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Abstract: This paper deals with key-aspects in the identification of Nonlinear AutoRegressive
models with eXogenous inputs (NARX), with a particular attention to system with hysteresis.
The main contribution is the mathematical description of a class of input signals with dominant
spectral power in a specified frequency range and that are able to drive the system to different
operating points. Other important contribution is the discussion about the influence of some
identification meta-parameters and structural constraints under the predictive performance of
NARX models in the context of hysteretic systems. The identification procedure is illustrated
with two numerical and one experimental examples, a pneumatic valve with hysteresis-
type nonlinearity. NARX models are built which, due to their simplicity, are promising for
applications in nonlinearity compensation problems.
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1. INTRODUCTION

For many control applications, the first step is the iden-
tification of a valid model. The identification process can
be addressed from black-box or gray-box perspectives. In
the black-box approach, the system is modeled exclusively
from measured data whereas gray-box techniques also use
auxiliary information about the system (Aguirre, 2019).

In this sense, it is necessary to define the mathematical
representation of the models, such as differential equations
(Lin et al., 2013), neural networks (NNs) (Meng et al.,
2020), nonlinear autoregressive models with exogenous
inputs (NARX) (Billings, 2013), among others. Once the
mathematical representation is selected, the next step is to
collect and prepare the data set for identification purposes.
Thus, it is essential to define an input that will properly
excite the system for collecting representative data.

The next task is to select the model structure (Billings,
2013), which consists of choosing from a large set of can-
didates which will be part of the model. In the sequel, pa-
rameters are estimated with some optimization algorithm.
The last step is model validation, which requires different
data from those used in the previous steps.

A critical part of the identification process is the design
of an appropriate excitation input (Billings, 2013). In
related works (Martins and Aguirre, 2016; Abreu et al.,
2020) inputs were produced with filtered Gaussian noise.
It has been found that such inputs not always produce
best results. In order to overcome this shortcoming, a
specific procedure has been devised in which the user
can specify not only particular frequency ranges but also
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specific operating points. One of the aims of this paper
is to describe such a procedure. In the sequel two well
established techniques are used for structure selection.
The Error Reduction Ratio (ERR) (Korenberg et al.,
1987) aims to sort the most representative regressors in
the model, while Akaike’s Information Criterion (AIC)
(Akaike, 1974) is used to determine the number of terms.
The Extended Least Squares (ELS) algorithm (Ljung,
1999) is used to estimate the parameters for the chosen
structure.

Three systems are used for illustration purposes. The
first one is a simulated heat system with a polynomial
nonlinearity. For this example, we discuss the impact of
the increased noise on the model predictive accuracy.
A discussion about the benefits of gray-box approaches
is presented in the second example, which is a Bouc-
Wen model that describes the hysteretic behavior in a
piezoelectric actuator. We compare results from black-box
approaches, with those proposed in (Martins and Aguirre,
2016) and (Abreu et al., 2020). Finally, the last example
is an experimental pneumatic valve where we compare
models obtained in the literature with those identified in
this paper. An interesting issue is how the constraints used
in (Abreu et al., 2020) affect the NARX models predictive
accuracy. The improvements obtained here are related to
an appropriate choice of the meta-parameters and the use
of non-biased estimators.

The main contributions of this work are: i) to describe a
procedure to design suitable inputs that can reach various
operating points and can preserve the frequencies of in-
terest, and ii) to put forward practical recommendations
about the identification of NARX models for hysteretic
systems. It is worth mentioning that the models identified
here have simple and representative structures, which is
an appealing feature for compensator design purposes.
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This paper is organized as follows. Section 2 presents the
fundamental theoretical aspects, while Sec. 3 summarizes
the identification methodology. The numerical and ex-
perimental examples are in Sec. 4. Section 5 provides the
concluding remarks.

2. BACKGROUND

Consider a data set ZN={u(k), ys(k)}Nk=1, with N∈N+

samples, obtained by measuring the continuous input
u(t)∈R and output ys(t)∈R signals from a nonlinear dy-
namical system S, at sampling time Ts. The aim is to
identify a Nonlinear AutoRegressive model with eXoge-
nous inputs (NARX), namely M, to represent the relevant
nonlinear aspects of S (Leontaritis and Billings, 1985):

y(k)=f ℓ
(
y(k−1), . . . ,y(k−ny),u(k−τd), . . . ,u(k−nu)

)
, (1)

where y(k) ∈ R is the model output that predicts ys(k),
and f ℓ(·) is a nonlinear polynomial function with degree
ℓ ∈ N+. nu, ny ∈ N+ are the maximum lags for u and y,
respectively, and τd ∈ N+ is the pure time delay.

