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Abstract:
Vector field is a well-established technique for performing mobile robot navigation. However, in
environments with obstacles, vector fields may have their performance compromised, inducing
trajectories that lead the robot to be trapped in a certain region. Therefore, this article presents
a new approach, based on reinforcement learning, for interactive learning of vector fields. As
a result, this approach provides a vector field: (i) free of spurious equilibria, and (ii) optimal
concerning the length of the path traveled. Due to an appropriate initialization of the vector field,
the approach can be used to solve tasks in environments with few obstacles even without having
too much learning time. Simulations are implemented to validate the proposed methodology.

Keywords: Eikonal equation; Motion planning; Obstacle avoidance; Optimization;
Reinforcement learning; Vector fields.

1. INTRODUCTION

The technique of artificial vector fields is widely used in
the navigation of mobile robots (Goncalves et al., 2010;
Beard and McLain, 2012; Zhao et al., 2018; Rezende et al.,
2020). It stands out for integrating the motion planning
and control stages into a single structure. Furthermore,
approaches based on vector fields are relatively easy to
understand and implement. When used, vector fields have
the function of providing the speed or acceleration inputs
to be applied in a robot to perform a task (Goncalves
et al., 2010). For example, for a planar mobile robot, the
vector field provides the velocity input u(q) = q̇ for a given
configuration q = [q1 q2]T .

Despite the mentioned advantages, in some situations, it
can be difficult to build appropriate vector fields, espe-
cially in environments with the presence of obstacles. A
recurrent method for avoiding obstacles in vector fields
is the inclusion of repulsive components based on distance
functions (Leitmann and Skowronski, 1977; Khatib, 1986).
Another alternative to avoid obstacles is using optimiza-
tion (Kanoun et al., 2011; Gonçalves et al., 2016; Júnior
and Gonçalves, 2018). However, the usage of repulsive
fields or optimization will often result in the appearance of
spurious equilibrium points. Thus, possibly, the vector field
can induce trajectories that lead the robot to be trapped in
certain regions (Panagou, 2014). Moreover, the generated
paths may be inadequate, i.e., too long.

? The authors would like to thank the agencies CNPq, CAPES,
FAPEMIG (under Grant APQ-02144-18), and the Graduate Pro-
gram in Electrical Engineering at UFMG, for their financial support.
1 https://www.roboticsbusinessreview.com/supply-chain/auto

nomous-mobile-robots-changing-logistics-landscape/

Fig. 1. The technique proposed in this article is applicable
in situations where the robot must perform the same
task multiple times from different initial configura-
tions, such as shown in the image, in which the robot
moves through a warehouse and must take pieces to
a storeroom. The image was taken from 1 .

In this article, an approach is proposed to build vector
fields on-the-fly based on the robot’s interactions with the
environment. The technique of learning through interac-
tions is called reinforcement learning (Watkins and Dayan,
1992; Kaelbling et al., 1996), in which an agent, in this
case, a robot, seeks to improve its behavior through the
acquisition of new knowledge from its interactions with
the environment. The agent learns from a series of positive
(rewards) or negative (punishments) reinforcements, that
is, through the success or failure obtained. Generally, the
main objective of this type of learning is to minimize a
cumulative cost/maximize a cumulative reward measure
obtained by the agent. Successful learning will result in the
execution of rational control actions (also known as policy)
by the agent, given its current state (George and Luger,
2013; Russell and Norvig, 2016). Some works that describe,
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broadly, the use of reinforcement learning in robotic ap-
plications can be seen at Kober et al. (2013); Kormushev
et al. (2013); Polydoros and Nalpantidis (2017); Nair et al.
(2018); Akalin and Loutfi (2021).

Thus, with the use of a technique based on reinforcement
learning, it is expected that the constructed vector field,
after many repetitions of the task, will be better than the
one obtained previously. In this way, the robot will learn
the parameters for building the vector field as it explores
the environment and performs the tasks. The learning
strategy is based and formalized in a particular case of
a result presented in Gonçalves (2021).

