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Abstract: The background for this work is the supervisory control of discrete-event systems
under partial observation. Attackers that are able to insert or erase occurrences of particular
output symbols can modify the supervisor’s observation and, by doing so, can lead the controlled
system to undesirable states. A scenario with multiple attackers is considered, each one being
an element of a set, called an attack set. We also assume that only one of the attackers within
an attack set is acting, although we do not know which one. According to previous results in
the literature, a supervisor that enforces a given legal language, regardless of which attacker
is acting, can be designed if the legal language is controllable and satisfies a property called
P-observability for an attack set. The latter is an extended notion of observability and is related
with the supervisor’s ability to always distinguish between outputs that require different control
actions, even if the outputs were attacked. We present a new approach for checking if a given
language is P-observable for an attack set when it is represented as an automaton.

Keywords: Discrete-event system - Supervisory control - Attacks on output symbols -
P-observability

1. INTRODUCTION

In recent years, the extensive use of communication net-
works used in industry increases vulnerabilities for mali-
cious attacks, thus making these networks unreliable. This
concern did not exist in classical control systems (Li et al.,
2020), which justifies the research effort on the subject. In
order to make networks reliable, defense strategies have to
be considered, which can be roughly classified as detection
of attacks and prevention of the attack’s effects.

In Discrete-Event Systems (DES), several approaches that
address the problem of attacks have been proposed. In
the context of supervisory control, there are works that
present methods for designing robust supervisors ((Meira-
Goes et al., 2021) (Wang and Pajic, 2019), (Wakaiki et al.,
2019) and (Su, 2018), among others) and the design of a
detection module (as in (Li et al., 2020), (Gao et al., 2019),
(Carvalho et al., 2018), (Lima et al., 2018) and (Lima et al.,
2017)). Furthermore, some authors focus on studying the
design methods for the attackers, using as argument the
claim that a good understanding about the adversaries
can provide better insights on how to defend against them
((Lin and Su, 2021), (Zhang et al., 2021), (Mohajerani
et al., 2020), (Fritz and Zhang, 2018)).

There are some different types of attacks considered in
the literature. In Meira-Goes et al. (2021) Zhang et al.

(2021) and Mohajerani et al. (2020), for example, attackers
can insert and erase events from the sensor channel.
Alternatively, the attackers considered by Lin and Su
(2021), Lima et al. (2019) Khoumsi (2019) and Zhu et al.
(2019), among others, are able to modify sensor and
actuator events.

In this paper we study attacks on the output symbols
and the attacker’s goal is to lead the controlled system
into an undesirable state. In this context, the authors of
(Wakaiki et al., 2019) proposed a design method for robust
supervisors that, regardless of which symbols are under at-
tack, always enforce the desired behavior. Two conditions
are imposed over the language that represents the desired
behavior: i) controllability and ii) P-observability for an
attack set. The latter is a modified version of the classical
notion of observability and is related to the supervisor’s
ability to always distinguish between observations that
require different control actions. A test for checking this
property is also presented, consisting of a series of pairwise
classical observability tests (Wakaiki et al., 2019).

In this work, we improve on the test of P-observability for
an attack set by providing a new method that actually
checks for the property itself and can be done in a single
run, as opposed to the multiple observability tests.
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The paper is organized as follows. In Section 2, we provide
some basic preliminaries which are needed for understand-
ing this work. In Section 3 we introduce the attack model
considered and in Section 4 we present a new test for ver-
ifying P-observability. Finally, we present the conclusions
in Section 5.

2. BACKGROUND ON DISCRETE-EVENT SYSTEMS

The behavior of a DES is modeled using strings of symbols,
called events, taken from a finite set Σ. The set of all
finite strings of events in Σ, including the empty string
ε, is denoted by Σ∗. Given two strings, s, u ∈ Σ∗, their
concatenation is written as su. A string s ∈ Σ∗ is a
prefix of t ∈ Σ∗, represented as s ≤ t, if there exists
u ∈ Σ∗ such that su = t. A language L is any subset
of Σ∗. The prefix-closure L of a language L ⊆ Σ∗ is
the set of all prefixes of strings in L. It is defined as
L := {s ∈ Σ∗|s ≤ t for some t ∈ L}. A language L is
said to be prefix-closed if L = L.

