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de Janeiro, RJ, (e-mail: helon@puc-rio.br).

Abstract: Structural health monitoring has been the focus of recent developments in the field of
vibration-based assessment and, more recently, in the scope of internet of things as measurement and
computation becomes distributed. Data has become abundant even though the transmission is not
always feasible at higher frequencies needed for proper assessment, especially in remote applications
such as pipelines, subsea, and smart fleets. It is thus important to devise data-driven model workflows
that ensure the best compromise between model accuracy for condition assessment and also the
computational resources needed for embedded solutions, a topic that has not been widely used in
the context of vibration-based measurements. In this context, the present paper proposes a modeling
workflow able to reduce the dimension of autoregressive models built on the basis of many acceleration
sensors. The three-story building example was used to demonstrate the effectiveness of the method,
together with ways assess the best compromise between accuracy and model size. We hope to point
future research directions of embedded computing, predictive analytics, and vibration based structural
health monitoring, in order to ensure that the models created can be conveniently deployed while
optimizing costs for computing infrastructure.

Resumo: O monitoramento de integridade estrutural tem sido o foco de desenvolvimentos recentes no
campo da avaliação baseada em vibração e, mais recentemente, no escopo da internet das coisas à
medida que medição e computação se tornam distribúıdas. Os dados se tornaram abundantes, embora
a transmissão nem sempre seja viável em frequências mais altas necessárias para uma avaliação
adequada, especialmente em aplicações remotas, como dutos, submarinos e frotas inteligentes.
Portanto, é importante conceber fluxos de trabalho de modelo orientados por dados que garantam
a melhor relação entre a precisão do modelo para avaliação de condição e também os recursos
computacionais necessários para soluções incorporadas, um tópico que não tem sido amplamente
utilizado no contexto de medições baseadas em vibração. Nesse contexto, o presente trabalho propõe
um fluxo de trabalho de modelagem capaz de reduzir a dimensão de modelos autorregressivos
constrúıdos com base em diversos sensores de aceleração. O exemplo de construção de três andares foi
usado para demonstrar a eficácia do método, juntamente com maneiras de avaliar a melhor relação
entre a precisão e o tamanho do modelo. Espera-se apontar futuras direções de pesquisa de computação
incorporada, análise preditiva e monitoramento de integridade estrutural com base em vibração, a fim
de garantir que os modelos criados possam ser convenientemente implantados enquanto otimiza os
custos para a infraestrutura de computação.
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1. INTRODUCTION

Civil, nautical and aeronautical structures, among others,
are subject to operational and environmental conditions
that may change over time. These changes in operational
and environmental conditions impose difficulties in the
detection and identification of structural damage Farrar
and Worden (2012). Technologies have been developed to
replace qualitative visual inspection and time-based main-
tenance procedures with more quantifiable and automated
damage assessment processes. In this context, structural
health monitoring (SHM) taken into consideration, which
aims to obtain information about the conditions of a given
structure or parts of a structure. According to Bornn
et al. (2009), there are four steps for SHM: (1) operational
evaluation, (2) data acquisition, (3) feature extraction and
(4) statistical classification of the features. Some stud-
ies have been developed over the years related to data
classification using different ways of obtaining features.
Figueiredo et al. (2009) studied four different methods for
extracting linear features and obtained an optimal linear
model for the three-story building problem. Among the
methods were Akaike Information Criterion (AIC), Par-
tial Autocorrelation Function (PAF), Root Mean Squared
Error (RMSE) and Singular Value Decomposition (SVD);
concluding that autoregressive models (AR) of order 5,
15 and, 30 can represent the behavior of the proposed
system in a satisfactory way. Pan et al. (2019), in his work,
developed a feature extraction method based on Singular
Value Decomposition (SVD) by designing a Hankel matrix
to enhance multivariate analysis comparing to other tra-
ditional feature extraction methods such as autoregressive
model (AR) and multivariate vector autoregressive model
(VAR). Figueiredo et al. (2010), in another paper, applies
machine learning tools to classify the obtained linear fea-
tures. In this work, four kernel-based algorithms are used
to detect damage under varying operational and environ-
mental conditions. Among the methods used are Auto-
associative neural network (AANN), Factor Analysis (FA),
Mahalanobis Squared Distance (MSD) and SVD; conclud-
ing that in terms of general performance, the MSD-based
algorithm proved to be the best approach with the lowest
type I and II error rates. Pan et al. (2015) applied other
different tools for the classification of the features. Meth-
ods include One Class Support Vector Machine (One-class
SVM), Support Vector Data Description (SVDD), Kernel
Principal Component Analysis (KPCA) and Greedy Ker-
nel Principal Component Analysis (GKPCA); concluding
that the proposed methods have better classification per-
formance, when compared to methods used in previous
works (AANN, FA, MSD and SVD), due to lower classifi-
cation errors (Type I and Type II). Nguyen et al. (2014)
used a method based upon the Monte Carlo simulation
methodology to assess the condition of output data, ob-
tained from the autoregressive model. In this work, the
order of the autoregressive model is determined by RMSE.
Gui et al. (2017) used two types of feature extraction meth-
ods: autoregressive model and the residual errors of the
statistical parameters. Then grid search method, particle
swarm optimization and genetic algorithm were used to
determine the parameters in the SVM, which was chosen to
perform the classification of the extracted data; concluding
that the three methods had good performances although