With the approach proposed in this article, the robot will
learn incrementally, while exploring the environment and
performing its task, a vector field with two valuable char-
acteristics: (i) free of spurious equilibria, and (ii) optimal
concerning the length of the path traveled (although the
methodology presented here can be adapted for a different
metric).

It is important to emphasize that even without having
too much learning time, the field will be able to solve
simple tasks in environments with few obstacles because
it is initiated appropriately, that is, directed to the target.
In this way, the proposed vector field (i.e. the policy) does
not start entirely inappropriate and without information,
as is common in several techniques/applications with re-
inforcement learning. This will also speed up the learning
process as it will be shown in Subsection 3.3.

The obstacle avoidance of the proposed strategy is done
by modifying an initial control action, not necessarily safe,
using optimization techniques. This ensures that, even
without a very advanced learning process, the modified
control action is always safe.

The approach is suitable for applications where the robot
performs the same task multiple times from different
initial configurations. This situation can be illustrated by a
mobile robot, Fig. 1, that moves through a warehouse and
needs to take pieces from different initial configurations
(positions) to a common configuration (the storeroom). In
situations where the robot is required to perform a task a
few times, this strategy will not be adequate as the robot
will not have an opportunity to learn and thus it may
provide bad policies.

The article is organized as follows: in section 2, a general
explanation is made about the problem to be addressed
and the proposed solution for learning target-oriented and
collision-free policies. In section 3, the proposed approach
is validated in a simulated environment in MATLAB
software. In section 4, conclusions and suggestions for
future work are presented.

2. THEORETICAL DESCRIPTION OF THE
SOLUTION

2.1 Problem proposal

Let Q ⊆ Rn be the configuration space of a robot, and q ∈
Q its configuration. We assume this robot is represented
by a first-order kinematical system (q̇ = u) and that it
initiates at configuration q0, with the goal being to control

this robot to a target set Qtg ⊂ Q. We also assume 2 a
constant Euclidean norm for u, ‖u‖ = 1, and we define
c : Q 7−→ R+ as the cost per movement at configuration q.
Therefore, we can formulate an optimal control problem
as:

Problem 1.

min
u

∫ ∞
0

c(q(t))‖dq(t)‖

subject to q̇(t) = u(t), ‖u(t)‖ = 1

q(0) = q0, q(∞) ∈ Qtg.

(1)

This formulation expects that q will reach Qtg sometime,
not defining a time constraint to do the task.

Considering an environment with obstacles in which we
want to obtain the shortest path (in the Euclidean metric),
we define Qfree ⊆ Q as the collision-free sub-space. In this
article we will be focusing on environments in which the
obstacles are previously known, considering as future work
the evaluation regarding the capability of the algorithm in
scenarios where obstacles are added during the learning
phase. We may use a special case of c(q) to model this
environment as:

c(q) =

{
1, for q ∈ Qfree

∞, for q /∈ Qfree.

In this way, with the solution of Problem 1, the robot will
follow the shortest path (in the Euclidean metric) from
q0 to Qtg moving only inside Qfree. It is guaranteed that
Problem 1 induces a control action that is free of spurious
equilibrium points. Let u∗(q) be the optimal control action
obtained from Problem 1, also known as optimal policy,
π(q). We define q∗(t, q0) as the robot evolution over the
time t, starting from its initial configuration q0, using the
optimal policy π(q). Thus, we can define V (q0) : Qfree 7−→
R+ as the value function of configuration q0. V (q0) can
be calculated with V (q0) =

∫∞
0
c(q∗(t, q0))‖dq∗(t, q0)‖,

assigning to each configuration q0 its optimal cost. Using
the Hamilton-Jacobi-Bellman equation, it is possible to
show that V (q0) satisfies the so-called Eikonal equation
(Bardi and Capuzzo-Dolcetta, 2008):{

‖∇V (q0)‖2 = c(q0)2

V (q0) = 0, q0 ∈ Qtg
. (2)

Solving the Eikonal equation (2), it is possible to get the

policy π(q), given by π(q) = u∗(q) = −∇V (q)
c(q) . As this

policy has to be executed in a general configuration q,
henceforth, we will use only the V (q) notation instead of
V (q0).