Considering the modeling error of M or residues, i.e.
ξ(k)=ys(k)−y(k), the following equation can be found:

ys(k) = ψ
T (k − 1)θ̂ + ξ(k), (2)

where θ̂ ∈ Rnθ is the parameter vector, ψ(k−1) ∈ Rnθ

is the regressor vector, whose j-th term ψj(k−1) ∈ R
corresponds to linear or nonlinear combinations up to
degree ℓ of the variables y(k−ky), ky ∈ {1, . . . ,ny},
and u(k−ku), ku ∈ {τd, . . . ,nu}, while T indicates the
transpose. Applying (2), for k=1, . . . ,N , over the data set
ZN , it is possible to build the following equation in matrix
form (Aguirre, 2019):

y = Ψθ̂ + ξ, (3)

where ξ ≜ [ξ(1), . . . , ξ(N)]T ∈ RN is the residual vector,

y ≜ [ys(1), . . . , ys(N)]T ∈ RN is the vector of output

measurements, and Ψ ≜ [ψ1, . . . ,ψnθ
] ∈ RN×nθ is the

regressor matrix composed by the regressors vectors ψj ≜
[ψj(1), . . . , ψj(N)]T ∈ RN , whose j-th term is defined as
detailed above for (2). As (3) is linear in the parameters,
classic regression methods can be used, e.g. Least Squares
(LS). The LS method provides the following parameter

vector θ̂LS optimal, in the sense of least squares of the
modeling error:

θ̂LS = [ΨTΨ]−1ΨTy. (4)

When ξ(k) is autocorrelated, the LS method is biased. It
tends to occur with the effects of noise, being the addition
of moving average (MA) terms a way to circumvent this
issue. However, this addition provides a nonlinear model in
the parameters, and the classic LS cannot be used. Fortu-
nately, there is a well established alternative to deal with
this problem that is the Extended Least Squares (ELS)
method (Billings, 2013). This iterative algorithm uses ξ(k)
from the previous iteration to extend the regressor matrix,
being executed until a convergence criterion is reached, as
illustrated by the following steps (Ljung, 1999):

1. Based on Eq. (4), estimate θ̂LS;

2. Calculate the vector of residues, ξ1 = y −Ψθ̂LS;

3. Define the iteration i = 2 and the convergence limit
ζ ∈ R+;

4. Build Ψ̃i = [Ψ
... ξi−1], the extended regression ma-

trix;
5. Estimate via LS the new vector of parameters at each

iteration: θ̂ELSi
= [Ψ̃T

i Ψ̃i]
−1Ψ̃T

i y;

6. Determine the current residues: ξi = y − Ψ̃iθ̂ELSi ;

7. If ||θ̂ELSi − θ̂ELSi−1 ||2 < ζ, make θ̂ELS = θ̂ELSi and
finish the process. Otherwise, make i = i + 1 and
return to step 4. || • ||2 is the quadratic norm.

The technique described above for determining the param-
eters must be applied to a previously identified structure.
The selection of this structure for M can be done by
combining both techniques described below.

2.1 The Error Reduction Ratio Method

The Error Reduction Ratio (ERR) quantifies the contribu-
tion of each term in explaining the data variance (Koren-
berg et al., 1987). To compute the ERR, each model regres-
sor must be orthogonal to the data, which can be achieved
with the Householder transformation (Householder, 1958).
Taking the average value of ys(k)

2 on the data, it is
possible to find the following expression (Billings, 2013):

1

N

N∑
k=1

ys(k)
2 =

1

N

nθ∑
i=1

θ̂2iwi
Twi +

1

N
ξT ξ, (5)

where wi = [wi(1) . . . wi(N)] is the vector of regressors wi

that are orthogonal to the identification data set. Thus,
the ERR due to the inclusion of the i-th regressor is:

[ERR]i =
θ̂2iwi

Twi

yTy
. (6)

The inclusion of each term in the model reduces the
variance of the modeling error. The index [ERR]i quan-
tifies the contribution of the i-th term in the reduction
of this variance. By selecting the regressors that provide
the highest values for this index, it is possible to reduce
the candidate set. This is relevant because the number of
candidate regressors tends to increase considerably with
the rise of ℓ (Billings, 2013). However, this technique only
sorts the candidate terms hierarchically, it is still necessary
to choose the number of candidate terms.

