
Optimal selection of subsystems for synchronous

diagnosis ?

Lucas N. R. Reis ∗ Marcos V. Moreira ∗

∗ COPPE - Electrical Engineering Program, Universidade Federal do
Rio de Janeiro, Cidade Universitária, Ilha do Fundão, Rio de Janeiro,

21.945-970, RJ, Brazil,
(lucasnrreis@poli.ufrj.br/moreira.mv@poli.ufrj.br).

Abstract: Fault diagnosis of automated systems is a very important task, since faults can
alter the expected behavior of systems, damaging equipment and bringing risk to operators.
In general, systems are composed of several subsystems or modules, and therefore, the complete
system model may grow exponentially with the number of system components. This fact shows
that a large amount of memory space may be needed to implement diagnosers computed using
traditional methods, since they are based on the complete system model. Recently, a new
method for fault diagnosis, called synchronous diagnosis, has been proposed. The diagnoser
computed using this method is based on the state observers of the fault-free component models
of the system, avoiding the implementation of the state observer of the composed system model.
In the synchronous diagnosis strategy it is supposed that all fault-free subsystem models are
used to detect the fault occurrence. However, in practice, some subsystems may not add useful
information regarding the fault occurrence, or the same information can be obtained from the
other modules, which shows that these subsystems are not necessary in the synchronous diagnosis
scheme. In this paper, an algorithm for computing all minimal sets of modules that ensure the
synchronous diagnosability of a Discrete Event System is proposed. The performance of the
proposed algorithm is compared with the performance of the exhaustive search method, and we
show that using the proposed method there is a significant reduction in the computational cost
of finding all minimal sets of modules that ensure synchronous diagnosability.

Keywords: Fault Diagnosis, Diagnosability, Discrete Event Systems, Synchronous Diagnosis,
Verifiers.

1. INTRODUCTION

Fault diagnosis of automated systems is a very important
task, since faults can alter the expected behavior of sys-
tems, damaging equipment and bringing risk to operators.
This problem is addressed in several works in the literature
(Sampath et al., 1995, 1996; Zad et al., 2003; Basile et al.,
2009; Fanti et al., 2013; Gascard and Simeu-Abazi, 2013;
Cabasino et al., 2014; Basile et al., 2017). In the seminal
work Sampath et al. (1995), a diagnoser automaton is
proposed to perform fault diagnosis and to verify the
diagnosability of the system language, i.e., to verify if
the fault occurrence can be detected within a bounded
number of event occurrences after the fault. The main
problem with respect to the solution presented in Sampath
et al. (1995), is that the diagnoser is constructed based on
an observer automaton, whose computational complexity
may grow exponentially with the number of system states.

In order to overcome the exponential problem for verifying
the diagnosability of the system language, in Moreira et al.
(2011) it is proposed a different strategy based on a verifier

? This work has been partially supported by FAPERJ under grant
E-26/211.136/2019, the Brazilian Research Council (CNPq) under
grants 305267/2018-3 and 431307/2018-0, and the Coordenação de
Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil (CAPES)
Finance Code 001.

automaton that can be computed in polynomial time.
However, the verifier cannot be straightforwardly used for
online diagnosis. In Cabral et al. (2015), a fault diagnosis
strategy that avoids the implementation of the diagnoser
presented in Sampath et al. (1995) is proposed. Instead
of implementing the complete observer automaton of the
system, the state estimate is computed online, and the size
of the diagnoser is polynomial with respect to the size of
the plant automaton G.

