = -\frac{1}{\omega} \hat{G}_{\rm av}^T(\bar{t}) Q \hat{G}_{\rm av}^T(\bar{t}) \,. \tag{81}$$

Por outro lado, na abordagem baseada em eventos, o mecanismo de execução responsável pela atualização e

transmissão do sinal de controle através da rede é dado pela equação (69) com matriz de eventos Ψ em (75). A abordagem proposta neste artigo garante o decaimento exponencial de $V_{\rm av}$ com majorante pré-especificado dado por uma fração da taxa de decaimento ideal (81), de modo que

$$\dot{V}_{\rm av} \le -\frac{\sigma}{\omega} \hat{G}_{\rm av}^T(\bar{t}) Q \hat{G}_{\rm av}(\bar{t}) \quad \text{com} \quad \sigma \in \left]0, 1\right[. \tag{82}$$

Agora, substituindo o lado esquerdo da desigualdade (83) pela equação (80), chega-se a

$$-\frac{1}{\omega}\hat{G}_{\mathrm{av}}^{T}(\bar{t})Q\hat{G}_{\mathrm{av}}(\bar{t}) + \frac{1}{\omega}e_{\mathrm{av}}^{T}(\bar{t})K^{T}H^{*T}P\hat{G}_{\mathrm{av}}(\bar{t}) + \frac{1}{\omega}\hat{G}_{\mathrm{av}}^{T}(\bar{t})PH^{*}Ke_{\mathrm{av}}(\bar{t}) \leq -\frac{\sigma}{\omega}\hat{G}_{\mathrm{av}}^{T}(\bar{t})Q\hat{G}_{\mathrm{av}}(\bar{t}).$$
(83)

Adicionando o termo $\frac{\sigma}{\omega}\hat{G}_{av}^{T}(\bar{t})Q\hat{G}_{av}(\bar{t})$ em ambos lados da desigualdade (83),

$$+ \frac{\sigma}{\omega} \hat{G}_{\mathrm{av}}^{T}(\bar{t}) Q \hat{G}_{\mathrm{av}}(\bar{t}) - \frac{1}{\omega} \hat{G}_{\mathrm{av}}^{T}(\bar{t}) Q \hat{G}_{\mathrm{av}}(\bar{t}) + + \frac{1}{\omega} e_{\mathrm{av}}^{T}(\bar{t}) K^{T} H^{*T} P \hat{G}_{\mathrm{av}}(\bar{t}) + \frac{1}{\omega} \hat{G}_{\mathrm{av}}^{T}(\bar{t}) P H^{*} K e_{\mathrm{av}}(\bar{t}) \leq 0,$$

$$\tag{84}$$

que tem forma matricial,

$$\underbrace{\begin{bmatrix} \hat{G}_{\mathrm{av}}^{T}(\bar{t}) & e_{\mathrm{av}}^{T}(\bar{t}) \end{bmatrix}}_{z_{\mathrm{av}}^{T}(\bar{t})} \underbrace{\frac{1}{\omega} \begin{bmatrix} (\sigma-1)Q & PH^{*}K \\ K^{T}H^{*T}P & 0 \end{bmatrix}}_{\Psi} \underbrace{\begin{bmatrix} \hat{G}_{\mathrm{av}}(\bar{t}) \\ e_{\mathrm{av}}(\bar{t}) \end{bmatrix}}_{z_{\mathrm{av}}(\bar{t})} \leq 0.$$
(85)

Observe que a matriz de eventos Ψ em (75) não possui sinal definido, de modo que a desigualdade (102) fornece apenas uma condição para especificar o instante de execução t_{k+1} . Na prática, o mecanismo de execução baseado em eventos supervisiona a derivada temporal da função Lyapunov (80) e seu limite superior pré-especificado em (83) para definir o momento em que esses sinais se encontram como o instante para enviar dados pela rede e atualizar o atuador. Tal condição, $z_{av}^T(\bar{t})\Psi z_{av}(\bar{t}) = 0$ é dada por (69) e (70). Este processo pode ocorrer por um número indefinido de vezes, ou seja, sempre que necessário, e garante em malha fechada a convergência exponencial assintótica de $\hat{G}_{av}(\bar{t})$ para a origem com majorante de $\dot{V}_{av}(\hat{G}_{av})$ dado por (83).