2.2 The Akaike’s Information Criterion

The Akaike’s Information Criterion (AIC) helps to define
the number of terms to be included in the model, by
minimizing a cost function (Akaike, 1974). The addition
of new terms increases the model complexity, which allows
a better fit. Considering that the terms were sorted with
ERR, a given number of terms nθ is enough to determine
Mnθ

with an output ynθ
(k). The variance of the residues,

σ2
ξ (nθ), tends to reduce when nθ increases, but this is no

guarantee of a better generalization performance. Thus,
the AIC is:

JAIC(nθ) = N ln[σ2
ξ (nθ)] + 2nθ, (7)

which tends to achieve a minimum for some value of nθ.
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2.3 NARX Hysteresis Modeling

Martins and Aguirre (2016) have shown that the inclusion
of any multi-function of the first difference of the input is a
sufficient condition for NARX models to predict hysteresis
behavior under the excitation of loading-unloading inputs.
Typically, it is suitable to include the first difference
of the input ϕ1(k)=u(k)−u(k−1) and its corresponding
sign function, ϕ2(k)=sign(ϕ1(k)) that is a multi-function.
A general extended NARX model set Mh is given by
(Billings and Chen, 1989):

y(k) = gℓ
(
y(k − 1), · · · ,y(k − ny), u(k − τd), · · · ,
u(k − nu), ϕ1(k − 1), ϕ2(k − 1)

)
, (8)

where gℓ(·) is a polynomial function of the regressor vari-
ables up to degree ℓ, and the other parameters were previ-
ously mentioned. Model Mh (8) presents two sets of equi-
libria under loading-unloading excitations: one for loading
with ϕ2(k)=1, and one for unloading with ϕ2(k)=−1 (Mar-
tins and Aguirre, 2016; Abreu et al., 2020).

It has been shown that for Mh, some regressors can be
excluded, regardless of the lags τu and τy (Abreu et al.,
2020), as summarized below:

(i) yp(k−τy),yp(k−τy)ϕ1(k−τu)q, and yp(k−τy)ϕ2(k−τu)q
for p>1, ∀q, (Aguirre and Mendes, 1996),

(ii)ϕq2(k− τu) for q > 1 (Martins and Aguirre, 2016), and
(iii) yp(k−τy)um(k−τu) and um(k−τu) ∀p,m (Abreu et al.,

2020).

Such constraints are specified for the identification of Mh,
considering Σy, the sum of parameters of all linear output
regressors, which is forced to be equal to 1. This set of
constraints ensure that the model output remains locked
when the reference becomes constant (Abreu et al., 2020).

3. INPUT DESIGN

The procedure proposed here takes into account the need
to excite the system in a wide frequency range and reach a
variety of operating points (Schoukens and Ljung, 2019).
Therefore, the procedure starts with determining the fre-
quencies, fi ∈ R+ for i=1, . . . , n, that will be preserved in
the signal. For instance, in the case of hysteretic systems,
it is necessary to preserve low-frequency information in
the identification data (Ikhouane and Rodellar, 2007). To
achieve this type of demand, fifth-order low-pass Butter-
worth filters, Hi(q), are designed with a cutoff frequency.
In this work, we consider that these filters are applied to a
purely random signal ei(k)=N (0, 1), k = 1, 2, . . . Ni, where
N (0, 1) is a standard normal distribution. Organizing the
data in a vector, ei = [ei(1) ei(2) . . . ei(Ni)], each
random signal is conditioned to have 1 as maximum and
−1 as minimum as follows:

ei(k) = 2

(
ei(k)−min[ei]

max[ei]−min[ei]

)
− 1, (9)

and its number of samples Ni is specified to have an input
signal u(k) withN samples, such thatN=N1+N2+ · · ·+Nn.

To ensure that the signal u(k) can achieve a variety of
operating regions, operating points oj ∈ R for j=1, . . . , v

are defined. For each oj , an amplitude Gj is defined around
the point. In addition, the values assigned for each number
of samples Ni must be defined as multiples of the number
of operating points, v. This is necessary since it is intended
that each frequency has information around all operating
points. In this way, the signal si(k) that is a part of u(k)
is produced as follows:

si(k)=



αi,1Hi(q)ei(k)+o1, k=1, 2, . . . ,
Ni

v
...

...

αi,vHi(q)ei(k)+ov, k=(v−1)
Ni

v
+1,

(v−1)
Ni

v
+2, . . . , Ni.