Automata are a formalism to represent languages. An
automaton G is defined as a tuple G := (Q,Σ, δ, q0), where
Q is a finite set of states, Σ is the nonempty finite set of
events, δ : Q × Σ → Q is a partially defined transition
function and q0 is the initial state. The notation δ(q, σ)!
represents that δ(q, σ) is defined for some q ∈ Q and
σ ∈ Σ. The transition function δ can be extended to
a function Q × Σ∗ → Q according to δ(q, ε) := q and
δ(q, sσ) := δ(δ(q, s), σ), with q ∈ Q, s ∈ Σ∗ and σ ∈ Σ.
With abuse of notation, we sometimes treat δ as a set and
(q, σ, q′) ∈ δ if and only if δ(q, σ) = q′. The automaton is
said to be deterministic if (q, σ, q′), (q, σ, q′′) ∈ δ always
implies that q′ = q′′. The map Γ : Q → 2Σ defined
as Γ(q) := {σ ∈ Σ|(q, σ, q′) ∈ δ, for any q′ ∈ Q} is
the set of feasible events at a given state q ∈ Q. The
language generated by G, denoted by L(G), is defined as
L(G) := {s ∈ Σ∗|δ(q0, s)!}.

2.1 Supervisory Control

The set of events Σ can be partitioned as Σ = Σc∪̇Σuc,
where Σc is the set of controllable events and Σuc is
the set of uncontrollable events. When G models the
uncontrolled behavior of a DES, some of its states can
be undesirable states, representing situations we want to
avoid, as blocking or insecure operation. The legal behavior
is modeled as a desired language K ⊆ L(G), that is, K is
a subset of L(G), containing only the legal strings. We
can enforce the desired language K over G by using a
structure called a supervisor, denoted by S, that acts over
the set of controllable events. Since the supervisor cannot
prevent uncontrollable events from happening, we say that
a desired language K is controllable with respect to L(G)
if KΣuc ∩ L(G) ⊆ K.

If a language K is controllable, then there exists a super-
visor that implements K. If K is not controllable, then
a supremal controllable sublanguage, S, that implements
the most permissive and nonblocking behavior that does
not violate the behavior imposed by K can be obtained.

2.2 Partial Observation

Some of the events in a DES may not be observable. In
such case the system is said to be under partial observation
and the event set Σ can be partitioned as Σ = Σo∪̇Σuo,
where Σo is the set of observable events, whereas Σuo is
the set of unobservable events. The partial observation
can be represented by an observation map P : Σ∗ → Σ∗o,
also called natural projection, that maps strings in Σ∗ into
observations in Σ∗o. It is defined as

P (ε) := ε

P (σ) :=

{
σ if σ ∈ Σo
ε if σ ∈ Σuo

P (sσ) := P (s)P (σ) for s ∈ Σ∗, σ ∈ Σ.

The inverse observation map P−1, called inverse projec-
tion, is defined as P−1(t) := {s ∈ Σ∗|P (s) = t}. A prefix-
closed language K ⊆ L is P -observable with respect to L
if

ker P ⊆ actK⊂L (1)

where ker P denotes the relation on Σ∗ defined by

ker P := {(w,w′) ∈ Σ∗ × Σ∗|P (w) = P (w′)} (2)

and actK⊂L is the binary relation on Σ∗ defined by

actK⊂L :={(w,w′) ∈ Σ∗ × Σ∗|
w,w′ ∈ K =⇒ 6 ∃σ ∈ Σ s.t.[wσ ∈ K,
w′σ ∈ L \K] or [wσ ∈ L \K,w′σ ∈ K]}. (3)

The relation actK⊂L has all pairs of strings w,w′ ∈ K
such that the new strings wσ and w′σ are either both in
K or both in L \K, for all σ ∈ Σ. In words, a language is
P-observable when a supervisor is always capable of dis-
tinguishing between strings that require different control
actions.