Unfortunately, equation (2) is not easy to solve analyti-
cally (Vavryčuk, 2012; Jahanandish, 2010), therefore, we
will propose a framework to estimate both V (q) and π(q)
while the robot moves inside Qfree. This framework has a
connection with machine learning techniques, more specif-
ically in the context of reinforcement learning. Therefore,

2 This constraint is used in the problem formulation for the sake of
simplicity of the resulting control action, however, once we obtain the
optimal solution, it keeps being optimal for the problem obtained by
dropping out this constraint. Even if we scale the optimal solution
u∗ (with a positive factor), it is optimal for the modified problem.
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Fig. 2. Flowchart diagram for the framework presented in
this article.

we expect the robot to learn the optimal path as it moves
in the environment.

2.2 Learning strategy

We will now present a framework to estimate the policy
π(q) and the value function V (q) while the robot moves
inside Qfree.

Figure 2 shows the flowchart representing the framework.
Each subsection ahead will explain and depict the steps
inside this flowchart.

First of all, it is necessary to sample Qfree in a finite
set of configurations which we will define as Qdis. Any
sampling strategy can be used as long as there is at
least one sampled point in Qtg, but we will discuss in
detail the sampling strategy in section 2.5. Let qi be an
element of Qdis, we will estimate the value function of
this configuration, Vi ≈ V (qi), and the policy of this
configuration, �i ≈ π(qi).

Fig. 3. Representation of the Voronoi diagram in an
environment with obstacles (Qobs = Q−Qfree). The
blue dots represent the sites denoted by the triple (Vi,
qi, �i).

Generally speaking, this sampling strategy will create a
Voronoi diagram in the configuration space, where the site
of each Voronoi cell is an element of Qdis. It is important
to stress that it is not necessary to calculate the Voronoi
regions explicitly. It is only necessary that the robot can
identify which configuration of Qdis is the closest one to
the current configuration q(t). Fig. 3 shows an example of
this diagram.

Since the robot will be in a Voronoi cell at each instant,
as it moves, with a strategy that will be presented in
section 2.6, sometimes it will change its current Voronoi
cell. This can be identified by simply checking if the closest
configuration in Qdis to q has changed.

Therefore, every time the robot moves from a Voronoi cell
in which the site is qi to one in which the site is qj , the
equation (3) will be used to improve the estimate of Vi:

Vi ← min
j

(Vi, c̄ij + Vj), (3)

in which c̄ij is an estimate of the optimal cost in the path
beginning at qi and ending at qj , i.e. an estimate of V (qi)−
V (qj). In our case, since c(q) = 1 in the Qfree, we can use
c̄ij = ‖qi − qj‖. A particular case of the results obtained
in Gonçalves (2021) shows that this iteration converges to
the solution of the Bellman equation Vi = minj(c̄ij + Vj),
as long as the initial value of Vi overestimates the real
value. The convergence is monotonic because the Vi’s never
increase. This discrete dynamic programming problem is
a discrete approximation of our continuous problem.

Every time Vi updates through equation (3), if Vj + c̄ij <
Vi, the policy �i will be updated according to equation (4)

�i ←
qj − qi
‖qj − qi‖

, (4)

see also Fig. 3 for a geometric explanation. These simple
equations will be used to estimate V and �. To perform
this estimation properly, we propose to initialize both sets
of values as follows:

• Vi = Kd(qi), where d(qi) is the Euclidean distance
of qi to Qtg disregarding the obstacles (naive) and
K ∈ R+ is a scale factor (K > 1). K aims to
overestimate the value function Vi initially, in order
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to ensure that when using the equation (3), it will be
learned accordingly.
• �i =

qtg−qi

‖qtg−qi‖ , being qtg any element of set Qdis in

Qtg. In this way, the initial policy will guide the robot
towards the target.