(10)

The constants αi,j are set to limit the excursion of the
input around each operating point. For a given operating
point oj , we have αi,j=Gj/max[ei(ki,j)] for which ki,j =
(j− 1)(Ni/v)+1,(j− 1)(Ni/v)+2, . . . , j(Ni/v). Applying
(10) for i = 1,2, . . . ,n, we get s1, s2, . . . , sn and u is the
horizontal concatenation of these inputs:

u = [s1 s2 . . . sn]
T . (11)

Finally, selecting the maximum frequency fi, the low-pass
filter related to this frequency is used to eliminate possible
higher frequencies originating from concatenation.

This procedure is performed twice, in order to have dif-
ferent realizations for identification and validation inputs,
which are applied to the system for data collection. To
achieve more robust experiments, Gaussian noise was
added directly to the output to obtain σn/σs = 5%, where
σn is the standard deviation of the noise, and σs is the
standard deviation of the signal.

Identification data is produced using the input designed
in this section. The ERR and AIC (Sec. 2) are used
to determine the model structure and parameters are
estimated using the ELS method.

4. EXAMPLES

The identification procedure proposed in Sec. 3 is applied
in this section for three examples. The first one refers
to a heating system modeled by a Hammerstein model
with a polynomial nonlinearity; see Sec.4.1. The second
is a Bouc-Wen model that simulates the hysteresis of a
piezoelectric (PZT) device (Sec. 4.2). The last one refers
to an experimental pneumatic valve; see Sec. 4.3. To assess
the prediction performance of the obtained models, we use
the Mean Absolute Percentage Error (MAPE) index:

MAPE =

∑N
k=1 |ys(k)− y(k)|

N |max(y)−min(y)| . (12)

4.1 A Heating System

Consider a small electrical heater modeled by the following
Hammerstein structure (Aguirre et al., 2005):

y(k) =β1y(k − 1) + β2v(k − 1) + β3y(k − 2) + β4v(k − 2),

v(k) =p1u(k)
2 + p2u(k), (13)

where u(k), 0≤u(k)≤1, is the voltage applied to the heater
that changes the normalized temperature y(k) that is
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affected by a quadratic nonlinearity with output v(k),
which is the fictitious intermediate signal that appears
in block-oriented models. Since one only has access to
the physical signals u(k) and y(k), the identification of
block-oriented models is challenging (Aguirre et al., 2005).
The data set of such a system is the same considered
in (Aguirre et al., 2002), which is available in https:
//bit.ly/3iQ6rCF. Here, we reestimate the parameters
of model (13), obtaining: p1 = 4.639331 × 10−1, p2 =
5.435865 × 10−2, β1 = 1.205445, β2 = 8.985133 × 10−2,
β3 = −3.0877507 × 10−1 and β4 = 9.462358 × 10−3. This
reestimation was necessary due to the parameters provided
in (Aguirre et al., 2005) having few decimal digits, which
severely impacts in the results for discrete systems.

The independent term in the second-order polynomial that
gives v(k) was omitted to ensure y = 0 when u = 0.
p1 and p2 were estimated directly from static data using
LS, although β’s were estimated from dynamical data
using ELS algorithm. The operation region of the model
is u(k) ∈ [0, 1] and y(k) ∈ [0, 0.5]. For (13), the free-run
validation result of MAPE is about 1.16%.

Henceforth, the Hammerstein model (13) will be treated
as the system S to be identified using a NARX poly-
nomial model M (1). The input u(k) was designed as
(10) and (11) with: n=2, f1=0.001Hz, f2=0.005Hz, v=3,
o1=0.3V, o2=0.5V, o3=0.7V, G1=G2=G3=0.2V, N =
2000, N1=1000, and N2=1000. Figure 1 shows the Monte
Carlo Test results to assess how the predictive capacity of
the identified models degrades, using the MAPE index, as
the noise power is increased, i.e. σn/σs (see Sec. 3).

1
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Fig. 1. Monte Carlo tests are performed to evaluate the MAPE [%] variation in
function of the raising from SNR [%]. For each SNR value, 50 Monte Carlo
tests are performed. We show the mean of 50 tests (	) and ±2 standard
deviations (- -). The continues lines (–) are only illustrative, since the tests
were taken for successive raises of 2% in SNR.