the genetic algorithm based SVM had a better prediction
than the others. In the present work is demonstrated not
only that the use of AR features of different sensors dis-
tributed along the three-story building structure provide
the best results in terms of shear accuracy when using the
most commonly used shallow models, but also that much
smaller models can be obtained when using dimensionality
reduction methods before creating the supervised models
without sacrificing the model accuracy significantly. More
specifically, by using as features the principal components
of the feature space composed of the AR parameters of
four accelerometers, was observed a decrease in the size of
the best model by 27,15%, while the overall accuracy of the
model shrank by only 1,64%. It is important to highlight
that the size of the models is important as, in general,
smaller models tend to generalize better but also, maybe
more importantly, smaller models are easier to deploy and
to maintain in embedded hardware setups. Additionally,
with respect to the use of a single measurement for SHM,
we have shown that (i) using sensors closer to the damage
location increases the accuracy, and (ii) using more than
one sensor, even if it is far from the damage, can increase
the accuracy of damage detection. This further highlights
the importance of the present paper, as it shows that it is
necessary to devise methods that are able to orchestrate
many sensors at the same time, while keeping the size
of the model compact in order to enable embedded and
distributed solutions. In order to assess the results,a Monte
Carlo hold-out cross-validation strategy was used. In such
strategy, a hundred of models are created by resampling
the input-output tuples randomly, for training, validation,
and test stages. In this way, the validity of the results is
insured in many different realizations of hold-out dataset
splitting. A flowchart describing the full process is illus-
trated in Fig 1.

The paper is organized as follows: Section 2 will introduce
the study case used to conduct this research. Section 3
goes through the parameter extraction and dimensionality
reduction methods used for this work. Section 4 goes
through the machine learning techniques used for data
classification and validation strategy. Section 5 shows the
results comparing byte size of the models and accuracy
results. Conclusions are made in the final section.

2. TEST BED AND STRUCTURE

The structure used to carry out this work is illustrated
in Fig 2. It consists of a three-story building formed
by aluminum plates and columns mounted with bolted
joints Figueiredo et al. (2009). This structure was mounted
on top of rails in order to allow movement in only one
direction (x direction as shown in Figure 1). In addition, a
column is arranged in the center of the plate corresponding
to the upper floor in order to simulate damage, inducing
a non-linear behavior when it collides with a bumper
mounted on the floor below. The position of the bumper
is adjustable to vary the extent of the impact that occurs
at a specific excitation level.

The provided data considered 17 structural states, de-
scribed in Table 1. The structure was excited ten times for
each structural state, to take into account the variability
of the data. Thus, for each of the five transducers, ten-
time histories were measured for each of the 17 structural
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Figure 1. Process flowchart.

Figure 2. Three-story building test bed structure illustra-
tion a decrescendo.

states (850 tests in total). The data set for the 850 tests
performed on the structure consists of an array of rows,
columns and depth. The lines refer to all samples obtained
during 25 seconds in each of the 850 tests, the 5 columns
refer to each of the 5 channels, and the 850 depth columns
refers to the 850 tests performed (10 tests for each of the
17 states for each of the 5 channels).