Although in Cabral et al. (2015) the size of the diagnoser
is reduced in comparison with the classical diagnoser pro-
posed in Sampath et al. (1995), it still has an exponential
growth with respect to the number of system components.
This is due to the fact that the diagnoser is obtained from
the complete plant model, which is, in general, computed
from the parallel composition of subsystems or compo-
nents. In order to circumvent this problem, in Debouk
et al. (2002) and Contant et al. (2006), notions of modular
diagnosability are proposed, where the idea is to infer the
occurrence of the fault event by observing only the local
component where the fault is modeled. It is important
to remark that in the modular diagnosis techniques, the
following two assumptions are considered: (i) all common
events between subsystems are observable; and (ii) the
component where the fault event is modeled has persistent
excitation, i.e., the fault does not bring the component,

Sociedade Brasileira de Automática (SBA)
XV Simpósio Brasileiro de Automação Inteligente - SBAI 2021, 17 a 20 de outubro de 2021

ISSN: 2175-8905 1466 DOI: 10.20906/sbai.v1i1.2760

and thus the system, to a halt. Note that, according to
these assumptions, the system modules cannot be synchro-
nized with unobservable events, which implies that the
fault event cannot be modeled in more than one system
module. In addition, it is necessary to guarantee the per-
sistence of excitation property, which requires the previous
knowledge of the system behavior.

In order to relax all assumptions considered in the mod-
ular diagnosis strategy, a new diagnosis technique, called
synchronous diagnosis, is proposed in Cabral and Mor-
eira (2020). The method relies on the computation of a
diagnoser based on the state observers of the fault-free
component models of the system, avoiding the implemen-
tation of the state observer of the composed system model.
In the synchronous diagnosis strategy it is supposed that
all fault-free subsystem models are used to detect the
fault occurrence. However, in practice, some subsystems
may not add useful information regarding the fault oc-
currence, or the same information can be obtained from
the other modules, which implies that these modules are
not necessary in the synchronous diagnosis scheme. It is
important to remark that finding the minimum number of
system modules necessary to diagnose the fault occurrence,
reduces the size of the diagnoser and the memory space
necessary to store it in a computer. The computation of
the useful components or subsystems for fault diagnosis is
not carried out in Cabral and Moreira (2020).

The simplest way to find all minimal subsets of modules
that ensure language synchronous diagnosability is to
perform an exhaustive search, computing the verifier for
all 2r− 1 possible subsets of modules, where r denotes the
number of system modules, and selecting those that have
smaller cardinality and do not contain another subset of
modules. This procedure has a high computational cost.
Thus, in this paper, we present a method to compute all
minimal sets of modules that are necessary to guarantee
the synchronous diagnosability of the system language,
that, in general, does not require the computation of
the verifier for all subsets of system modules. After that,
the minimum cardinality sets can be obtained simply by
choosing those that have smaller cardinality.

This paper is organized as follows. In Section 2, we present
some preliminary concepts and the definitions of diag-
nosability and synchronous diagnosability. In Section 3,
we provide an algorithm for the computation of all min-
imal subsets of modules for synchronous diagnosability.
In Section 4, we compare the computational cost of the
proposed algorithm with the exhaustive search method for
an example, where we show that the proposed method can
lead to a significant reduction in computation and time.
The conclusions are drawn in Section 5.

2. PRELIMINARIES

2.1 Notations and Definitions

Let G = (X,Σ, f, x0, Xm) be the automaton model of a
DES, where X is the set of states, Σ is the finite set
of events, f : X × Σ → X is the transition function,
which can be partially defined over its domain, x0 is the
initial state, and Xm is the set of marked states. The set
of marked states will be omitted unless otherwise stated.

The domain of the transition function f can be extended to
X×Σ∗, where Σ∗ denotes the Kleene-closure of Σ, as usual:
f(x, ε) = x, and f(x, sσ) = f(f(x, s), σ), for all s ∈ Σ∗ and
σ ∈ Σ, where ε denotes the empty sequence. The language
generated by G is defined as L(G) = {s ∈ Σ∗ : f(x0, s)!},
where f(x0, s)! denotes that f(x0, s) is defined.

The accessible and coaccessible parts of G, denoted by
Ac(G) and CoAc(G), respectively, are defined as: Ac(G) =
(Xac,Σ, fac, x0, Xm,ac), where Xac = {x ∈ X : (∃s ∈
Σ∗)[f(x0, s) = x]}, fac : Xac × Σ → Xac, and Xm,ac =
Xm ∩ Xac, and CoAc(G) = (Xcoac,Σ, fcoac, x0coac, Xm),
where Xcoac = {x ∈ X : (∃s ∈ Σ∗)[f(x, s) =
Xm]}, x0coac = x0 if x0 ∈ Xcoac, or x0coac is undefined if
xo /∈ Xcoac, and fcoac : Xcoac×Σ→ Xcoac. The transition
functions fac and fcoac are obtained by restricting the
domains of f to the accessible and coaccessible states, Xac

and Xcoac, respectively.