As aforementioned, in the examples used, Gaussian noise
was added directly to the output to yield a 5% SNR. Taking
` = 3 and ny = nu = 3, the ERR method selects the more
representative regressors and the AIC criterion is calculated
as shown in Fig. 2. By minimizing the AIC criterion, the
following three-term model M was obtained according to the
procedure detailed in Sec ??:

y(k) = θ̂1y(k − 1) + θ̂2u(k − 2)2 + θ̂3y(k − 2), (1)

where θ̂1 = 8.958185×10−1, θ̂2 = 6.393347×10−2, and θ̂3 =
−1.746750 × 10−2. The free-noise results for the validation
data set are shown in Fig. 3. A more detailed assessment of
this model for sinusoidal inputs can be found in Table I in
[1]. The mentioned work provide an compensation approach
based on this identified model.
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Fig. 3. Noise-free validation data for model M (1): continuous line (–)
presents values of y(k) for the system S (??), while the dashed line (- -) is
the free-run simulation of model (1).

Figure 1. Monte Carlo evaluation, MAPE [%], of models
estimated from the identification data under different
noise power, σn/σs [%]. (⊖) is the average of 50 runs,
and (- -) refers to ±2 standard deviations.

The Monte Carlo Tests can be summarized as follows. For
each test, the system output ys(k) is added with a Gaus-
sian noise that has a given value of the ratio σn/σs.The
values of σn/σs vary from 0% to 30% with successive
increases of 2%. For each σn/σs value, 50 perturbed output
signals are generated and their respective models are iden-
tified considering the previous recommendations. Finally,
we compute the mean and standard deviation of MAPE
for each σn/σs value. From Fig. 1, it is possible to see that
the model accuracy tends to be damaged as the values of
σn/σs are increased. Also, the predictability is harmed,
since there is an enlargement in the confidence intervals.

As mentioned in Sec. 3, a Gaussian noise was added
directly to the output to yield a σn/σs=5%. Taking
ℓ=3 and ny=nu=3, using the ERR together with the

AIC criterion and the ELS for parameter estimation, the
following structure is selected for M:

y(k) = θ̂1y(k − 1) + θ̂2u(k − 2)2 + θ̂3y(k − 2), (14)

where θ̂1=8.958185× 10−1, θ̂2=6.393347× 10−2, and θ̂3 =
−1.746750×10−2. The noise-free results for the validation
data set are shown in Fig. 2 with a MAPE of about 1.80%.

Identification of NARX Models

for Compesation Design

Lucas A. Tavares ∗ Petrus E. O. G. B. Abreu ∗ Luis A. Aguirre ∗

∗ Graduate Program in Electrical Engineering, Universidade Federal de
Minas Gerais, Belo Horizonte, MG, Brazil (e-mails:

amarallucas@ufmg.br, petrusabreu@ufmg.br, aguirre@ufmg.br)

Abstract:

Keywords: System Identification; Hysteresis.

1. INTRODUCTION

200 600 1000 1400 1800
0

0,1

0,2

0,3

0,4

y
(k

)

k

? The authors acknowledge the financial support given by CNPq and
FAPEMIG.

Figure 2. Noise-free validation results for heating system.
(–) is the system output y(k) (13), and (- -) is the
free-run simulation of model (14).

4.2 A Hysteretic System

Here, the benchmark system is a piezoelectric actuator
(PZT), which is an unimorph cantilever, simulated by the
Bouc-Wen model given below (Rakotondrabe, 2011):

ḣ(t) =αbwu̇(t)− βbw|u̇(t)|h(t)− γbwu̇(t)|h(t)|,
y(t) =νyu(t)− h(t), (15)

where u(t)[V] is the voltage input, y(t)[µm] is the position
output. The hysteretic loop is determined by αbw =
0.9[µm/V] and βbw = γbw = 0.008[V−1], while νy =
1.6[µm/V] is a weight factor for the output. Then, (15)
is now the system S to be identified and its simulation
is done using a fourth-order Runge-Kutta method with
integration step δt = 5ms.

To compare the different hysteresis modeling strategies,
three NARX models are obtained. The excitation input
u(k) is designed according to (10) and (11) with: n=2,
f1=0.2Hz, f2=5Hz, v=2, o1=o2=0V, G1=25V, G2=50V,
N=19200, N1=16000 and N2=3200. Gaussian noise was
added directly to the output to yield a σn/σs=5%, as
in the previous example. Also, we assume that ℓ=3 and
ny=nu=1, for the three models, and their structure are
chosen using the ERR together with AIC, while the
parameters are estimated using the ELS method.