Figure 3 show the acceleration-time history for States 1, 3,
6, 10 and 16. Analyzing the time history, some amplitude
differences can be seen as the situation is changing. But
it is easier to see the differences and identify any damage

Figure 3. Acceleration-time history from Channel 5 in
different states.

that has been put the structure to when looking at the
FRF plots or the extracted features of the model, which
will be explored in the upcoming sections.

3. FEATURE EXTRACTION AND
DIMENSIONALITY REDUCTION MODELS

The Autoregressive model was chosen for feature extrac-
tion since, according to Figueiredo et al. (2009), the AR
models can be used as damage-sensitive feature extractor
based on the AR parameters (used in this work) or residual
errors.

3.1 Autoregressive Model (AR)

To obtain the linear parameters, the autoregressive model
AR(p) was considered with a total of p = na parameters to
estimate, being p the model order, disregarding the input
data of the system. It can be written in (1), being xi the

Table 1. Data labels of the structural state
conditions Figueiredo et al. (2009)

State Condition Description

1 Undamaged Baseline condition
2 Undamaged Mass = 1,2kg at the base
3 Undamaged Mass = 1,2kg at the 1st floor
4 Undamaged 87.5% stiffness reduction in column 1BD
5 Undamaged 87.5% stiffness reduction in column 1AD

and 1BD
6 Undamaged 87.5% stiffness reduction in column 2BD
7 Undamaged 87.5% stiffness reduction in column 2AD

and 2BD
8 Undamaged 87.5% stiffness reduction in column 3BD
9 Undamaged 87.5% stiffness reduction in column 3AD

and 3BD
10 Damaged Gap = 0.20 mm
11 Damaged Gap = 0.15 mm
12 Damaged Gap = 0.13 mm
13 Damaged Gap = 0.10 mm
14 Damaged Gap = 0.05 mm
15 Damaged Gap = 0.20 mm and 1.2 kg mass at the

base
16 Damaged Gap = 0.20 mm and 1.2 kg mass at the 1st

floor
17 Damaged Gap = 0.10 mm and 1.2 kg mass at the 1st

floor
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measured signal at time ti. The εi term refer to the residual
error at the sampling instant i. It can be written as given
in (2).

xi =

p∑
j=1

φjxi−j + εi (1)

εi = x1 − x̂i (2)

being x̂i the predicted measure at sampling instant i. The
parameter φj is estimated using batch least-squares ap-
proaches or Yule-Walker equations, as stated by Figueiredo
et al. (2011).

3.2 Principal Component Analysis (PCA)

According to Jolliffe and Cadima (2016), to interpret
large datasets, some methods are required to reduce its
dimensionality in an interpretable way preserving most
information in the data. One of the oldest methods to
do such thing is the principal component analysis (PCA).
Mainly, it performs the pre-processing of the data by mean
subtraction and setting variance to 1 before performing
singular value decomposition (Brunton and Kutz, 2019).
It computes the mean matrix as given in (3) where x̄ is
the row-wise mean, calculated in (4).

X̄ =

[
1
. . .
1

]
x̄ (3)

x̄j =
1

n

n∑
i=1

Xij (4)

Subtracting the mean matrix from the large matrix X
results in the mean-subtracted data B given in (5).

B = X − X̄ (5)

The first principal component is given

u1 = argmax u∗1B
∗Bu1; ‖u1‖ = 1, (6)

being the eigenvector of B∗B the largest eigenvalue (Brun-
ton and Kutz, 2019).

According to Brunton and Kutz (2019), it is also possible
to obtain the principal components by computing the
eigenvalue decomposition of the covariance matrix (C), as
given in (7) and C is calculated in (8).

CV = V D (7)

C =
1

n− 1
B∗B. (8)

Being C the covariance matrix, V the matrix eigenvectors
of C and D the diagonal matrix of all eigenvalues of C.

