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Abstract: The recent growth of the Unmanned Aerial Vehicle (UAV) industry stimulated
research development to solve different problems, such as inspection in hard-to-reach places,
mapping, and search and rescue. Frequently, these applications require navigation in indoor
environments, so searching for safe paths for the UAVs to fly is essential for mission accomplish-
ment. In this context, we propose in this paper the employment of the Goal-Biased Probabilistic
Foam (GBPF) method to perform the path planning for a UAV in indoor missions. The GBPF
method ensures a fast search of a path with a safe region provided by a structure called bubble
that will be modeled for the UAV. The bubble represents a free-space region that allows safe
UAV maneuvers, decreasing the probability of obstacles collision. To validate the proposed
methodology, we used the Virtual Robot Experimentation Platform (V-REP) to simulate an
UAV flight in an indoor environment using the path generated by the GBPF.
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1. INTRODUCTION

In recent years, many researches related to Unmanned
Aerial Vehicle (UAV), also known as drones, were devel-
oped, showing the potential that this aeronautical technol-
ogy can offer in different applications (Zhao et al., 2018).
Among them, it is possible to highlight the usage of UAVs
on tasks of inspection in hard-to-reach places, such as wind
turbines, power transmission towers, bridges, and solar
panels (Shakeri et al., 2019), surveillance system (Jung
et al., 2018), assistance in monitoring plantations (Ju and
Son, 2018) and ocean (Ma et al., 2020).

On the other hand, indoor applications with UAVs are
more complex than the outdoor ones, mainly because of
the restrictions imposed by the autonomous navigation
system of the aircraft, such as communications limitations
and proximity to obstacles, where, in case of collision, it
may endanger the aircraft integrity, completeness of the
mission and even human lives (Grzonka et al., 2009).

An example of these indoor applications was discussed by
La Scalea et al. (2019), where they mention the possibility
of using drones for cave exploration. In Zhang et al. (2017),
the authors present a solution called SmartCaveDrone,
a system capable of mapping caves in 3D models. Fur-
thermore, in McCabe et al. (2017), the authors detail the
benefits that UAVs can bring to monitoring construction
works in civil construction.
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The usage of UAVs in diverse applications is growing
up fast, and for the development of this technology, it
is necessary to look for solutions that integrate these
aircraft with environments that are becoming increasingly
complex, making UAV systems more resilient, reliable, and
improving their capabilities.

Path planning is one of the main issues in autonomous
navigation, and it has been debated in the scientific
community since the 1980s (Chien et al., 1984; Canny,
1988; Takahashi and Schilling, 1989). The planning is
particularly relevant since it is practically a requirement
for an autonomous mobile robot to move from an initial to
a goal configuration, avoiding collisions in an environment
with obstacles and narrow passages (LaValle, 2006).

Most path planning techniques have the purpose of cre-
ating optimal paths or finding feasible paths with low
running time (Volna and Kotyrba, 2018). However, it
is also important to guarantee safety for a robot when
moving in unstructured environments (Plaku et al., 2018).
Thus, planning paths sufficiently far from the obstacles
is crucial for most applications (Berglund et al., 2009).
Besides, when considering an indoor mission for a UAV, it
is essential to incorporate techniques in which it can avoid
collisions so that there is no physical damage to the robot.
Aggarwal and Kumar (2020).

Proposed in (Nascimento et al., 2018b), Goal-Biased Prob-
abilistic Foam (GBPF) is an interesting global path plan-
ning method capable of providing short paths with safe
regions for maneuverability. Therefore, in this paper, we

Sociedade Brasileira de Automática (SBA) 
XV Simpósio Brasileiro de Automação Inteligente - SBAI 2021, 17 a 20 de outubro de 2021 

ISSN: 2175-8905 578 DOI: 10.20906/sbai.v1i1.2628



present the application of GBPF method for a UAV to
accomplish indoor missions safely.

This paper is organized as follows: Section 2 introduces
the UAV modeling that was used in the path planning
method. Section 3 describes the Goal-biased Probabilistic
Foam, a variant method of the original PFM. Section
4 presents simulation results and discussions. Finally,
Section 5 discusses conclusions and future works.