It is important to mention that the parameter K can be
chosen depending on the number of obstacles present in
the environment. With a high number of obstacles, the
overestimation of Vi’s initial values needs to be higher than
the scenario with none or few obstacles. For example, in
the best case scenario, one without obstacles, K = 1 is
sufficient.

This initialization has the advantage that the initial con-
trol action is sufficient in various scenarios, for example
in scenarios without obstacles, or even, for simple en-
vironments with some obstacles. As mentioned, it may
also speed up the learning process as it will be shown in
Subsection 3.3. Thus, this initialization can be seen as an
important quick start.

2.3 Continuous control action proposal

Up to now, even considering we have both sets � and V
well estimated, they are discrete values, and to control the
robot motion, we need a continuous and smooth control
action. In order to solve this, we define the function
Ṽ : Qfree 7−→ R+ as the estimate for V (q). Let P(N, q)
be the subset of the N closest elements of Qdis to q. We
propose to compute Ṽ (q) as the average of the elements
from this subset weighted by the inverse of the distance
from each element of the subset to q:

Ṽ (q;V, q) =

∑
i∈P(N,q)

1
‖q−qi‖Vi∑

i∈P(N,q)
1

‖q−qi‖
. (5)

With the Ṽ (q) properly defined, we can calculate the

control action as u(q) = −∇Ṽ (q)
c(q) . We consider that when

q = qi for some i, Ṽ (q) is calculated using the limit, which

is lim
q→qi

Ṽ (q) = Vi.

However, this calculation can have a problem if Ṽ (q) has
some noise. In this case, the gradient will not represent
the real gradient of V (q) correctly. Hence, we will propose
a solution to estimate the policy directly. We define π̃ :
Qfree 7−→ Rn as the estimated policy π(q), and similarly
to equation (5), we will compute π̃(q) as:

π̃(q; �, q) =

∑
i∈P(N,q)

1
‖q−qi‖�i

‖
∑

i∈P(N,q)
1

‖q−qi‖�i‖
(6)

and, at least at first glance, we can use it directly as
control action, i.e. u(q) = π̃(q). We again use the limit
when q = qi, in which case lim

q→qi

π̃(q) = �i.

In the scenario where Qdis covers the entire space Qfree,
the function π̃(q) converges to π(q), when the values of
set � are estimated satisfactorily. Thus, using this policy
it would be possible to take the robot to Qtg moving
only inside Qfree while traveling the shortest distance.
However, it is unfeasible in practice to sample the entire

space Qfree and to wait for the perfect learning of the V’s.
In that case, the function π̃(q) loses the collision avoidance
guarantee and an alternative needs to be proposed.

2.4 Obstacles avoidance strategy

Until this moment, we estimated a policy π̃(q) which can
move the robot from q0 to Qtg. As it was informed before,
in practice this policy by itself is not enough to avoid
obstacles in configuration space since it does not equate
perfectly to the real π(q). Aiming to solve this problem,
we propose as an alternative the following optimization
problem to compute a π̃(q) that also avoids obstacles:

π̃c(q) = argmin
u

‖u− π̃(q)‖2

subject to A(q)u ≤ b(q),
(7)

in which A ∈ Rn×m and b ∈ Rm×1
+ are part of the

constraints that will be used to avoid the obstacles.

π̃c(q) is a “corrected” version of π̃(q), ensuring the obsta-
cles avoidance. Note that the problem is a strictly convex
quadratic program, therefore it can be solved efficiently.
Further, we will soon guarantee, by construction, that the
feasible space is always non-empty. Thus, a solution u
always exists and is unique, and π̃c(q) is a well-defined
function.