Portanto, usando a desigualdade de Rayleigh-Ritz,

$$\begin{split} \lambda_{\min}(P) \| \hat{G}_{\mathrm{av}}(\bar{t}) \|^2 &\leq V_{\mathrm{av}} \leq \lambda_{\max}(P) \| \hat{G}_{\mathrm{av}}(\bar{t}) \|^2 \,, \quad (86) \\ \mathrm{um \ majorante \ para} \ (83) \ \acute{\mathrm{e}} \end{split}$$

$$\dot{V}_{\rm av} \leq -\frac{\sigma}{\omega} \lambda_{\rm min}(Q) \|\hat{G}_{\rm av}(\bar{t})\|^2 \\
\leq -\frac{\sigma}{\omega} \frac{\lambda_{\rm min}(Q)}{\lambda_{\rm max}(P)} V_{\rm av} \,.$$
(87)

Invocando-se o Critério de Estabilidade de Lyapunov (Khalil, 2002, Teorema 4.1), conclui-se que a estimativa média do gradiente, $\hat{G}_{\rm av}(\bar{t})$, é assintoticamente estável e, através do Princípio da Comparação (Khalil, 2002, Lema da Comparação 4.1) e a desigualdade de Rayleigh-Ritz, é possível garantir que

$$\|\hat{G}_{av}(\bar{t})\| \le \exp\left(-\frac{\sigma\lambda_{\min}(Q)}{2\omega\lambda_{\max}(P)}\bar{t}\right)\sqrt{\frac{\lambda_{\max}(P)}{\lambda_{\min}(P)}}\|\hat{G}_{av}(0)\|.$$
(88)

Então, ao se aplicar a desigual de Cauchy-Schwarz (Apostol, 1957) e o majorante (88) na equação (66), chega-se a

$$\|\tilde{\theta}_{\rm av}(\bar{t})\| \leq \exp\left(-\frac{\sigma\lambda_{\rm min}(Q)}{2\omega\lambda_{\rm max}(P)}\bar{t}\right) \times \\ \times \frac{\sqrt{\lambda_{\rm max}(P)}\|H^{*-1}\|\|H^*\|}{\sqrt{\lambda_{\rm min}(P)}}\|\tilde{\theta}_{\rm av}(0)\|.$$
(89)

Como as equações (36) e (38) possuem lado direito descontínuo, o termo $\frac{1}{\omega}$ tem valor pequeno, $\hat{\mathcal{G}}\left(\bar{t}, X, \frac{1}{\omega}\right)$ e $\tilde{\Theta}\left(\bar{t}, X, \frac{1}{\omega}\right)$ em (41) e (43), respectivamente, são funções T-periódicas em $\bar{t} \operatorname{com} \hat{G}_{\mathrm{av}}(\bar{t}) e \tilde{\theta}_{\mathrm{av}}(\bar{t})$ exponencial estáveis, ver desigualdades (88) e (89), invocando-se o Teorema da Média para Sistemas Descontínuos (Plotnikov, 1980, Theorem 2) e com auxílio da Desigualdade Triangular Apostol (1957),

$$\|\hat{G}(\bar{t})\| \le \|\hat{G}_{\mathrm{av}}(\bar{t})\| + \mathcal{O}\left(\frac{1}{\omega}\right), \qquad (90)$$

$$\|\tilde{\theta}(\bar{t})\| \le \|\tilde{\theta}_{\rm av}(\bar{t})\| + \mathcal{O}\left(\frac{1}{\omega}\right). \tag{91}$$