2. BUBBLE MODELING FOR UAV

The concept of bubbles of free-space, proposed by Quinlan
(1995), makes possible the computation of a volumetric
collision-free region in C-space C around a robot config-
uration q based on distance information in workspace W .
This region, called bubble, will be used by our path planner
to provide safe paths.

Let us consider for the experiments a quadrotor UAV
denoted by A. Disregarding the rotational degrees of
freedom (DoF), the robot A will present three translational
DoF, denoted by X, Y , and Z, as can be seen in Figure 1.

Figure 1. Bubble modeling. (a) Measuring the minimum
distance between the obstacle and the cylinder which
encloses the UAV in workspace W . (b) The bubble
computed in C-space C.

Figure 1a illustrates an environment with the UAV and
an obstacle, representing the workspace W . Also, let us
consider that the robot is inscribed in a cylinder that
contains the entire robot. The measure dW is the minimum
distance between the cylinder and the obstacles.

Now, let us consider moving the UAV from configurations
q to p along a straight line, where the distance traveled
by the UAV will be ||q − p||. If the UAV moves a distance
no greater than dW , it will not collide with any obstacles
or walls in the environment. The bubble, as can be seen
in Figure 1b, is a volumetric region in free C-space, which
represents the set of all these configurations p.

More formally, the bubble is defined as a n−ball with
radius dW , centered in configuration q.

B(q) = {p : ||q − p|| 6 dW } (1)

In Quinlan (1995), this region B was proposed for general
non-rotating free-flying robots in planar environments. In
this work, we apply this concept to a UAV robot, which
will navigate using a path planning method based on
Probabilistic Foam.

3. GOAL-BIASED PROBABILISTIC FOAM

The method Goal-Biased Probabilistic Foam (Nascimento
et al., 2018b) is a global sampling-based path planner ideal
for robots that need to perform safe motion. The GBPF is
a variant of the Probabilistic Foam Method (Nascimento
et al., 2018a, 2020) where bubbles are expanded in the
free configuration space and propagate with a strategy
inspired on the expanding method of the search tree
from the RRT-GoalBias algorithm Lavalle et al. (2000),
a variant of the classic Rapidly-Exploring Random Tree
(RRT) LaValle (1998). The method GBPF converges to
the goal configuration faster than the original PFM and
provides paths with high clearance, differently from RRT.
The propagation process of GBPF is shown in Figure 2

Figure 2. GBPF propagation. (a) Selection of a parent
bubble (green circle). (b) Find the new child bubble
center qprox. (c) Child bubble expanded. (d) Biased
selection of bparent. (e) Probabilistic foam. (f) Rosary
found and path extracted (red line).

During the foam propagation process, a configuration qaux
is sampled in the configuration space and the bubble with
the center closest to configuration qaux is selected as parent
bubble bparent (Figure 2a). Next, the configuration qnear
is found on the surface of the bubble bparent (Figure 2b),
and then, a new child bubble bchild centered in qnear is
expanded (Figure 2c), finishing a generation.

The method tends to propagate the foam towards to
qgoal due to the bias, defined as a small probability (such
as 0.05, as suggested by Lavalle et al. (2000)) for the
auxiliary configuration qaux to be sampled on the goal
configuration. Figure 2d illustrates this bias configuration
in the propagation process. In this way, the next parent
bubble will be the bubble with the center closest to qgoal.
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This process repeats until a bubble encloses the goal
configuration, ending the propagation of the probabilistic
foam, as seen in Figure 2e. Finally, the RosaryR, shown in
Figure 2f, is the sequence of overlapped bubbles from qgoal
to qinit, following the parentship relation between bubbles.
The resulted path can be easily extracted from the rosary.

3.1 GBPF pseudocode

The pseudocode of the Goal-biased Probabilistic Foam
method is described in Algorithm 1.