Let G1 and G2 be two automata. Then G1||G2 denotes
the parallel composition of G1 and G2 (Cassandras and
Lafortune, 2008)

The projection operation Ps : Σ∗ → Σ∗s, where Σs ⊂ Σ is
defined as Ps(ε) = ε, Ps(σ) = σ if σ ∈ Σs or Ps(σ) = ε, if
σ ∈ Σ\Σs, and Ps(sσ) = Ps(s)Ps(σ) for all s ∈ Σ∗. The
projection operation can be applied to a language L by
applying Ps(s) to all traces s ∈ L. The inverse projection
P−1
s : Σ∗s → 2Σ∗

is defined as P−1
s (t) = {s ∈ Σ∗ : Ps(s) =

t}, and can also be applied to languages.

The prefix-closure of a language L ⊆ Σ∗ is given by
L = {s ∈ Σ∗ : (∃t ∈ Σ∗) ∧ (st ∈ L)}, and a language is
said to be prefix-closed if L = L. Note that the language
generated by an automaton is prefix-closed by definition.
A language L ⊆ Σ∗ is said to be live if for all s ∈ L, there
exists σ ∈ Σ such that sσ ∈ L.

Suppose that the event set of G is partitioned as Σ =
Σo∪̇Σuo where Σo and Σuo denote the sets of observable
and unobservable events, respectively, and let Σf ⊆ Σuo

denote the set of fault events. In this paper, for the sake of
simplicity, it is assumed that there is only one fault event,
i.e., Σf = {σf}.
A fault trace is a sequence of events s such that σf is
one of the events that form s. A fault-free trace, on the
other hand, does not contain event σf . The language
LN ⊂ L denotes the set of all fault-free traces of L, and
the subautomaton of G that generates LN is denoted by
GN . In addition, the set of all fault traces generated by
the system is given by LF = L\LN .

Definition 1. (Sampath et al., 1995) Let L and LN ⊂ L
be the prefix-closed and live languages generated by G
and GN , respectively, and define the projection operation
Po : Σ∗ → Σ∗o. Then L is said to be diagnosable with
respect to projection Po and the set of fault events Σf if

(∃z ∈ N)(∀s ∈ LF)(∀st ∈ LF , ||t|| ≥ z)⇒Po(st) /∈Po(LN),

where || · || denotes the length of a trace. 2

In Cabral and Moreira (2020), the definition of syn-
chronous diagnosability of a DES is presented. In order
to do so, it is assumed that the system is composed of
r modules Gk = (Qk,Σk, fk, q0,k), k = 1, . . . , r, i.e., the
composed plant is given by G = ‖rk=1Gk. It is also assumed

Sociedade Brasileira de Automática (SBA)
XV Simpósio Brasileiro de Automação Inteligente - SBAI 2021, 17 a 20 de outubro de 2021

ISSN: 2175-8905 1467 DOI: 10.20906/sbai.v1i1.2760

that the event set of each module Gk can be partitioned
as Σk = Σk,o∪̇Σk,uo, where Σk,o and Σk,uo denote the sets
of observable and unobservable events of Gk, respectively.
In this scheme, if an event is observable for one module
Gi, and is defined for another module Gj , then it is ob-
servable for Gj . In addition, each component has its fault-
free behavior modeled by automaton GNk

= (XNk
,Σk \

Σf , fNk
, x0,k).