Revertendo-se a escala de tempo $(\bar{t} = \omega t)$ e com os majorantes (88) e (89), as desigualdades (90) e (91) tornam-se

$$\|\hat{G}(t)\| \le \exp\left(-\frac{\sigma\lambda_{\min}(Q)}{2\lambda_{\max}(P)}t\right)\sqrt{\frac{\lambda_{\max}(P)}{\lambda_{\min}(P)}}\|\hat{G}_{\mathrm{av}}(0)\| + \mathcal{O}\left(\frac{1}{\omega}\right),\tag{92}$$
$$\|\tilde{\theta}(t)\| \le \exp\left(-\frac{\sigma\lambda_{\min}(Q)}{\sqrt{2}}t\right) \times$$

$$\begin{aligned} \|\theta(t)\| &\leq \exp\left(-\frac{1}{\lambda_{\max}(P)}t\right) \times \\ &\times \frac{\sqrt{\lambda_{\max}(P)}\|H^{*-1}\|\|H^*\|}{\sqrt{\lambda_{\min}(P)}} \|\tilde{\theta}_{av}(0)\| + \mathcal{O}\left(\frac{1}{\omega}\right) \end{aligned} \tag{93}$$

Agora, de (12),

$$\theta(t) - \theta^* = \tilde{\theta}(t) + S(t), \qquad (94)$$

e, empregando-se o majorante (93), sua norma satisfaz

$$\begin{aligned} \|\theta(t) - \theta^*\| &= \|\tilde{\theta}(t) + S(t)\| \le \|\tilde{\theta}(t)\| + \|S(t)\| \\ &\le \exp\left(-\frac{\sigma\lambda_{\min}(Q)}{2\lambda_{\max}(P)}t\right) \frac{\sqrt{\lambda_{\max}(P)}\|H^{*-1}\|\|H^*\|}{\sqrt{\lambda_{\min}(P)}} \times \\ &\times \|\tilde{\theta}_{\mathrm{av}}(0)\| + \mathcal{O}\left(a + \frac{1}{\omega}\right). \end{aligned}$$
(95)

Nota-se que a equação (6) pode ser reescrita como

$$y(t) - Q^* = (\theta(t) - \theta^*)^T H^*(\theta(t) - \theta^*),$$
 (96)

e, depois de algumas manipulações matemáticas utilizando as desigualdades de Cauchy-Schwarz (Apostol, 1957), (95) e de Young (Khalil, 2002), chega-se a

$$|y(t) - Q^*| \leq \exp\left(-\frac{\sigma\lambda_{\min}(Q)}{2\lambda_{\max}(P)}t\right) \times \left[\frac{\lambda_{\max}(P)\|H^{*-1}\|^2\|H^*\|^3\|\tilde{\theta}_{\mathrm{av}}(0)\|^2}{\lambda_{\min}(P)} + \frac{2\sqrt{\lambda_{\max}(P)}\|H^{*-1}\|\|H^*\|^2}{\sqrt{\lambda_{\min}(P)}}\|\tilde{\theta}_{\mathrm{av}}(0)\|\left(a + \frac{1}{\omega}\right)\right] + \mathcal{O}\left(a^2 + \frac{1}{\omega^2}\right).$$
(97)

Portanto, definindo-se as constantes

$$m = \frac{\sigma \lambda_{\min}(Q)}{2\lambda_{\max}(P)},\tag{98}$$

$$M_{\hat{G}} = \sqrt{\frac{\lambda_{\max}(P)}{\lambda_{\min}(P)}} \|H^*\| \|\tilde{\theta}_{av}(0)\|, \qquad (99)$$

$$M_{\theta} = \frac{\sqrt{\lambda_{\max}(P)} \|H^{*-1}\| \|H^*\|}{\sqrt{\lambda_{\min}(P)}} \|\tilde{\theta}_{av}(0)\|, \qquad (100)$$

$$M_{y} = \frac{\lambda_{\max}(P) \|H^{*-1}\|^{2} \|H^{*}\|^{3} \|\tilde{\theta}_{av}(0)\|^{2}}{\lambda_{\min}(P)} + 2\frac{\sqrt{\lambda_{\max}(P)} \|H^{*-1}\| \|H^{*}\|^{2}}{\sqrt{\lambda_{\min}(P)}} \|\tilde{\theta}_{av}(0)\|\mathcal{O}\left(a + \frac{1}{\omega}\right),$$
(101)

e com (92), (95) e (97), as desigualdades (76)–(78) são satisfeitas.