4. MACHINE LEARNING SUPERVISED MODELS
AND VALIDATION STRATEGIES

In this section, the machine learning methods chosen
for this application are presented. All machine learning
methods that were chosen to perform the classification of
the extracted features are supervised methods and are the
following.

4.1 Support Vector Classification (SVC)

Support Vector Machines are a very powerful methods to
perform classification of small to medium-sized datasets.
It was proposed by Boser et al. (1992). It is a supervised
learning algorithm which aims to classify a set of data
points that are mapped to a multidimensional character-
istic space using a kernel function.

According to Chang and Lin (2011), a training vector in
two classes given as xi ∈ Rn, i = 1, ..., l and an indicator
vector y ∈ Rl as yi ∈ {1, 1}, SVC solves the primal opti-
mization problem as following

minw, b, ξ
1

2
wTw + C

l∑
i=1

ξi

subject to yi
(
wTφ (xi) + b

)
≥ 1− ξi,

ξi ≥ 0, i = 1, ..., l

(9)

Where C > 0 is the regularization parameter and φ (xi)
maps xi int a higher dimensional space. The main goal
is to find w ∈ Rn and b ∈ R so the prediction given by
sign(wTφ (xi) + b) is correct for the majority of the sam-
ples. The result for the part yi

(
wTφ (xi) + b

)
) is ideally

≥ 1 for all samples indicating perfect prediction, but not
all cases are perfectly separable, so the algorithm allow
some samples to be distant in ξi from their correct margin
boundary.

The vector variable w can possibly have higher dimension-
ality and this problem is solved in (10). After the problem
solving, the output decision function is given in (11) and
its sign correspond to the predicted class.

min ∝ 1

2
∝T Q ∝ −eT ∝

subject to yT ∝= 0,

0 ≤∝i, i = 1, ..., l

(10)

w =
l∑
i=1

yi ∝i K (xi, x) (11)

Where e is a vector of ones, Q is a l× l positive semi
definite matrix, ∝i are the dual coefficients upper-bounded
by C and K (xi, x) is the kernel given by (12).

K (xi, xj) = φ (xi)
T
φ (xj) (12)
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4.2 Logistic Regression (LGR)

Logistic Regression is one of the most common method
used for binary data response. According to LaValley
(2008), the model takes the natural logarithm of the odds
as a regression function of the predictors being the odds
the ratio of the probability of the event happening and
the probability of the event not happening. It will model
the probability based on individual characteristics, which
is given by

log

(
π

1− π

)
= β0 + β1x1 + β2x2 + . . .+ βmxm (13)

where, according to Sperandei (2014), π is the probability
of the event, βi is the regression coefficient and xi the
explanatory variable.

4.3 Decision Tree Classifier (DTC)

According to Agrawal (2014), a decision tree is a structure
for express a sequential classification process. According
to Rokach and Maimon (2005), a decision tree is formed
by nodes that can be “root” nodes that has no incoming
edges and “internal or test” nodes that have outgoing
edges. All other nodes are called leaves of the tree. Each
internal node splits into two or more sub-spaces and each
leaf is assigned to one class representing the ideal target
value. Some criterions can be used to measure the quality
of the tree. Two main methods were used: gini index
and information gain. The Gini Index acts measuring
divergences between the probability distributions of the
target attribute’s values and it is defined in (14) (Rokach
and Maimon, 2005).

Gini (y, S) = 1−
∑

cjεdom(y)

(∣∣σy=cjS∣∣
|S|

)2

(14)

Where S is the training set and y is the probability
vector of the target attribute. The evaluation criterion for
selecting the attribute ai is given

GG (ai, S) = Gini (y, S)−
∑

vi,jεdom(ai)

∣∣σai=vi,jS∣∣
|S|

· Gini
(
y, σai=vi,jS

) (15)

where GG is the Gini Gain. On the other hand, another
univariate criterion to decide the best attribute which
to split is the impurity-based criterion that uses entropy
method as impurity measure.

IG (ai, S) = E (y, S)−
∑

vi,jεdom(ai)

∣∣σai=vi,jS∣∣
|S|

· E
(
y, σai=vi,jS

) (16)

where E stands for entropy and is calculated in (17).