In the synchronous diagnosis strategy, a diagnoser Dk

is constructed for each module, performing the online
state estimation of each fault-free model GNk

. If an event
σ ∈ Σk,o generated by the plant is observed by Dk, and σ is
feasible in at least one state of the current state estimate
of GNk

, then the state estimate is updated. Otherwise,
if σ is not feasible for all states of the current state
estimate of GNk

, then Dk indicates that the fault has
occurred. In this scheme, the diagnosers Dk, k = 1, . . . , r,
do not communicate with each other, and run in parallel
to perform diagnosis. This leads to the following definition
of synchronous diagnosability.

Definition 2. (Synchronous diagnosability). Let GN =
‖rk=1GNk

, and let LNk
denotes the language generated

by GNk
, for k = 1, . . . , r. Let Po : Σ? → Σ?

o, with
Σo = ∪rk=1Σk,o. Then, L is synchronously diagnosable with
respect to Po, LNk

, k = 1, . . . , r, and Σf if

(∃z ∈ N)(∀s ∈ LF)(∀st ∈ LF , ‖t‖ ≥ z)⇒ Po(st) 6∈ LNa
,

with LNa = ∩rk=1P
o−1

k,o (P k
k,o(LNk

)), where P o
k,o : Σ?

o →
Σ?

k,o, and P k
k,o : Σ?

k → Σ?
k,o are projections. 2

According to Definition 2, the system language L is syn-
chronously diagnosable if any occurrence of the fault event
σf can be detected after a number z ∈ N of event oc-
currences after the fault, by at least one diagnoser Dk

constructed based on module GNk
.

3. COMPUTATION OF ALL MINIMAL SUBSETS OF
MODULES FOR SYNCHRONOUS DIAGNOSIS

The main advantage of the synchronous diagnosis ap-
proach is that the size of the diagnoser grows polynomially
with the number of system modules, which reduces the
memory space required to store the diagnoser in compar-
ison with traditional techniques. This reduction can be in
some cases even greater since, depending on the fault and
on the system model, the modules needed for diagnosis
can be a subset of the complete set of system modules. In
this section, we present a method to compute all minimal
subsets that ensure the synchronous diagnosability of the
system language.

Let Ir = {1, 2, . . . , r} denote the index set of all system
modules. Thus, our objective is to find all minimal subsets
S ∈ 2Ir , such that L is synchronously diagnosable with
respect to Po, LNk

, for k ∈ S, and Σf , i.e., we want to
find the minimal sets S such that

(∃z ∈ N)(∀s ∈ LF)(∀st ∈ LF , ‖t‖ ≥ z)⇒ Po(st) 6∈ LNa
,

with LNa = ∩k∈SP o−1

k,o (P k
k,o(LNk

)). It is important to
remark, as it can be straightforwardly deduced from Def-
inition 2, that if the system language L is synchronously
diagnosable with respect to S, then it is synchronously
diagnosable with respect to any subset S′ ∈ 2Ir such that

S ⊂ S′, i.e., the monotonicity property is valid. Thus, if we
obtain all minimal subsets S ∈ Ir that ensure synchronous
diagnosability, then we are able to provide all possible
subsets of modules that ensure synchronous diagnosability.

Definition 3. The subset of indexes S ∈ 2Ir such that the
associated modules ensure the synchronous diagnosability
of the system language with respect to Po, LNk

, for k ∈ S,
and Σf , is called a Synchronous Diagnosis Module Basis
(SDMB). 2

In order to compute all minimal SDMB, we first present
the method proposed in Cabral and Moreira (2020) for
the verification of synchronous diagnosability. In the first
step of the method presented in Cabral and Moreira
(2020), automaton GF , whose generated language is LF , is
computed by following three steps (Moreira et al., 2011):
1) label with F all states of G that are reached after
the fault event; 2) mark the states labeled with F ; and
3) take the coaccessible part of the resulting automaton.

Then, automata G̃Nk
is computed from automata GNk

by
renaming its unobservable events, transforming them into
private events of G̃Nk

. Finally, the verifier is computed

as GV = (‖rk=1G̃Nk
)‖GF . The system language L is not

synchronously diagnosable with respect to Po, LNk
, for

k ∈ Ir, and Σf , if and only if, GV has a cyclic path cl such
that the coordinates associated with GF of the states of cl
have label F , and at least one of the events of the cyclic
path cl belongs to Σ.