Agora, nota-se que no instante de execução de um novo evento a desigualdade (83) tonar-se

$$\begin{aligned} &-\frac{1}{\omega}\hat{G}_{\mathrm{av}}^{T}(\bar{t})Q\hat{G}_{\mathrm{av}}(\bar{t}) + \frac{1}{\omega}e_{\mathrm{av}}^{T}(\bar{t})K^{T}H^{*T}P\hat{G}_{\mathrm{av}}(\bar{t}) + \\ &+\frac{1}{\omega}\hat{G}_{\mathrm{av}}^{T}(\bar{t})PH^{*}Ke_{\mathrm{av}}(\bar{t}) = -\frac{\sigma}{\omega}\hat{G}_{\mathrm{av}}^{T}(\bar{t})Q\hat{G}_{\mathrm{av}}(\bar{t}) , \quad (102) \end{aligned}$$

consequentemente,

$$2\hat{G}_{\rm av}^{T}(\bar{t})PH^{*}Ke_{\rm av}(\bar{t}) = (1-\sigma)\hat{G}_{\rm av}^{T}(\bar{t})Q\hat{G}_{\rm av}(\bar{t}).$$
 (103)

Logo,

$$e_{\rm av}(\bar{t}) = \frac{(1-\sigma)}{2} K^{-1} H^{*-1} P^{-1} Q \hat{G}_{\rm av}(\bar{t}), \qquad (104)$$

e

$$\|e_{\rm av}(\bar{t})\| \le \frac{(1-\sigma)}{2} \|(H^*K)^{-1}\| \|P^{-1}\| \|Q\| \|\hat{G}_{\rm av}(\bar{t})\|,$$
(105)

ou

$$\frac{\|e_{\rm av}(\bar{t})\|}{\|\hat{G}_{\rm av}(\bar{t})\|} \le \frac{(1-\sigma)}{2} \|(H^*K)^{-1}\| \|P^{-1}\| \|Q\|.$$
(106)

Invocando-se (Tabuada, 2007, Corolário IV.1), os intervalos de tempo inter-execução são limitados inferiormente pelo intervalo $\bar{\tau}^*$ gasto para a solução da dinâmica

$$\begin{aligned} \frac{d\phi(\bar{t})}{d\bar{t}} &= \frac{1}{\omega} \|H^*K\| + \frac{2}{\omega} \|H^*K\| \phi(\bar{t}) + \frac{1}{\omega} \|H^*K\| \phi^2(\bar{t}) \\ &= \frac{1}{\omega} \|H^*K\| (1 + 2\phi(\bar{t}) + \phi^2(\bar{t})) \\ &= \frac{1}{\omega} \|H^*K\| (1 + \phi(\bar{t}))^2 \,, \quad \phi(0) = 0 \,, \end{aligned}$$
(107)

alcançar $\phi(\bar{\tau}^*)=\frac{(1-\sigma)}{2}\|(H^*K)^{-1}\|\|P^{-1}\|\|Q\|$. Então, resolvendo o problema do valor inicial (107) usando os métodos da separação das variáveis,

$$\int_{\phi(0)}^{\phi(\bar{\tau}^*)} \frac{1}{(1+\phi(\bar{t}))^2} d\phi(\bar{t}) = \frac{1}{\omega} \|H^*K\| \int_0^{\bar{\tau}^*} d\bar{t} \,, \quad (108)$$

$$\left[-\frac{1}{1+\phi(\bar{t})}\right]_{\phi(0)}^{\phi(\tau^{+})} = \frac{1}{\omega} \|H^{*}K\| [\bar{t}]_{0}^{\bar{\tau}^{*}} , \qquad (109)$$

$$\frac{1}{1+\phi(0)} - \frac{1}{1+\phi(\bar{\tau}^*)} = \frac{1}{\omega} \|H^*K\|\bar{\tau}^*, \qquad (110)$$

$$\frac{(1-\sigma)\|Q\|}{2\|H^*K\|\|P\|+(1-\sigma)\|Q\|} = \frac{1}{\omega}\|H^*K\|\bar{\tau}^*.$$
 (111)