E (y, S) =
∑

cjεdom(y)

−
∣∣σy=cjS∣∣
|S|

· log2

∣∣σy=cjS∣∣
|S|

(17)

The search for a split won’t stop until at least one valid
partition of the node samples is found.

4.4 K-nearest Neighbourhood (KNN)

The KNN method searches for groups of K objects in the
closest training data to similar objects in test data and
based on the distance the K nearest neighbors identified
and classified (Agrawal, 2014). The Euclidian distance is
one common distance metric and is given by (18).

d (p, q) =
√∑

(pi− qi)2 (18)

4.5 Random Forest Classifier (RFC)

According to Géron (2017), a random forest classifier is
an assembly of several decision trees, generally trained
via the bagging method. It creates random decision trees,
gets prediction of each tree and selects the best solution
by means of voting. In this particular case, the random
forest consists in 100 trees and the forest choose a class
considering the most out of 100 votes.

4.6 Monte Carlo Hold-out Cross Validation

The validation process is important to guarantee the
generalization a machine learning model. For this research,
the Monte Carlo Hold-out Cross Validation was chosen.
It was proposed by Pan et al. (1984), and, according to
Lendasse et al. (2003) in this validation method, the data
is randomly divided in several train and validation sets.
According to Sperandei (2001), this process is repeated N
times (N = 1,2,3, . . . , N) and is defined by (19).

MCCV nv
(k) =

1

Nnv

N∑
i=1

‖ySv(i) − ŷSv(i)‖
2 (19)

where nv = n− nc samples for the validation model, nc is
the samples for the fitting model, Sv corresponds to the
samples of the validation sets.

5. RESULTS AND ANALYSIS

This section will show the results obtained from the
dimensionality reduction of the model as well as the
classification results of the data. According to Figueiredo
et al. (2011), for this particular case, the optimal order
stands between 15 to 30. These orders allow discrimination
between the undamaged and damaged states when all
conditions proposed in Table 1 are considered. For this
paper, a model of order 30 is constructed generating, for
each channel, one 850 x 31 matrix of parameters. As the
features are extracted and plotted in a graph, its clearer
to identify and separate the undamaged data from the
damage data. Fig. 4 show some of the Channel 5 features
plot for undamaged state 1, 3 and 6 and damaged states 10
and 16. It suggests that the more nonlinearities introduced
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Figure 4. Channel 5 AR(30) features

Figure 5. Explained variance ratio vs. total principal
components

to the structure, the more decreased is the amplitude of
the features. In the upcoming subsections, results of the
dimensionality reduction and separation of the data are
shown confirming it can be performed with good accuracy
comparing to the full data.

5.1 Matrix concatenation and model accuracy analysis

To perform the dimensionality reduction of all concate-
nated data, the PCA algorithm was designed to retain 99%
of the data variability, resulting in a model containing 11
principal components, as illustrated in Fig. 4, resulting in
a matrix of 850 x 11 parameters with 99,23% of explained
variance. Which means that this smaller matrix in dimen-
sions and byte size can perfectly describe the system and
can be well classified using the proposed machine learning
techniques.

For the classification step, using Monte Carlo Hold-Out
Cross Validation, a hundred models were created randomly
for training and test stages from all parameter’s matrix
obtained during the feature extraction step, using a 50/50
ratio for both the test and training sets. The hyperparame-
ters chosen to perform the classification step are as follows:
for LGR, a grid of C values were chosen in a logaritmic
scale between 10−1 and 103 and “liblinear” was chosen as
the solver; for SVC, the C value grid was the same as
LGR. The kernel types used in the algorithm were“linear”,

Figure 6. Accuracy plots

“poly”,“rbf”and“sigmoid”, alternated between iteractions.
The degree of the polynomial kernel function was ran-
domly chosen between order two to five and the Kernel
coefficient for “rbf”, “poly” and “sigmoid” were chosen in a
logaritmic scale between 10−4 and 10; for the DTC model
the split criterion used were “gini” for the Gini impurity
and “entropy” for the information gain, the split strategy
used both ”best” and “random” varying in each iteraction;
for the KNN model the number of neighbors chosen was
a random number between 2 and 100; and finally, for
the RFC model, the same hyperparameters used in DTC
model were used. Only the number of trees assembled for
the classification was set as a random number between 2
and 100.