3. SUPERVISORY CONTROL UNDER ATTACKS

In this work we consider attackers whose goal is to prevent
the supervisor from achieving the prefix-closed desired
language K ⊆ L(G), as in Wakaiki et al. (2019). The at-
tackers have full observation of the communication channel
between plant and supervisor and can corrupt the string
of output symbols P (w), w ∈ Σ∗ in multiple ways, by
erasing and/or inserting specific output symbols. In this
work, output symbols are the symbols sent from the plant
to the supervisor, as an outcome of sensor readings. Also,
we assume the supervisor sends a new control action to
the plant whenever it receives new information.

Figure 1 represents a closed-loop controlled system under
attack. The plant executes the string w ∈ L(G), but only
the string P (w) can be observed by the supervisor, be-
cause of the partial observation. Nevertheless, an attacker
placed in the communication channel from the plant to the
supervisor can corrupt the string P (w) by changing it to
string y ∈ Σ∗o. Upon reception of string y, the supervisor
will then issue the control action S(y). Depending on how
the attacker chooses to modify P (w), it can induce the
supervisor to issue a control action that will make the plant
reach an undesirable state. Next we characterize how the
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Supervisor

Plant P

AttackS(y)

w
P (w)

y ∈ Aα(P (w)) ∩ L(G)

Figure 1. Closed loop controlled system under attacks
(Adapted from Wakaiki et al. (2019)).

attacker can modify P (w).

Given a set of symbols α ⊆ Σv ⊆ Σo in the observation
alphabet, where Σv is the set of vulnerable events, the map
R¬α : Σ → (Σo \ α) ∪ {ε} is called α-removal observation
map and is defined as

R¬α(t) :=

{
ε t ∈ α
t t 6∈ α (4)

and can be extended to a map defined for strings of output
symbols in the same way as a natural projection P . An
observation attack is a set-valued map Aα : Σ∗o → 2Σ∗

o that
assigns to each string u ∈ Σ∗o the set of all strings v ∈ Σ∗o
that can be obtained from u by an arbitrary number of
insertions or deletions of symbols in α. It is given by

Aα(u) := {v ∈ Σ∗o|R¬α(u) = R¬α(v)}. (5)

If α = ∅, then A∅ corresponds to the absence of attack.

Thus, instead of receiving the string P (w), the supervisor
receives one string among the set Aα(P (w)). The map
Aα is called an observation attack or simply attacker and
the map AαP : Σ∗ → 2Σ∗

o obtained by the composition
AαP := Aα ◦ P the corresponding attacked observation
map. In other words, the map AαP (w) results in all strings
that can be formed with the manipulation of events in
α ⊆ Σv ⊆ Σo, by inserting events into or erasing events
from the observation P (w). The goal of the attacker is, by
changing the observation string, to make the supervisor
accept a string that is not in K or reject a string that is
in K. We can also interpret the attack as a factor that
increases the supervisor’s uncertainty about which state
the plant is really in.

We assume that if w ∈ K is the string executed in the plant
so far, then the attacker, which has knowledge about the
system, won’t insert an event σ ∈ α in the observation if
wσ 6∈ K, since that would reveal the attacker’s presence if
an intrusion detection system was in place.

A more interesting scenario consists of multiple attack-
ers, instead of only one. By multiple attackers, we mean
that there is an attack set, denoted by A, such that
A = {A∅, Aα1 , Aα2 , . . . , AαM }, where each αi ⊆ Σv and
A∅ represents the absence of attack. We assume that only
one of the attackers in an attack set A is acting, but we

do not know which one.