Algorithm 1 Goal-biased Probabilistic Foam

Input: qinit, qgoal, rmin, bias
Output: R

1: F = ∅
2: r ← expand bubble(qinit)
3: F.add({qinit, r})
4: while R = ∅ do
5: if rand() > bias then
6: qaux ← random config()
7: else
8: qaux ← qgoal;
9: end if

10: {qp, rp} ← nearest bubble(qaux, F )
11: qnear ← nearest config(qp, rp, qaux)
12: if interior(qnear, F ) = false then
13: rnear ← expand bubble(qnear)
14: if rnear ≥ rmin then
15: F.add({qnear, ri})
16: if ||qnear − qgoal|| ≤ rnear then
17: R ← F.get rosary()
18: return success
19: end if
20: end if
21: end if
22: end while

The method described in Algorithm 1 receives as input
qinit, qgoal, rmin, the value of bias, and returns the rosary
R. In line 2 the first bubble is expanded using the function
expand bubble(), and it is added in the foam F . At lines 5-
9 occurs the sampling of qaux. The function rand() returns
a uniform random value between [0,1].

The function nearest bubble(qaux, F ) obtains the bubble
(center and radius) inside F with the nearest center to
qaux. The function nearest config(qp, rp, qaux) returns the
nearest point qnear between the surface of this bubble and
the configuration qaux (lines 10 and 11 ). If qnear was not
sampled in the interior of another bubble in F (verification
using the function interior() at line 11 ), a new bubble is
expanded (line 12 ). If the radius of the new bubble is
greater or equal to rmin, this bubble is stored in F . The
method GBPF runs while the rosaryR is not found. Other
stopping criteria that can be considered are the execution
time and the total number of computed bubbles.

3.2 Path smoothing

The path obtained by GBPF is bounded by a sequence
of overlapped bubbles (rosary) that provide safety con-
straints. An interesting advantage of this region is that
the path remains safe while it crosses all bubbles from

the rosary through the intersection region between two
consecutive bubbles. Therefore, this feature can be used
to perform path adjustments and, consequently, smooth
the resulted path. Nascimento et al. (2020) present an
optimization approach to smooth the path obtained by
path planners based on the probabilistic foam. We use the
same approach in this work to make the path smoother.

4. RESULTS

To test the methodology presented in this paper, we
created a simulation environment in the Virtual Robot
Experimentation Platform software, also known as V-
REP 1 . This scenario represents a two-floored house, as
shown in Figure 3. Furthermore, we used the quadricopter
mobile robot available in V-REP as UAV to follow the
planned path by the Probabilistic Foam Method, which
was generated using MATLAB.

(a)

(b)

Figure 3. Scenario created in V-REP: (a) First floor
with initial (green) and final (blue) UAV position for
Simulation 1. (b) Second floor with the final UAV
position for Simulation 2.

In this paper, we created two experiments that represent
an indoor mission. In Experiment 1, the UAV will navigate
only in the first floor, from configuration qinit = [5.5, 1, 0.5]
m to qgoal = [5.4, 6.4, 0.5] m. These configurations qinit and
qgoal are represented by Initial Position and Final Position
1 in Figure 3a, respectively.

In Experiment 2, the UAV will navigate from the first
to the second floor, i.e., from qinit = [5.5, 1, 0.5] m,

1 https://www.coppeliarobotics.com/
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represented by Initial Position in Figure 3a, to qgoal =
[1.5, 7, 4.3], represented by Final Position 2 in Figure 3b.

The experiments were performed on a 1.8 GHz Intel
Core i7 with 8 GB RAM. The GBPF parameters were
rmin = 0.08 m and bias = 0.05. These values were
defined empirically by testing different configurations and
choosing the best results. The radius of the cylinder
(Figure 1) used for computing bubbles is rb = 0.2 m,
which was chosen based on the UAV geometry available
in V-REP. The path planning with GBPF for Experiment
1 is presented in Figure 4.

(a)

(b)

(c)

Figure 4. Path Planning in 1st Floor (a) Probabilistic
Foam. (b) Rosary. (c) Planned Path from initial
(green dot) to goal (blue dot) configurations.