Table 2. Accuracy results for every data clas-
sification

All Feat. PCA Ch5 Ch4 Ch3 Ch2

LGR 0.9965 0.9731 0.9563 0.9549 0.8873 0.8644
SVC 0.9972 0.9863 0.9664 0.9611 0.8897 0.8882
DTC 0.9625 0.9366 0.8915 0.8913 0.7605 0.6540
KNN 0.9874 0.9750 0.9002 0.8982 0.8288 0.6986
RFC 0.9885 0.9722 0.9354 0.9303 0.8388 0.7317

The accuracy results can be seen in Table 2. A better
view of the accuracy results is illustrated in Fig. 6.
The individual channels classifications perform better from
Channel 4 and Channel 5 since their accelerometers are
closer to the damage source (bar on the 3rd floor +
bumper on the 2nd floor). This pattern follows for all
predicted models, where the accuracy results related to the
accelerometers that are farther from the damage source are
smaller. The accuracy score from the PCA of all data is
only 1,64% (medium) less than the full matrix, which can
be considerate acceptable since the accuracy remains at
good values, above 90%. Nonetheless, the number of inputs
is considerably smaller when using PCA if compared to all
channels. This will be investigated in the next section.

5.2 Model Byte Size Analysis

When it comes to size in number of bytes of the model,
the results of the average number of bytes can be seen in
Fig. 7.

The mean values of the sizes were concatenated in Ta-
ble 3 Putting these data into a graph to better visualize
the data, as illustrated in Fig. 8, it is visible that the
dimensionality reduction models of the majority of the
methods have lower number of bytes size comparing to
the individual channels itself. Except for the RFC models
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Figure 7. Byte sizes of SVC model (a), LGR model (b),
DTC model (c), KNN model (d) and RFC model (e)

Figure 8. Comparison between model sizes

which are the ones with biggest byte sizes, including the
model that had its dimensionality reduced, that has above
2Mb in size. This behavior can be explained since the
RFC model is more robust when compared to the other
models, requiring more space since, for this case, 100 trees
are associated to carry out the classification of the model.

Table 3. Mean bytes numbers result for every
data classification model in Mb

All
Feat.

PCA Ch5 Ch4 Ch3 Ch2

LGR 0,048 0,066 0,051 0,051 0,051 0,051
SVC 0,281 0,091 0,136 0,120 0,142 0,132
DTC 0,058 0,060 0,060 0,064 0,073 0,087
KNN 0,472 0,092 0,154 0,154 0,154 0,154
RFC 2,464 0,561 1,044 0,645 1,656 1,875

After performing the dimensionality reduction, the overall
byte size of the models is smaller by 27,15% (mean) than
all channels concatenated and even the individual channels
alone. And, as seen in section 5.1, the accuracy is only
1,64% smaller when comparing the results from all data
combined and the PCA data. This can be beneficial in
terms of having a smaller data set that describe the be-
havior of the system properly, which results in a reduction
in computational efforts and reduction in the time of exe-
cution of the algorithm. Besides, it may cover a majority
of cases since larger data sets, like the one in this study
case, can eventually have its linear features set reduced to
facilitate their deploy.

6. CONCLUSION AND FUTURE WORK

Based on linear feature extraction, an approach of di-
mensionality reduction and several data classification were
performed with Monte Carlo hold out cross validation.
The main idea is to relate the byte size of the full models
and the byte size of the dimensionality reduction of the
models, verifying the changes in size and accuracy of the
results when applying PCA to the large linear features
data set comparing to its original set. A hundred of random
validation experiments were conducted and results prove
that the dimensionality reduction of this model was well
succeeded in terms of size reduction, good description of
the model and accuracy results of the classification step,
making it reasonable and accurate to work with smaller
version models of a bigger data set. Furthermore, results
show that the closer from the damage source the data
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acquisitor is, the better the accuracy results and using
more than one source of data can increase these results
even if it is far from the damage source. As future work it is
intended to extract the nonlinear parameters of this same
system to understand the behavior of the results related
to the size in bytes of the models and the accuracy of the
results.
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