3.1 P-Observability for an Attack set

The authors of (Wakaiki et al., 2019) extend the notion
of P -observability, presenting the P-observability for an
attack set A, which is given by

RAαi ,Aαj ⊂ actK⊂L (6)

where the relation RAαi ,Aαj , with Aαi , Aαj ∈ A, contains

all pairs of strings that may result in attacked observation
maps AαiP and AαjP with a common string of output
symbols, i.e.,

RAαi ,Aαj := {(w,w′) ∈ Σ∗×Σ∗|AαiP (w)∩AαjP (w′) 6= ∅}
(7)

and actK⊂L is as in (3). In Wakaiki et al. (2019), the
authors present a result that gives the conditions for the
existence of a supervisor that, regardless of which attacker
Aα ∈ A is acting, can enforce a desired language K. These
conditions are: i) K must be controllable with respect to
G and; ii) K must be P-observable for the attack set A.

The fact that the controllability of K is a necessary con-
dition for the existence of a supervisor is to be expected.
Regarding the P -observability for an attack set A, if this
condition does not hold, it is possible to find two attacks
Aαi , Aαj ∈ A that would result in the same observation
y ∈ Σ∗o for two distinct strings w,w′ ∈ K, and wσ would
transition to an element in K and w′σ to an element
outside K, or vice-versa. This means that, upon observing
y, the supervisor cannot decide which control action to
take.

The next theorem shows how the test for P -observability
for an attack set A can be done by reducing it to a classical
observability test.

Theorem 1. (Wakaiki et al., 2019) For every nonempty
prefix-closed set K ⊆ L and attack set A = {Aα1

, Aα2
, . . . ,

AαM } consisting of M ≥ 1 observation attacks, K is P -
observable for the set of attacks A if and only if K is
(R¬α ◦ P )-observable (in the classical sense, i.e., without
attacks) for every set α := αi ∪ αj , ∀i, j ∈ {1, 2, . . . ,M}.

�

Theorem 1 states that the P -observability for an attack
set A can be tested by picking every possible pair of two
attackers Aαi , Aαj and checking if regular observability
is obtained if the symbols affected by the two attackers
are removed from the observation. The authors claim
that, using the test for classical observability presented
in (Cassandras and Lafortune, 2007, Section 3.7.3), P-
observability for an attack set can be tested with time
complexity O(M5), where M = |A|. However, this com-
plexity is obtained from a very specific attack set and a
generalization is not provided.

4. NEW TEST FOR P-OBSERVABILITY FOR AN
ATTACK SET

This section presents a new test for P -observability for an
attack set. Rather than realizing multiple tests of classical
observability, the proposed test checks P -observability for
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an attack set itself. The test is applied over an automaton
that implements a desired language K. To illustrate the
concepts introduced, we present a running example.

An attack can increase the uncertainty for an observer
about which state the plant is in, by manipulating the
symbols in the observation. This uncertainty can be rep-
resented as a relation of pairs of states and each attacker
induces a different one. This concept is formalized in Def-
inition 2.

Definition 2. (Indistinguishable states with respect to at-
tacker Aα) For a given attacker Aα ∈ A and automaton
G, the relation Πα ⊆ Q×Q defined as

Πα := {(q, q′) ∈ Q×Q|(∀wu ∈ L(G))[δ(q0, w) = q

∧δ(q0, wu) = q′ ∧ u ∈ (α ∪ Σuo)
∗]} (8)

is the relation of indistinguishable states with respect to
attacker Aα. �

In words, Πα has all pairs of states (q, q′) such that state
q′ is reachable from state q with events in α, the events
that attacker Aα can manipulate, or with events in Σuo.
This definition is inspired by (Wang et al., 2007), where
pairs of indistinguishable states arise due only to partial
observation. Note that a state is always indistinguishable
with itself.

Example 3. Suppose a conveyor belt transports two types
of unfinished products. These products are transported
through a test unit, whose automaton representation is
shown in Fig. 2. Whenever a new product arrives (event
n), the conveyor belt stops and a sensor identifies the
type of the product (a or b). A test is then performed
according to the type of the product. If it passes the
test (p), the unfinished product continues its path in the
conveyor belt (event A). However, if it fails (f), then the
unfinished product must be discarded (R). We want to
avoid accepting or rejecting a product before performing
the test. The uncontrolled behavior of this system is shown
in Fig 2. State 6, in gray, is a bad state, since it represents
the test unit accepting or rejecting an unfinished product
before testing it.