The objective function tries to equate π̃c(q) and π̃(q).
Indeed, the optimization problem solution when the con-
straints are not active is exactly, π̃c(q) = π̃(q). With them
active, the solution is the closest one to π̃(q) respecting
the constraints.

To formulate the obstacles avoidance as A(q)u ≤ b(q), we
define G(q) : Q 7→ Rm

− as a non-positive function that
will capture the opposite of the Euclidean distance to the
obstacles. It does not need to be an accurate distance, but
if it decreases when the robot departs from the obstacle
and it is zero if and only if the robot is colliding with
an obstacle, it can be used in this context. As shown
by Kanoun et al. (2011), if Ġ(q) ≤ −ηG(q), with η a
positive scalar, and G(q0) ≤ 0, then G(q(t)) ≤ 0 for
t > 0, so the robot will not collide with the obstacles. Since
Ġ(q) = ∂G

∂q (q)q̇ and q̇ = u, we conclude that A(q) = ∂G
∂q (q)

and b(q) = −ηG(q). Note that b(q) = −ηG(q) ≥ 0, thus
the feasible set A(q)u ≤ b(q) is always non-empty (u = 0
is always a solution).

Is important to stress that, another possibility also evalu-
ated during the development of this work, is to add classic
repulsive terms (Khatib, 1986) instead of using quadratic
programming to compute π̃c(q), but they led to spurious
equilibrium points more often than using the optimization
method given in equation (7) (Panagou, 2014).

2.5 Sampling strategy

To perform the learning strategy, as mentioned in section
2.2, we need to create the set Qdis by sampling Qfree. We
propose to repeat this procedure as the robot moves inside
the environment by starting a sampling procedure inside
the ball with radius D centered in its current configuration
q at each T seconds. Thus, this proposal considers that the
robot has a limited perception of the environment.
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A problem with the approach of sampling points Qdis of
the set Qfree indiscriminately is the curse of dimensional-
ity, in which, the problem can have a huge computational
burden since it will have to deal with many points in the
computation, especially for configuration spaces in higher
dimensions. Thus, to make the problem computationally
treatable and ensure a fair sampling of the space, this
sampling procedure will make the following check: only
sample if the number of points of Qdis inside the ball is
under a fixed number M and then we sample P points,
assuring they have a minimum distance h among each
other and among all other points in Qdis. Doing this
procedure repeatedly ensures it will cover the set Qfree.

Note that each time that new elements are sampled, the
sets V and � must be increased, initializing their new
elements as defined in section 2.2.

2.6 Exploration proposal

The entire framework presented until now requires the
robot to move inside the environment to learn the set
of values �i correctly. This movement can be performed
in many different ways, but we propose the following
approach. Let w ∈ Rn be a disturbance input that will
be added to equation (7). This disturbance aims to move
the robot around the scenario, adding an exploration
component to the robot motion control. Thus, the π̃c(q)
has to be changed to:

π̃c(q) = argmin
u

‖u− (π̃(q) + w)‖2

subject to A(q)u ≤ b(q).
(8)

As explained for equation (7), the objective function
of (8) will equate π̃c to π̃ + w(t) when there is no
constraint active. By doing that, the robot will explore
the environment, depending on the value of w and not only
relying on the policy which can be not mature enough at
the beginning.

There are some features that w must have. First of all,
the maximum norm of w needs to decrease over time,
since there is an expectation that the robot will learn
the optimal policy as it moves inside the environment.
Secondly, it has to reset to the maximum norm if the robot
reaches a spurious equilibrium point. This disturbance will
be the only way that the robot will have to move out from
the spurious equilibrium points. Third, it will be constant
for a period since our intent is not to make the robot move
completely erratically inside the environment, which would
happen if w changes very often, but ensure that it will
move in a direction where it can learn the value function
accordingly.

By using equation (8), once the robot reaches the target
Qtg, probably the robot did not learn the policy well
yet. We must make the robot move more in Qfree to
ensure that the learning will continue. Thus, we must
induce a movement that makes the robot go to another
configuration, and then continue running the learning
algorithm again. In practice, this could be done by making
the robot perform another task or we can artificially induce
this movement by considering only random movements.