De fato $\bar{t} = \omega t$ implica em $\bar{\tau}^* = \omega \tau^*$, portanto, de (111), na escala de tempo t, um limite inferior para a inter-execução $\tau^* \leq t_{k+1} - t_k$ pode ser encontrado como

$$\tau^* = \frac{1}{\|H^*K\|} \frac{(1-\sigma)\|Q\|}{2\|H^*K\|\|P\| + (1-\sigma)\|Q\|}, \qquad (112)$$

e o comportamento de Zeno é evitado, o que completa a prova. $\hfill \Box$

4.2 Busca Extremal baseada em Eventos com Matriz Hessiana Desconhecida

Esta seção assume o desconhecimento total do mapeamento não-linear (1), ou seja, tal que a matriz Hessiana H^* , o vetor otimizador θ^* e o parâmetro Q^* são todos parâmetros desconhecidos.

O Teorema 2 mostra como a matriz de eventos

$$\Psi = \begin{bmatrix} -\frac{\sigma^2 \alpha^2}{\beta^2} I_{n \times n} & 0_{n \times n} \\ 0_{n \times n} & I_{n \times n} \end{bmatrix},$$
 (113)

na qual $\sigma\in]0,1[,$ pode ser empregada em malha fechada para garantir a estabilidade assintótica da busca extremal baseada em eventos.

Teorema 2. Considere a dinâmica média de malha fechada da estimativa do gradiente (59) e o mecanismo execução por evento médio dado por (69). Suponha que as Hipóteses (H1)–(H8) sejam satisfeitas e que a matriz Hessiana H^* seja um parâmetro <u>desconhecido</u>. Se a matriz de eventos Ψ é dada por (113) e ω em (35) é uma constante suficientemente grande para os parâmetros de (59), a versão média da estimativa do gradiente, $\hat{G}_{\rm av}(\bar{t})$, dada por (59) é localmente exponencialmente estável e, consequentemente, $\tilde{\theta}_{\rm av}(t)$ converge exponencialmente para zero. Portanto, existem constantes $\omega^* \in [0, \omega[$ e $m, M_{\hat{G}}, M_{\theta}, M_y > 0$ tal que

$$\|\hat{G}(t)\| \le M_{\hat{G}} \exp(-mt) + \mathcal{O}\left(\frac{1}{\omega}\right), \qquad (114)$$

$$\|\theta(t) - \theta^*\| \le M_\theta \exp(-mt) + \mathcal{O}\left(a + \frac{1}{\omega}\right), \qquad (115)$$

$$|y(t) - Q^*| \le M_y \exp(-mt) + \mathcal{O}\left(a^2 + \frac{1}{\omega^2}\right), \quad (116)$$

nas quais $a = \sqrt{\sum_{i=1}^{n} a_i^2}$, e as constantes $M_{\hat{G}}$, $M_{\theta} \in M_y$ dependem da condição inicial $\tilde{\theta}_{av}(0)$. Além do mais, existe um limitante inferior τ^* para o intervalo entre execuções $t_{k+1}-t_k$ para todo $k \in \mathbb{N}$ evitando o comportamento Zeno.

Prova. A prova do Teorema 2 segue passos similares aos que foram dados na demonstração do Teorema 1 e, devido a limitação de espaço, será oportunamente apresentada em uma futura publicação em periódico. $\hfill \Box$

5. RESULTADOS DE SIMULAÇÃO

Para ilustrar as ideias principais da estratégia de Busca Extremal baseada em Eventos empregou-se o mapa nãolinear multivariável (1) com entrada $\theta(t) \in \mathbb{R}^2$, saída $\hat{G}(t) \in \mathbb{R}$, e parâmetros desconhecidos

$$H = \begin{bmatrix} 100 & 30\\ 30 & 20 \end{bmatrix}, \tag{117}$$

 $Q^* = 100$ and $\theta^* = \begin{bmatrix} 2 & 4 \end{bmatrix}^T$. Os vetores de dither (9) e (10) têm parâmetros $a_1 = a_2 = 0.1$, $\omega_1 = 0.7$ [rad/sec], e $\omega_2 =$

0.5 [rad/sec], como em Ghaffari et al. (2012), enquanto os parâmetros da execução por eventos são $\sigma = 0.7$, $\alpha = 1$ e $\beta = 1$. A matriz de ganho do controlador é $K = 10^{-2} \begin{bmatrix} -7.5 & 0 \\ 0 & -7.5 \end{bmatrix}$ e a condição inicial $\hat{\theta}(0) = \begin{bmatrix} 2.5, 5 \end{bmatrix}^T$.