A method to verify if S forms a SDMB can be obtained by
constructing the verifier restricted to the modules associ-
ated with S, GS

V = (‖k∈SG̃Nk
)‖GF , and then searching for

the existence of a cyclic path in GS
V that violates the syn-

chronous diagnosability condition. Thus, if an exhaustive
search method is used to find all minimal SDMB, then it
is necessary to compute 2r − 1 verifiers GS

V , for each non-
empty subset S ∈ 2Ir . In order to mitigate the exponential
complexity problem, we present in Algorithm 1, a method
to compute all minimal SDMB for the system language.

In Step 1 of Algorithm 1, M and N , representing the set
of all minimal SDMB and the set of module indexes k
such that {k} is not a minimal SDMB, respectively, are
defined as the empty set. In Step 2, for each module k, the

verifier G
{k}
V is computed as the parallel composition of

the renamed fault-free behavior model G̃Nk
and the fault

automaton GF . Then, the indexes of the verifiers that do
not have cyclic paths that violate the synchronous diagnos-
ability condition are added to M as minimal SDMB, and
those that have this kind of cyclic path are added to N . In

Step 3, the set SGV
of verifiers G

{k}
V , such that k ∈ N , is

created. This step is important due to the fact that the in-
dexes k ∈M already form minimal SDMB with cardinality
one, and therefore, are not added to other subsets when
searching for minimal SDMB with cardinality greater than
one. In Step 4 the recursive inclusion of modules using
Algorithm 2 is performed. Finally, in Step 5 the SDMB
that are not minimal are removed from M .

Algorithm 2 is responsible for the recursive module inclu-
sions to form the SDMBs. In Step 1, a path p of verifier
GS

V , associated with a fault sequence that violates the
synchronous diagnosability, is obtained, and in Step 2, the

Sociedade Brasileira de Automática (SBA)
XV Simpósio Brasileiro de Automação Inteligente - SBAI 2021, 17 a 20 de outubro de 2021

ISSN: 2175-8905 1468 DOI: 10.20906/sbai.v1i1.2760

subautomaton GS
Vp

formed from path p is computed. In

Step 3 the loop to add modules is started, and the addition
of modules to S is carried out each module at a time, as
described in the following steps. Firstly, in Step 3.1, if there
does not exist an element of M , E, such that E ⊆ S ∪
{j}, the automaton G

S∪{j}
V is computed as the parallel

composition of the verifier of the j-th module, that is being

checked if it can be added to S, G
{j}
V , and the partial

verifier, GS
Vp

. If there exists a cyclic path that violates

the synchronous diagnosability in G
S∪{j}
V , it means that

module j is not capable of eliminating the violating cyclic
path associated with p, and consequently, it will not be
added to S. Otherwise, if no violating cyclic path remains
in the test performed in Step 3.1.1, j is added to S in Step

3.1.2 and verifier G
S∪{j}
V = GS

V ‖G
{j}
V is computed. In step

3.1.2.1, it is verified if S ∪ {j} forms a SDMB. If S ∪ {j}
forms a SDMB, then it is added to M , else, a new module
is searched to be added to S ∪ {j} by running function

ADD MODULE(G
S∪{j}
V ,SGV

).

Algorithm 1. Computation of all minimal SDMB

Input: G̃Nk
, for k ∈ Ir, and GF

Output: Set of all minimal SDMB, M .

1: M ← ∅, N ← ∅
2: For k ∈ Ir

2.1: Compute G
{k}
V = G̃Nk

‖GF

2.2: If L is synchronously diagnosable with respect to
Po, LNk

, and Σf , then M ← M ∪ {{k}}, else
N ← N ∪ {k}

3: SGV
= {G{k}V : k ∈ N}

4: For k ∈ N
4.1: ADD MODULE(G

{k}
V , SGV

)
5: Find all elements of M , E, such that there exists

another element E′, where E ⊂ E′, and eliminate
E′ from M

Algorithm 2. ADD MODULE(GS
V ,SGV

)