3. SIMULATION RESULTS

We will present three simulations with common parame-
ters to illustrate the proposed methodology.

3.1 Parameters and settings

We simulated the framework using a mobile robot with
configuration q = [q1 q2]T for Simulations 1 and 2 and
q = [q1 q2 q3]T for Simulation 3. This configuration is
the robot position based on a fixed reference frame. The
simulation was performed in MATLAB R2020b and we
used a first-order kinematic model to comply with Problem
1. We ran the simulations into an Intel Core i3-2310M CPU
@ 2.10GHz×4, with 8GB of RAM memory and running
Ubuntu 18.04.5 LTS.

In all cases, we consider a punctual robot because we
assume that the obstacles are already enlarged. All the
obstacles have a circular/spherical shape, but with dif-
ferent sizes. The distance function to the obstacles were
simply calculated as distances to the circles and lines (for
the boundaries of the scenario). Finally all the scenar-
ios contain only one target Qtg represented by a circu-
lar/spherical shape.

We used K = 10 (subsection 2.2), N = 5 (subsection 2.3),
η = 0.1 s−1 for the circular/spherical obstacles and η = 1
s−1 for the outer boundary (subsection 2.4). The sampling
procedure is performed by choosing D = 0.5 m, T = 1 s,
M = 1, P = 1 and h = 0.8 m (subsection 2.5).

The disturbance w is generated by sampling a vector from
a multi-dimensional normal distribution in R2/R3 with
mean equal to the zero vector and covariance matrix equal
to the identity matrix. Then, this vector is normalized and
scaled by a factor that initially is 2 m/s and decreases
linearly, reducing 20% at each 5 s (subsection 2.6). Our
control action π̃(q) is always normalized, and thus it needs
to be converted to a real speed. We choose that this speed
is 1 m/s. Finally, we integrate using the explicit first-order
Euler integration with dt = 0.05 s.

Every time that the robot reaches Qtg we “teletransport”
the robot to a random configuration, using an uniform
distribution. In a real application, it would be necessary
to have a strategy to guarantee that the robot will have
the opportunity to explore Qfree. For each scenario, we
left the computer simulating for the same amount of time.

3.2 Validation methodology

In order to validate the methodology and show that the
robot indeed is learning, for each scenario, we sample one
hundred points uniformly in Qfree and with them, we
periodically perform the following validation procedure:
we simulate the trajectory traveled by the robot using
the policy � of different timestamps of the simulation and
considering the initial configuration as each of these one
hundred points. These trajectories also consider w(t) = 0.
With these trajectories, we compute the distance traveled
towards the target set and store these values. If the robot
does not reach the target set (i.e the control action of
that specific timestamp fails to guide the robot towards
the Qtg), we consider this distance as ∞. With these one
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hundred distances, we compute two metrics: the success
rate versus time, which is the percentage of them which
is not ∞ (thus it measures how often the control action
was able to solve the task) and the log-average distance of
these numbers (thus it measures how optimal are these
distances). We choose the log-average because we also
considered the “infinite distances” in this average, and
then the regular average would become infinite. The log-
average is given by:

L = − ln

(∑100
i e−di

100

)
in which di is the i-th distance in meters, considered
dimensionless when used in the average. We show these
two metrics over time, but it is important to highlight
that this time is not the time spent by the computer
to simulate, but the simulated “real” time, which would
mirror the time that a real robot would take to produce
these results.