Nas Figuras 4(a) e 4(c) a estimativa do Gradiente e sua versão amostrada mostram a convergência para zero de ambas variáveis. Obviamente, a estabilização do Gradiente implica no alcance do otimizador θ^* , ver Figuras 4(e) e 4. As Figuras 4(b) e 4(d) mostram o comportamento aperiódico de atualização do sinal de controle U(t).

 $\tau(t)$.

(a) Estimativa do Gradiente, $\hat{G}(t)$.

(c) Versão sample-and-hold da Estimativa do Gradiente, $\hat{G}(t_k)$.

(e) Entrada do mapeamento não-linear, $\theta(t)$.

y(t).

Figura 4. Busca Extremal baseada em Eventos.

6. CONCLUSÕES

Este artigo propõe a primeira estratégia de busca extremal baseada em eventos para mapeamentos estáticos, nãolineares e multivariáveis. Utilizando uma análise rigorosa foram demonstradas as propriedades de estabilidade do sistema em malha fechada e resultados de simulação mostraram as vantagens do esquema proposto.

AGRADECIMENTOS

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001. Os autores também agradecem ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) e a Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ).

REFERÊNCIAS

- Apostol, T. (1957). Mathematical Analisys A Modern Approach to Advanced Calculus. Addison-Wesley Publishing Company, Massachusetts.
- Ariyur, K.B. and Krstić, M. (2003). Real-Time Optimization by Extremum-Seeking Control. Wiley, Canada.
- Borgers, D.P. and Heemels, W.P.M.H. (2013). On minimum inter-event times in event-triggered control. In 2013 IEEE 52nd IEEE Conference on Decision and Control (CDC), 7370–7375.
- Coutinho, P.H.S. and Palhares, R.M. (2021). Co-design of dynamic event-triggered gain-scheduling control for a class of nonlinear systems. *IEEE Transactions on Automatic Control.* doi:10.1109/TAC.2021.3108498.
- Ghaffari, A., Krstić, M., and Nešic, D. (2012). Multivariable newton-based extremum seeking. *Automatica*, 48, 1759–1767.
- Heemels, W.P.M.H., Johansson, K.H., and Tabuada, P. (2012). An introduction to event-triggered and selftriggered control. In 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), 3270–3285.
- Hespanha, J.P., Naghshtabrizi, P., and Xu, Y. (2007). A survey of recent results in networked control systems. *Proceedings of the IEEE*, 95(1), 138–162.
- Khalil, H.K. (2002). *Nonlinear Systems*. Prentice Hall, Upper Saddle River, New Jersey.
- Krstić, M. and Wang, H.H. (2000). Stability of extremum seeking feedback for general nonlinear dynamic systems. *Automatica*, 36, 595–601.
- Leblanc, M. (1922). Sur l'électrification des chemins de fer au moyen de courants alternatifs de fréquence élevée. *Revue Générale de l'Electricité*, XII(8), 275–277.
- Moreira, L.G., Groff, L.B., da Silva, J.M.G., and Tarbouriech, S. (2019). Pi event-triggered control under saturating actuators. *International Journal of Control*, 92(7), 1634–1644.
- Plotnikov, V.A. (1980). Averaging of differential inclusions. Ukrainian Mathematical Journal, 31, 454–457.
- Sternby, J. (1980). Extremum control systems-an area for adaptive control? In 1980 IEEE Joint Automatic Control Conference (JACC), volume 1, 3270–3285.
- Tabuada, P. (2007). Event-triggered real-time scheduling of stabilizing control tasks. *IEEE Transactions on Automatic Control*, 52, 1680–1685.
- Zhang, X.M., Han, Q.L., Ge, X., Ding, D., Ding, L., Yue, D., and Peng, C. (2020). Networked control systems: A survey of trends and techniques. *IEEE/CAA Journal of Automatica Sinica*, 7(1), 1–17.