1: Find a path p of GS
V that departs from its initial state

with an embedded cyclic path cl that violates the
synchronous diagnosability

2: Compute the subautomaton of GS
V from path p,

denoted as GS
Vp

3: For j ∈ N \ S
3.1: If there does not exist E ∈M such that E ⊆ S ∪

{j} then

3.1.1: Compute Gj,S
Vp

= G
{j}
V ‖GS

Vp

3.1.2: If there does not exist a cyclic path in Gj,S
Vp

associated with the cyclic path cl of GS
V then

compute G
S∪{j}
V = GS

V ‖G
{j}
V

3.1.2.1: If there does not exist a cyclic path vi-
olating the synchronous diagnosability

in G
S∪{j}
V , then M ← M ∪ {S ∪ {j}},

else
3.1.2.1.1: ADD MODULE(G

S∪{j}
V ,SGV

)

a σ1

cσ1

g

e

e

0 1 2

3 4

Figure 1. Automaton G1.

h σf

e eσ2

0 1

23

4

σ1

σ1

e,h

Figure 2. Automaton G2.

Theorem 1. Algorithm 1 computes all minimal syn-
chronous diagnosis module basis considering fault-free be-
havior models of the system modules given by GNk

, k ∈ Ir,
and fault behavior model given by GF .

Proof: Note that in Algorithm 1, each element of M
is computed recursively by adding to it only modules
that eliminates a cyclic path violating the synchronous
diagnosability, until there does not exist anymore this kind
of cyclic path. Thus, all elements of M are SDMB. In
Step 5 of Algorithm 1, all elements of M that contains
another element of M are removed, and consequently, all
redundant SDMB are eliminated from M . In addition,
note that Algorithm 1 computes all possible subsets of
Ir by adding to S, incrementally, each module of Ir that
eliminates a cyclic path that violates the synchronous
diagnosability. Thus, the elements of M forms all minimal
SDMB of the system. 2

Remark 1. An algorithm is proposed in Santoro et al.
(2017) for the computation of all minimal sets of observ-
able events that guarantee the system diagnosability. The
main difference in comparison with the method proposed
in this paper is that we are searching for sets of modules,
and not sets of events, that ensure the synchronous diag-
nosability of the system language. 2

It is important to remark that the minimum SDMB can
be obtained by searching in the set of all minimal SDMB,
M , those that have the smallest cardinality.

4. EXAMPLE

Let us consider the system composed of the modules
G1, G2, G3, and G4, depicted in Figures 1, 2, 3 and 4,

respectively. In order to compute the verifiers G
{k}
V , for

k = 1, 2, 3, 4, it is first needed to obtain the automata that
represent the fault-free languages of each module, using the
method proposed in Cabral and Moreira (2020), presented
in Figures 5, 6, 7 and 8, respectively, and the automaton
that represents the fault language GF in Figure 11.

In this section we compare the computational cost of
obtaining all minimal SDMB using the exhaustive search
method, with the method proposed in this paper.

Performing the exhaustive search to find all minimal
SDMB, two subsets are obtained, namely the subsets

Sociedade Brasileira de Automática (SBA)
XV Simpósio Brasileiro de Automação Inteligente - SBAI 2021, 17 a 20 de outubro de 2021

ISSN: 2175-8905 1469 DOI: 10.20906/sbai.v1i1.2760

b

0
h

1

h

2

d,h

σf

Figure 3. Automaton G3.

e
h

e

e

0 4

h

3

e

h

21

h

σf

Figure 4. Automaton G4.

a σ1

c

σ1

g

e
e

0 1 2

3 45

Figure 5. Automaton GN1
.

h

e eσ2

0 1

23 σ1

σ1

Figure 6. Automaton GN2
.

b

0
h

1

h

Figure 7. Automaton GN3 .

formed of modules {2, 3} and {3, 4}. In this procedure,
13 automata must be computed, which results in the
computation of 368 states and 794 transitions. The time
spent in the process was 1,341.17ms, and the complete
information about the verifiers that are computed using
the exhaustive search is presented in Table 1.