0 1 2 3

4 56

n a

b

p

f

A

R

R,A p

f

Figure 2. Automaton G of Example 3. Σc = {A,R},Σu =
{a, b, f, n, p} and Σv = {a, f, n, p}.

Now suppose that the test unit has some known vulner-
abilities. In one of these vulnerabilities, events n and a
are compromised, while in other vulnerability, events f
and p are the ones compromised. We know that one of
these vulnerabilities was exploited by attackers, but we
do not know which one. The test of P-observability for
an attack set allows us to determine if it is possible to
obtain a supervisor that will enforce the desired language,

regardless of which attacker is acting. Firstly, we apply
Def. 2. To do this, we need to find an automaton H that
represents the desired language for our system. This au-
tomaton can be obtained by taking the automaton of Fig. 2
and removing state 6. Fig. 3 shows the new automaton H ′

obtained, where we also omit the transitions labeled with
non-vulnerable events (automaton H ′ is the automaton H
after the omission of some transitions), since they are not
relevant for our analysis.

0 1 2 3

4 5

n a
p

f p

f

Figure 3. Automaton H ′. The rectangles with dotted (red)
and dashed (blue) borders represent the effect of the
attackers A{n,a} and A{f,p}, respectively

From the information given in the example, we have A =
{A{n,a}, A{f,p}}. We introduce here a visual interpretation
of the attack’s effect over H ′. We add a rectangle around
each pair of states that are connected by a transition
labeled with a vulnerable event. This is done for each
attacker Aα ∈ A. Each pair of states inside a rectangle
represents states that can be made indistinguishable by an
attacker, by inserting or erasing the corresponding event.
To obtain the relations Π{n,a} and Π{f,p}, one can apply
Def. 2 or, alternatively, obtain it by inspecting Fig. 3,
where the states inside the rectangles are indistinguishable:

Π{n,a} = {(0, 0), (0, 1), (0, 2), (1, 1), (1, 2), (2, 2)} and

Π{f,p} = {(2, 2), (2, 3), (2, 5), (3, 3), (4, 3), (4, 4), (4, 5),
(5, 5)}. �

When checking P-observability for an attack set, one
operation that is very convenient is to check if two given
states q, q′ ∈ Q can be confused with each other. As we
do not know which attacker is actually acting, we have to
consider the effect of all attackers. This is done by joining
all relations of indistinguishable states into one, according
to Definition 4.

Definition 4. (Indistinguishable states with respect to the
attack set A) For an attack set A, the relation ΠA ⊆ Q×Q
defined as

ΠA :=
⋃

Aα∈A
Πα (9)

is the relation of indistinguishable states with respect to
attack set A. �

The relation ΠA is obtained by taking the union of all
the pairs in Πα. A pair (q, q′) ∈ Πα means that state q′

can be reached from state q after the insertion of some
events by an attacker Aα ∈ A and/or after the occurrence
of unobservable events, making them indistinguishable.
Thus, the relation ΠA has all pairs of states that are
indistinguishable with each other, which is a consequence
of the insertion of events by all attackers in the attack set.

Example 5. Continuing from Example 3, if we apply Def.
4 over the relations Π{n,a} and Π{f,p}, we obtain:
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ΠA = {(0, 0), (0, 1), (0, 2), (1, 1), (1, 2), (2, 2), (2, 3), (2, 5),
(3, 3), (4, 4), (4, 3), (4, 5), (5, 5)}. �

Definition 6 allows us to obtain the effect of all attackers
combined pairwise.