The first model is identified using the gray-box recommen-
dations proposed in (Martins and Aguirre, 2016). So, u(k),
y(k), ϕ1(k)=u(k)−u(k−1), and ϕ2(k) = sign(ϕ1(k)) are
chosen as candidate regressors, thus yielding:

y(k)=θ̂1y(k−1)+θ̂2ϕ1(k−1)ϕ2(k−1)u(k−1)

+θ̂3ϕ1(k−1)ϕ2(k−1)y(k−1)+θ̂4ϕ1(k−1), (16)

where θ̂1=1.000099, θ̂2=6.630567×10−3, θ̂3=−6.247018×
10−3, and θ̂4 = 7.892915. These parameter values com-
bined with structure (16) are referred to here as Mh,1.

Based on the recommendations extracted from (Abreu
et al., 2020), the second model has the same structure as
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model Mh,1 (16), since it meets the structural constraints
(i), (ii), and (iii) of Sec. 2.3. Conversely, for model (16)
to comply with the constraints on the parameters, i.e. to
ensure Σy=1, we reestimate their parameters with the
Constrained Least Squares (CLS) method (Draper and
Smith, 1998). Here, it is important to highlight that the
CLS is used with the deterministic structure presented in
(16). As a result, the following parameters are estimated:

θ̂1=1.000000, θ̂2=6.630913× 10−3, θ̂3=−6.157515× 10−3,

and θ̂4=7.893146. Hence, the combination of these param-
eter values with structure (16) is symbolized here byMh,2.

Finally, for the same methodology aforementioned, but
from a black-box perspective, model Mbb is identified as:

y(k) = θ̂1y(k−1)+θ̂2y(k − 2) + θ̂3u(k − 1), (17)

for which θ̂1=1.331425, θ̂2=−3.407265 × 10−1, and θ̂3 =
8.692694× 10−3. The predictive performance achieved for
these three identified models evaluated for different sinu-
soidal inputs is shown in Table 1. Such results indicate that
Mbb, a purely black-box model, is not able to represent the
system. Also, both models Mh,1 and Mh,2 have better
predictive power and their results are very similar.

Table 1. Model performance for sinusoidal exci-
tations u(k)=Gsen(2πfk), quantified by (12).

Model f [Hz]
G [µm]

20 30 40

Mh,1

0.2 2.6% 2.0% 4.7%
1.0 2.7% 1.3% 4.1%
5.0 7.7% 5.0% 3.6%

Mh,2

0.2 2.7% 2.4% 4.9%
1.0 2.7% 1.3% 4.1%
5.0 7.6% 5.0% 3.6%

Mbb

0.2 14.1% 10.6% 8.6%
1.0 29.0% 27.4% 26.7%
5.0 31.4% 30.4% 30.2%

In Fig. 3, the performance of models Mh,1 and Mh,2 are
compared for time-varying inputs that become constant.
In steady-state, as ϕ̄1=ϕ̄2=0, both models become ȳ=Σy ȳ,
having only one eigenvalue equals to Σy. The instability

for Mh,1 derives from Σy=θ̂1=1.000099>1. On the other

hand, Mh,2 was estimated to ensure Σy=θ̂1=1, so that
the model has a continuum of steady-state solutions, which
enables it to remain at a constant value. For this model, a
steady-state error of about 0.48µm (3.2% of the range) is
found in Fig.3(b), and of about 0.10µm (0.7%) in Fig.3(d).
Hence, in comparison with the strategy of (Martins and
Aguirre, 2016), models that consent to the constraints pro-
posed in (Abreu et al., 2020) could have similar prediction
performance, with the benefit of representing the behavior
for time-varying inputs that become constant.

4.3 Experimental Results

This section identifies two NARX models for a pneumatic
valve, whose results are compared with models that have
been addressed by Rakotondrabe (2011) and Abreu et al.
(2020) and that are briefly revisited here. For this valve,
the input is a voltage signal that after V/I and I/P
conversions becomes a pressure signal that changes the
output, i.e. its stem position. Likewise, as defined by
Abreu et al. (2020), the sampling time is Ts = 0.01 s and
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Figure 3. Validation results for u(k)=20sen(4πk) that
becomes constant with final value −18.6V in (a)
and 16.9V in (b), whose corresponding system out-
put (–) and estimated output of modelsMh,1 (-·-) and
Mh,2 (- -) are in (c) and (d), respectively.

the identification input signal is the same used by them,
which was generated in a similar way to that proposed
in Sec. 3. Specifically, u(k) can be obtained as (10) and
(11) with: n=1, f1=0.1Hz, v=1, o1=3V, G1=0.8V, and
N=N1=20000 (200 s long).