Using the method proposed in this paper, following the
steps of Algorithm 1, instead of computing several parallel
compositions with verifiers with a large number of states,
partial verifiers GS

Vp
, presented in Table 2 are calculated,

as those depicted in Figures 9 and 10. Since all verifiers
GS

V , such that S is a singleton, have a cyclic path that
violates the synchronous diagnosability, then Algorithm

he

e
0

1

5

Figure 8. Automaton GN4
.

h σf
0 1 2

d

Figure 9. Automaton G
{1}
Vp

formed from the cyclic path of

G
{1}
V that violates the synchronous diagnosability of

the system language considering only module {1}.

h σf0 1 2
h

3

h

Figure 10. Automaton G
{3}
Vp

formed from the cyclic path

of G
{1}
V that violates the synchronous diagnosability

of the system language considering only module {3}.
2 is recursively repeated until all minimal SDMB are
computed. In this procedure, the verifiers presented in

Table 1 are computed. Note that verifiers G
{1,4}
V , G

{2,4}
V ,

and G
{1,3,4}
V , that are computed in the exhaustive search

method, are not computed using the proposed method.

The total number of automata that are computed using
Algorithm 1, presented in Tables 1, 2, and 3, was 24,
with total number of states equal to 318 and with total
number of transitions 613. The time spent in the process
of obtaining all minimal SDMB, {2, 3} and {3, 4}, using
Algorithm 1, was 922.50ms. This shows a reduction of
31% in time, 14% in the number of states and 23% in the
number of transitions, as shown in Table 4, in comparison
with the exhaustive search method. Knowing all minimal
SDMB it is possible to obtain all minimum SDMB, and in
this case, {2, 3} and {3, 4}.

5. CONCLUSIONS

In this paper, we propose an algorithm to find all minimal
SDMB of the language of a DES. The computational cost
of the proposed algorithm is compared with the exhaustive
search method, and we show that, with the proposed
method, there is a significant reduction in the number of
states and transitions of the automata needed to compute
the minimal SDMB for the proposed example. We are
currently investigating strategies to reduce even more the
computational cost of the method in order to mitigate the
exponential complexity of computing all minimal SDMB.

REFERENCES

Basile, F., Cabasino, M.P., and Seatzu, C. (2017). Diagnos-
ability analysis of labeled time petri net systems. IEEE
Transactions on Automatic Control, 62(3), 1384–1396.

Basile, F., Chiacchio, P., and de Tommasi, G. (2009). An
effcient approach for online diagnosis of discrete event
systems. IEEE Transactions on Automatic Control,
54(4), 748–759.

Cabasino, M.P., Giua, A., and Seatzu, C. (2014). Diag-
nosability of discrete-event systems using labeled petri
nets. IEEE Transactions on Automation Science and
Engineering, 11(1), 144–153.

Cabral, F.G. and Moreira, M.V. (2020). Synchronous
diagnosis of discrete-event systems. IEEE Transactions

Sociedade Brasileira de Automática (SBA)
XV Simpósio Brasileiro de Automação Inteligente - SBAI 2021, 17 a 20 de outubro de 2021

ISSN: 2175-8905 1470 DOI: 10.20906/sbai.v1i1.2760

1422 1424 2211 4211 1423 042311111000

0000 0111 0422 0424 1010 0010 3211 3423

b

b
d

d d,h

d,h d d

d

σf

N N

N N N

N N

N N

F F

F

F

FF

F

h

h

h

h

h

h

σ1

c

g

ea

e

ee

e

a a a
a

Figure 11. Automaton GF .

Table 1. Number of states and transitions of the verifiers GS
V computed using the exhaustive

search and the proposed method.

Method S {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4}
Exhaustive
search

States 26 28 16 14 48 26 22 28 28 14 48 48 22
Transitions 57 65 25 24 123 48 42 56 65 19 110 123 37

Proposed
method

States 26 28 16 14 48 26 - 28 - 14 48 - 22
Transitions 57 65 25 24 123 48 - 56 - 19 110 - 37

Table 2. Number of states and transitions of the partial verifiers GS
Vp

that are computed in the

example using Algorithm 1.