Definition 6. (Relation of indistinguishable states for
pairwise combined attacks) The relation Π2

A ⊆ Q × Q
defined as

Π2
A := (ΠA ◦ΠA) ∪ Π̂A (10)

where Π̂A is defined as

Π̂A = {(q1, q2), (q2, q1) ∈ Q×Q|(∃q ∈ Q)

[(q, q1), (q, q2) ∈ ΠA]} (11)

and ΠA is given by Def. 4, is the relation of indistinguish-
able states for the pairwise combination of attacks. �

The idea behind Π2
A is to get the effect of the attack if any

two attackers were allowed to cooperate with each other.
Although we assume that only one attacker is acting,
considering that the attackers are acting together allows us
to find if there are at least two attackers that can produce
the same observation starting from two different strings.
w,w′, which is related to the relation RAαi ,Aαj , defined in

(7).

Example 7. Continuing from Example 5, we apply Def.
6 over the relation ΠA in order to obtain the relation of
indistinguishable states for pairwise combined attacks:

Π̂A = {(0, 0), (0, 1), (1, 0), (0, 2), (1, 1), (1, 2), (2, 0), (2, 1),
(2, 2), (2, 3), (2, 5), (3, 2), (3, 3), (3, 4), (3, 5), (4, 3), (4, 4),
(4, 5), (5, 2), (5, 3), (5, 4), (5, 5)},
ΠA ◦ΠA = {(0, 0), (0, 1), (0, 2), (0, 3), (0, 5), (1, 1), (1, 2),
(1, 3), (1, 5), (2, 2), (2, 3), (2, 5), (3, 3), (4, 3), (4, 4), (4, 5),
(5, 5)} and

Π2
A = {(0, 0), (0, 1), (0, 2), (0, 3), (0, 5), (1, 1), (1, 0), (1, 2),

(1, 3), (1, 5), (2, 0), (2, 1), (2, 2), (2, 3), (2, 5), (3, 2), (3, 3),
(3, 4), (3, 5), (4, 3), (4, 4), (4, 5), (5, 2), (5, 3), (5, 4), (5, 5)}.
Any pair in Π2

A represent states from which attackers can
insert or erase events in a way that they can generate the
same observation, thus making the states indistinguish-
able. �

The requirement of P-observability for an attack set is
only relevant when dealing with strings w,w′ ∈ K that
can generate the same observation after the attack and
such that there exists an event σ ∈ Σ such that wσ ∈ K
and w′σ ∈ L(G) \ K or w′σ ∈ K and wσ ∈ L(G) \ K.
When wσ ∈ L(G) \K or w′σ ∈ L(G) \K, it means that
event σ should be disabled after w or w′, respectively. In
the same way, when wσ ∈ K or w′σ ∈ K, it means that
event σ should be enabled after w or w′, respectively. Let
ξ : Q→ 2Σ be a map defined as

ξ(q) := {σ ∈ Σ|(∃w ∈ L(G))[δ(q0, w) = q ∧ wσ ∈ K]}
(12)

that gives, for a state q ∈ Q, the set of enabled events at
state q. Also, let the map φ : Q→ 2Σ defined as

φ(q) := {σ ∈ Σ|(∃w ∈ L(G))[δ(q0, w) = q∧wσ ∈ L(G)\K]}
(13)

be the map that gives, for a given state q ∈ Q, the set of
disabled events at state q. Inspired by (Su and Wonham,
2004), where the authors present a binary relation of pairs

of states that are consistent with respect to their control
action and to their marking, we present the following
definition.

Definition 8. (Relation of control inconsistent states). The
binary relation I ⊆ Q×Q defined by

I := {(q, q′) ∈ Q×Q|ξ(q) ∩ φ(q′) 6= ∅ ∨ ξ(q′) ∩ φ(q) 6= ∅}
(14)

is the relation of control inconsistent states.

In words, according to Definition 8, a pair of states is in the
relation of control inconsistent states I if the control action
at these two states is conflicting. It is important to notice
that the relation I is not transitive but is symmetric. For
testing P-observability for an attack set, it is not necessary
to consider all pairs of strings w,w′ ∈ K, but only the
pairs such that their control action is conflicting. In other
words, we need to consider only the states that are control
inconsistent.