For the following two NARX models, the tools used to
obtain their structures and parameters are the same as
in the previous example, i.e. ERR together AIC and ELS,
respectively. Also, it is assumed that ℓ=3, ny=2 and nu=1.

1) Mh refers to the model that includes ϕ1(k) and ϕ2(k),
and also adopts the constraints proposed in (Abreu et al.,
2020). These constraints are: the exclusion of some regres-
sors showed in (i), (ii) and (iii), and force the parameters
to comply with Σy=1, see Sec. 2.3. This model is given by:

y(k)=ρ̂1y(k − 1) + ρ̂2y(k − 2) + ρ̂3ϕ1(k − 1)

+ρ4u(k − 1)ϕ1(k − 1)ϕ2(k − 1)

+ρ̂5y(k − 2)ϕ1(k − 1)ϕ2(k − 1), (18)

with ρ̂1 = 9.76×10−1, ρ̂2 = 2.40×10−2, ρ̂3 = 1.19×10−1,
ρ̂4 = 3.76, and ρ̂5 = −4.73. Note that, Σy = ρ̂1 + ρ̂2 = 1.

2) Mh,ucs is identified assuming only the insertion of ϕ1(k)
and ϕ2(k) as proposed in (Martins and Aguirre, 2016), so:

y(k)=θ̂1y(k − 1) + θ̂2y(k − 2) + θ̂3u(k − 1)

+θ̂4ϕ1(k − 1)2ϕ2(k − 1) + θ5y(k − 1)u(k − 1)

+θ6u(k − 1)ϕ1(k − 1)ϕ2(k − 1)

+θ̂7y(k − 2)ϕ1(k − 1)ϕ2(k − 1), (19)

where θ̂1 = 9.73×10−1, θ̂2 = 2.44×10−2, θ̂3 = 1.13×10−3,

θ̂4=2.70×102, θ̂5 = 1.52×10−3, θ̂6 = 4.07, and θ̂7=−5.18.

Afterward, three models already established in the litera-
ture are considered for comparison purposes. The first one
is a phenomenological hysteresis model stated below.

3) Mbw is a Bouc-Wen as in (15). To predict the valve out-
put, its parameters are reestimated with an evolutionary
technique described in (Tavares et al., 2019), yielding:

ḣ(t) =7.54× 10−1u̇(t)− 4.96|u̇(t)|h(t)− 3.61u̇(t)|h(t)|,
y(t) =7.21× 10−1u(t)− h(t). (20)
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The last two models below were identified based on the
same valve and data set used here, which are taken from
(Abreu et al., 2020). However, unlike our strategy, a biased
method is used to estimate parameters, and the adopted
meta-parameters were ℓ=3, ny=1 and nu=2.

4) Mh,2 consents with the same constraints used for
(18), plus an additional one required by the compensation
method to isolate the input (Abreu et al., 2020), yielding:

y(k)=y(k − 1)− 19.76ϕ1(k − 2) + 19.32ϕ1(k − 1)

+9.44ϕ2(k − 2)ϕ1(k − 2)u(k−2)

−12.61ϕ2(k−2)ϕ1(k−2)y(k−1). (21)

5) M̆h is a model that describes the inverse relationship
between u(k) and y(k). So, the system output y(k) be-
comes the model input, while the model output is the es-
timated input û(k). Also, the included regressors become:

ϕ̆1(k)=y(k)−y(k−1) and ϕ̆2(k)=sign[ϕ̆1(k)]. For the same
constraints used for (18), with appropriate conversions for
the inverse model, the following model was identified:

û(k)=û(k−1) + 86.67ϕ̆1(k−1)− 85.02ϕ̆1(k−2)

−0.98ϕ̆1(k−1)y(k−2) + 1.72ϕ̆2(k−2)ϕ̆1(k−2)y(k−2)

−1.13ϕ̆2(k−2)ϕ̆1(k−2)û(k−1). (22)

The simulation of each model for a sinusoidal input pro-
duced the results shown in Fig. 4, in which the left side
refers to the results of the directed models and the right
side for the inverse model M̆h. As can be seen, the models
provided close results. 1
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Figure 4. Validation results for the pneumatic valve. Left
column refers to the direct models and right col-
umn to the inverse model. (a) is the input u(t) =
0.45sin(0.2πt+π/4)+3V and the corresponding mea-
sured output y(t) (–) and estimated output of models
Mh (- -), Mh,ucs (-·-), Mbw (–) and Mh,2 (· ·) are in
(c); while in (b) is a smoothed version of y(t) in (c),
whose corresponding output that is u(t) (–) in (a) and

estimated output of inverse model M̆h (- -) are in (d).
(e) and (f) show the hysteresis loops for the data in
(c) and (d), respectively.