GS
Vp

G
{1}
Vp

G
{2}
Vp

G
{3}
Vp

G
{1,2}
Vp

G
{1,3}
Vp

States 3 3 4 3 4

Transitions 3 3 4 3 4

Table 3. Number of states and transitions of the testing automata Gj,S
Vp

computed using

Algorithm 1.

Gj,S
Vp

G
2,{1}
Vp

G
3,{1}
Vp

G
4,{1}
Vp

G
3,{2}
Vp

G
4,{2}
Vp

G
4,{3}
Vp

G
3,{1,2}
Vp

G
4,{1,2}
Vp

G
4,{1,3}
Vp

States 7 3 3 3 3 3 3 3 3

Transitions 13 2 3 2 3 2 2 3 2

Table 4. Total number of states and transitions that are computed using the exhaustive search
and the proposed method, and reduction in the computational cost and execution time.

States Transitions Execution Time (ms)

Exhaustive search 368 794 1,341.17ms

Proposed method 318 613 922.50ms

Reduction 14% 23% 31%

on Automation Science and Engineering, 17(2), 921–
932.

Cabral, F.G., Moreira, M.V., Diene, O., and Basilio, J.C.
(2015). A Petri net diagnoser for discrete event systems
modeled by finite state automata. IEEE Transactions
on Automatic Control, 60(1), 59–71.

Cassandras, C. and Lafortune, S. (2008). Introduction to
Discrete Event Systems. Springer-Verlag New York Inc.,
Secaucus, NJ, 2 edition.

Contant, O., Lafortune, S., and Teneketzis, D. (2006).
Diagnosability of discrete event systems with modular
structure. Discrete Event Dynamic Systems: Theory
And Applications, 16(1), 9–37.

Debouk, R., Malik, R., and Brandin, B. (2002). A modular
architecture for diagnosis of discrete event systems. In
41st IEEE Conference on Decision and Control, 417–
422. Las Vegas, Nevada USA.

Fanti, M.P., Mangini, A.M., and Ukovich, W. (2013).
Fault detection by labeled petri nets in centralized
and distributed approaches. IEEE Transactions on
Automation Science and Engineering, 10(2), 392–404.

Gascard, E. and Simeu-Abazi, Z. (2013). Modular mod-
eling for the diagnostic of complex discrete-event sys-

tems. IEEE Transactions on Automation Science and
Engineering, 10(4), 1101–1123.

Moreira, M.V., Jesus, T.C., and Basilio, J.C. (2011). Poly-
nomial time verification of decentralized diagnosability
of discrete event systems. IEEE TRANSACTIONS ON
AUTOMATIC CONTROL, 56(7), 1679–1684.

Sampath, D., Sengupta, R., Lafortune, S., Sinnamo-
hideen, K., and Teneketzis, D. (1995). Diagnosability
of discrete-event systems. IEEE TRANSACTIONS ON
AUTOMATIC CONTROL, 40(9), 1555–1575.

Sampath, D., Sengupta, R., Lafortune, S., Sinnamo-
hideen, K., and Teneketzis, D. (1996). Failure diagnosis
using discrete-event models. IEEE TRANSACTIONS
ON CONTROL SYSTEMS TECHNOLOGY, 4(2), 105–
124.

Santoro, L.P.M., Moreira, M.V., and Basilio, J.C. (2017).
Computation of minimal diagnosis bases of discrete-
event systems using verifiers. AUTOMATICA, 77, 93–
102.

Zad, S.H., Kwong, R., and Wonham, W. (2003). Fault di-
agnosis in discrete-event systems: Framework and model
reduction. IEEE TRANSACTIONS ON AUTOMATIC
CONTROL, 48(7), 1199–1212.

Sociedade Brasileira de Automática (SBA)
XV Simpósio Brasileiro de Automação Inteligente - SBAI 2021, 17 a 20 de outubro de 2021

ISSN: 2175-8905 1471 DOI: 10.20906/sbai.v1i1.2760