Example 9. By comparing Figures 2 and 3, we can con-
clude that events A and R should be disabled at state 0,
while they can occur at states 3 and 5, respectively. Thus,
applying Def. 8, we obtain: I = {(0, 3), (0, 5), (3, 0), (5, 0)}.
�

Before presenting the main result of this work, we intro-
duce Lemma 10.

Lemma 10. Let G = (Q,Σ, δ, q0) be an automaton, q, q′ ∈
Q be states such that (q, q′) ∈ Πα for some attacker
Aα ∈ A and P : Σ∗ → Σ∗o be a natural projection. Then,
for all strings w ∈ L(G) and v ∈ w(α ∪ Σuo)

∗, such that
δ(q0, w) = q and δ(q0, v) = q′, it holds that

1) v ∈ P−1(AαP (w));
2) w ∈ P−1(AαP (v)).

Proof The proof is omitted due to space limitation. �

Finally, we are able to present Theorem 11, which is our
main result.

Theorem 11. Let G be a deterministic finite automaton
that represents the behavior of a system, K the desired
language, with K ⊆ L(G). The set Σuo ⊆ Σ is the set
of unobservable events, Σv ⊆ Σ is the set of vulnerable
events (Σuo ∩ Σv = ∅) and A = {Aα1

, Aα2
, . . . , AαM } is

the attack set, with αi ⊆ Σv, i = 1, . . . ,M . Let I be the
relation of control inconsistent states of the automaton
that implements K. The language K will be P-observable
for A and L(G) if and only if Π2

A ∩ I = ∅. �

Proof The proof is omitted due to space limitations. �

Theorem 11 states that a given desired language K is P-
observable for an attack set A if and only if there are
no mutual pairs of states between the relations Π2

A and
I. One can apply Theorem 11 to verify if a language
K is P-observable for an attack set A by checking if
(q, q′) 6∈ Π2

A holds for every pair (q, q′) in the relation of
control inconsistent states I.

Example 12. From Examples 7 and 9, we have that Π2
A ∩

I 6= ∅, which allows us to conclude that the desired
language of our problem is not P-observable for the attack
set A. Because of this, there are at least two strings, e.g.,
w′ = ε and w′′ = nbg, such that they can be modified
by two different attackers in a way that they will look
alike to the supervisor. In such a case, if the supervisor
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observes string y = nb, it is not sure if string nb really
happened or if it was strings ε or even nbg, where events
n and b could have been inserted by an attacker or event
p could have been erased by other attacker, respectively.
Note that string y = n can also be the one that happened.
However, since state 1 (δ(q0, n) = {1}) is not control
inconsistent with any other state, considering this case
does not contribute to our analysis. �

5. CONCLUSION

The increasing use of communication networks in control
systems also increases the interfaces between devices and
the outside world. These interfaces have vulnerabilities
associated, which are entry points for malicious agents.
This justifies the effort of providing reliable communi-
cation. Within the supervisory control context, one of
these solutions is to design resilient supervisors, that can
guarantee the legal behavior of the system, regardless of
the attack.

For attacks in the output symbols, one of the conditions
that allows robust supervisors to be designed is the P-
observability for an attack set. Although a test for this
property already existed (Wakaiki et al., 2019), it is
based on a series of tests of the classical observability
property. Our contribution is to introduce a new test,
that checks for P-observability for an attack set itself and
considers the effect of all attackers in a single run. We
do not claim that our test is necessarily faster or more
efficient than the previous one. Nevertheless we provided
an approach that gives a better understanding about
a recently described property, whose application is still
incipient in the literature.

Additionally, despite the fact that our attack model may
not seen very practical, since many assumptions are made,
our results open new fronts for the research of more
realistic models. For future works, we plan to investigate
the effect of considering multiple attackers acting at once,
as well as the effect of having them acting on events from
supervisor to plant. Furthermore, we intend to provide
algorithms that will allow us to apply our results using
a computational tool.
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