A relevant feature is the ability of such models to mimic
hysteresis behavior when subjected to a loading-unloading

input that, at some point, becomes constant, as considered
in Fig. 5. Note that as the input becomes constant during
loading and unloading with the same final value (see left
side of Fig. 5), the hysteresis behavior leads to different
values for the output (Abreu et al., 2020). Also, it is
noteworthy that this feature is ensured in the NARX
models identified with the constraints revisited in Sec. 2.3
(Abreu et al., 2020). Conversely, without such constraints,
the NARX models may diverge over time or converge to
a single final value, either during loading or unloading
regimes, as seen for Mh,ucs (19) in Fig. 5(c). The right
side of Fig. 5 refers to the results of the inverse model.
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Figure 5. Results of models and valve for a time-varying
input that becomes constant. (a) is the input u(t) =
0.45sin(0.2πt + π/4) + 3V that becomes constant
during loading (· ·) and unloading (–) with final value
3.209V, the corresponding output of valve y(t) (–) and
models Mh (- -), Mh,ucs (-·-), Mbw (–) and Mh,2

(· ·) are in (c); while in (b) is a smoothed version of
y(t) for loading (· ·) and unloading (–) in (c), whose
corresponding output that is a smoothed version of
u(t) for loading (· ·) and unloading (–) in (a) and

output of inverse model M̆h (- -) are in (d).

For comparison purposes, the errors mentioned below re-
fer to those in steady-state for the unloading regime. As
Mh,ucs has a single stable fixed point, its output converges
to this point resulting in an error of about 0.22V. The
phenomenological model Mbw(20) can hold the output
value instantly with an error of about 0.024V. Models
Mh,2 (21) and M̆h (22) are also able to remain at their last
output value when the input becomes constant, since these
models are built with the aforementioned constraints. Such
models present errors of about 0.043V and 0.170V, re-
spectively. These considerable errors are related to the
fact that during the transition to steady-state, only the
included regressors with delay k−1 are immediately can-
celed. Therefore, as both models have regressors that de-
pend on the instant k−3, e.g. ϕ1(k−2)=u(k−2)−u(k−3),
and the respective coefficients have high magnitudes, such
terms produce sudden changes during transition, giving
rise to considerable errors in the steady-state.

To reduce this type of error, some recommendations are
provided below. Firstly, note that in comparison with the
other NARX models, Mh(18) has lower errors, i.e. 0.020V.
It must be stressed that this model is the unique that
satisfy the constraints of Sec. 2.3 and is built according
to this work. Although in (Abreu et al., 2020) is required
nu > τd, note that our models can be identified considering
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nu = τd = 1. It is noteworthy that this assumption used in
(Abreu et al., 2020) is demanded since the input regressor
must be explicit to apply the compensation techniques
presented in that paper. As the models obtained in this
work do not consent with this constraint, new techniques
will be pursued to employ them in a compensation context.

Besides, note that model Mh(18) has parameters with

lower magnitudes when compared withMh,2 and M̆h. The
parameters of the models identified by Abreu et al. (2020)
were estimated with a biased method. It suggests that the
use of methods that avoid the parameter polarization and
the appropriate choice of meta-parameters (nu = τd = 1),
as considered in this work, presents a promising way to
reduce such errors in steady-state.

5. CONCLUSION

This work has described a concise mathematical formula-
tion for designing excitation signals. In this design, it is
possible to select the frequency range where most spectral
energy is concentrated and the operation regions where the
system will be driven.

A number of practical aspects in the identification of
hysteretic systems has been discussed. In particular, the
effect of constraints proposed in Abreu et al. (2020) is
detailed. It is shown that without such constraints the
model behavior under loading and unloading is not correct.
Another aspect that has been investigated is that of
unbiased parameter estimation in conjunction with an
appropriate selection of identification meta-parameters.
It has been shown that following such recommendations
yields models with lower errors in steady-state.

The discussions have been made in the context of three ex-
amples. The obtained models, which have simple structure
with no more than 5 terms, are not compatible with the
methods proposed in (Abreu et al., 2020) for compensation
purposes. For this reason, a new technique was recently
developed by (Tavares et al., 2020, 2021, in press) to
circumvent this issue where these identified models are
used.
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