In this first experiment where only the first floor was
considered, GBPF found a feasible path in 0.8321 seconds
with a total of 185 computed bubbles.

The GBPF path planning for Experiment 2 is presented
in Figure 5.

(a)

(b)

(c)

Figure 5. Path Planning from 1st to 2nd Floor (a) prob-
abilistic Foam. (b) Rosary formed. (c) Planned Path
from initial (green dot) to goal (blue dot) configura-
tions.

For the second experiment where the first and second
floors were considered, GBPF found a feasible path in
1.3661 seconds with a total of 873 computed bubbles.
The number of computed bubbles and the search time
were higher than the values from experiment 1, which is
expected, since the environment is more complex.
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An approximated representation of the realistic environ-
ment in V-REP was created in MATLAB considering only
simple cuboids in order to facilitate the computation of
the path planning. However, it is important to observe
that it was not necessary to compute the region of the
obstacles in the configuration space (C-obstacle) for the
calculation of the bubble, which is an important advantage
of the presented bubble modeling.

Finally, the application of the paths obtained for experi-
ments 1 and 2 with the UAVs in V-REP is presented in
Figures 6 and 7, respectively. Additionally, a demonstra-
tive video with the experiments’ results is available and
can be seen on https://youtu.be/f68tPGB0HTk.

Figure 6. Simulation with the UAV for the path obtained
by Experiment 1 considering one floor. The purple
spheres represent the rosary and the red line is the
trajectory performed by the UAV.

Figure 7. Simulation with the UAV for the path obtained
by Experiment 2 considering two floors. The purple
spheres represent the rosary and the red line is the
trajectory performed by the UAV.

In these simulations, it was possible to observe the men-
tioned advantage of the rosary structure. During the entire
UAV trajectory (red line), there was no part of the robot
outside the bubbles, even when the UAV performs some
maneuvers to follow the path. Thus, the UAV was capable
of performing the entire indoor mission without colliding

with any obstacles. Besides, it also kept distance from the
obstacles, proving the practicability of the method for this
application.

Considering that GBPF is a stochastic algorithm, the
method was performed 100 times (for both presented
scenarios) in order to analyze the processing time (Time),
the number of generated bubbles (Bubbles), and the length
(Path) of the obtained path. Table 1 presents the average
results for these simulations.

Table 1. Numerical results of processing time,
number of bubbles, and path length for many

simulations with the GBPF.

Apartment
floors

Time (s) Bubbles Path (m)

avg std avg std avg std

1st floor 0.554 0.544 252.280 149.998 11.136 1.276
1st and 2nd 2.091 0.786 923.600 183.110 21.898 2.024

The information shown in Table 1 is similar to the sim-
ulation results previously presented, which shows that
the method is in accord with the simulations performed.
Besides, it is possible to note that the method was capable
of finding paths in a relatively short time and that no errors
were found in any of the experiments.

5. CONCLUSION

This work presented an application of the Goal-biased
Probabilistic Foam for generating paths for an Unmanned
Aerial Vehicle to navigate in indoor missions. By using
a structure called bubble, the method created a path
considering only the free-space region, ensuring a safe
motion for the UAV.

The approach used for computing the bubble made feasible
paths, with high clearance from the obstacles. Besides, this
bubble enabled GBPF to plan paths without the need for
the obstacles explicit representation in the configuration
space (C-obstacle), which would make this application
computationally impracticable for complex scenarios.

Considering that the path planning strategy was executed
in Matlab and the UAV motion simulation was performed
in V-REP, it was necessary an approximated represen-
tation of the scene. In this sense, as future works, we
suggest the implementation of a mapping system using
consolidated techniques, which can expand the studies for
local planning in real-time.

Finally, this work brought some early results for the appli-
cation of Probabilistic foam-based path planning methods
for UAV motion. For future research, we intend to compare
these results with some state-of-the-art path planning al-
gorithms for this application. Furthermore, we also seek
to investigate strategies that allow safe navigation for
autonomous multi-UAV systems.
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