3.3 Results

Scenario 1: the scenario is shown in Fig. 4, along with
the points q and vectors �i 3 after two hours of simulated
time (“real” robot time). This scenario aims to validate the
proposal in a bi-dimensional environment with several ob-
stacles, which can be challenging for the robot, especially
using traditional vector field controllers. Fig. 5 shows the
evolution of the previously mentioned metrics: the success
rate and the log-average distance. The success rate is over
90% after 820 s, and it is even better, over 95%, after 1860
s. Thus, it takes less than 15 minutes to reach a good
success rate and it takes only 31 minutes to be able to
go from almost any configuration to the target. The time
spent to calculate the control action is, on average, 5 ms.
To highlight the importance of the proposed initialization
(section 2.2), Fig. 6 shows the performance using a random
initialization of the sets Vi, �i. It shows that the robot
takes much more time to achieve good results since only
after approximately 3500 s (almost one hour) we have 90%
of success rate.

Scenario 2: this scenario is also bi-dimensional, but it has
only two obstacles, representing an easier environment.
This scenario is represented by Fig. 7, along with the
policies �’s in the elements of Qdis, shown after two hours
of simulated time (“real” robot time). From Fig. 8, for this
easier scenario, the success rate achieves 100% after 100 s,
i.e. it only requires 1 minute and 40 s to be able to go from
any configuration to the target. The log-average distance
required some more time to reduce and reaches the optimal
time approximately after 200 s, or 3 minutes. The time
spent to calculate the control action is, on average, 5 ms.
With the random initialization of the sets Vi, �i, the Fig. 9
shows that for this scenario the time spent to achieve 90%
of success rate is almost 7000 s (almost two hours), much
more than what is spent for the one with the proposed
initialization.

Scenario 3: this scenario is shown in Fig. 10. It is the
three-dimensional version of Scenario 1. Looking at Fig.
3 It can be seen that some arrows point to the obstacles, because
the algorithm has not learned that policy correctly yet.
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Fig. 4. Scenario 1, with several obstacles surrounding the
target. qi, �i are also shown. There are 496 elements
in each set.
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Fig. 5. Performance of Scenario 1. The superior subplot
shows the success rate while the inferior subplot shows
the log-average distance.
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Fig. 6. Performance of Scenario 1 - Random Initial-
ization. The superior subplot shows the success rate
while the inferior subplot shows the log-average dis-
tance.

11, we can see that the success rate achieves 100% after 50
s, which is a good performance. However, the log-average
distance shows that it required 1200 s (20 minutes) to
stabilize. The time spent to calculate the control action is,
on average, 5 ms.
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Fig. 7. Scenario 2, with several obstacles surrounding the
target. qi, �i are also shown. There are 405 elements
in each set.
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Fig. 8. Performance of Scenario 2. The superior subplot
shows the success rate while the inferior subplot shows
the log-average distance.
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Fig. 9. Performance of Scenario 2 - Random Initial-
ization. The superior subplot shows the success rate
while the inferior subplot shows the log-average dis-
tance.

4. CONCLUSION

In this article, an approach was proposed to build vector
fields on-the-fly based on the robot’s interactions with the

Fig. 10. Scenario 3, with several obstacles surrounding
the target. The sets qi and �i are not represented
because it is difficult to see them clearly in 3D. There
are 1930 elements in each set.
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Fig. 11. Performance of Scenario 3. The superior subplot
shows the success rate while the inferior subplot shows
the log-average distance.

environment. As the robot explores the environment, it
learns the parameters for building the vector field, the
learning is improved, the success rate for reaching the
target increases, and the distance traveled towards the
target set decreases. The main advantage of using the
proposed method is to build vector fields free of spurious
equilibria, and optimal concerning the length of the path
traveled. Even without having advanced learning, the field
will be able to solve simple tasks in the proposed scenario.
This is due to a proper initialization of the policy, that is,
directed to the target.

As a suggestion for future work, the proposed approach can
be applied in a real environment, or a more realistic robot
simulator, for example, using CoppeliaSim or Gazebo. An-
other suggestion is to adapt the approach to environments
with multiple targets and test it into robots with more
degrees of freedom and different kinematic constraints,
such as a mobile manipulator robot. We also aim to study
the capability of this algorithm to react in scenarios where
new obstacles are added during the learning.
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