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Abstract: This work proposes the computer vision application for the position and attitude
estimation of an unmanned aerial vehicle (UAV) quadrotor navigating in an indoor Global
Positioning System (GPS) denied environment. The system, composed of the quadrotor and
one camera fixed outside the vehicle, was simulated in a 3D virtual environment. The results
showed that computer vision improved the attitude and position estimation of the quadrotor.
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1. INTRODUCTION

The use of UAVs has increased in the last years due to
their applications in several sectors such as agriculture,
logistics, mapping and searching. Advancement in embed-
ded systems technology allows UAVs to perform more
complex and autonomous tasks, which demand more effi-
cient control systems. However, an efficient control system
requires knowledge of the system states obtained through
the available sensors.

In general, the UAV autonomous navigation is based
on Inertial Measurement Unit (IMU) and on GPS for
vehicle attitude and position estimation. An IMU may be
composed of two MEMS sensors (Micro Eletromechanical
Systems), an accelerometer that measures the body linear
velocity, and a gyroscope that provides angular speeds in
the body frame. Nevertheless, these sensors are susceptible
to errors, which accumulate over time, commonly known
as drift, in addition to other random errors. One of the
most common solutions is using GPS to track the vehicle
position and compensate the error (Suwandi et al., 2017).
However, in some indoor environments, the GPS signal is
degraded, making its use impractical

Although the IMU containing gyroscope and accelerom-
eter can estimate the roll and pitch angles (Figure 1),
the integration of both does not provide the yaw angle
accurately (Wilson et al., 2019). The yaw angle can be
estimated using a magnetometer, a sensor capable of mea-
suring the Earth magnetic field direction. However, this
sensor can be affected by noise present in the environ-
ment (e.g., magnetic fields generated by electronic devices)
(Nazarahari and Rouhani, 2021).
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Figure 1. The angles that define the attitude of the UAV:
Roll φ, Pitch θ and Yaw ψ angles. Source: (Oliveira
et al., 2019)

.

In order to overcome the problem of estimating the posi-
tion and yaw angle, computer vision has been included
in the procedure. Despite the high computational cost
required, several studies applied visual techniques to ob-
tain system state estimation (Lee et al. (2012), Li et al.
(2017), Santos and Gonçalves (2017), Botta and Quaglia
(2020)) since its information is more reliable compared to
MEMS sensors. As the computational power of the low-
cost embedded system grows up in the last years, computer
vision has become a feasible alternative when the inclusion
of GPS and magnetometer are not available or have low
reliability.

This work studies the application of computer vision
combined with an IMU in the problem of UAV position and
attitude estimation. The position estimation is performed
exclusively by the camera fixed outside the vehicle, while a
Multiplicative Extended Kalman Filter (MEKF) is applied
to obtain the quadrotor attitude. The filter performed
a sensor fusion between the camera and MEMS sensors,
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simulated in a virtual environment based on Python and
OpenCV (Bradski, 2000).

2. STATE ESTIMATION

2.1 Computer Vision

Among computer vision techniques, the application of
fiducial markers has been widely used in several studies.
Fiducial markers are geometric figures characterized by
predetermined shapes and sizes (See an example in Figure
2). These markers have geometric simplicity, which facil-
itates their identification by the digital image processing
algorithms.

Figure 2. Fiducial Marker ArUco. Source: (Garrido-Jurado
et al., 2014)

The algorithm proposed in this work is based on the
marker detection technique developed by Garrido-Jurado
et al. (2014). The main goal of the detection algorithm
is finding the marker location, in pixels units. Then,
the algorithm searches for correspondences between the
coordinates on the image plane and the points in the real
world. This correspondence is called Perspective-n-Point
Problem (PnP) (Eivazi Adli et al., 2020).

Figure 3. The coordinate systems of the estimation prob-
lem. Source: Adapted from Bradski (2000)

The projection of the n real points on the image plane
(Figure 3), according to the pinhole camera model is
defined by:
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where (u, v) are the image plane coordinates in 2D,
(XW , YW , ZW ) are the real world coordinates in 3D
and s is the scale factor. The first matrix represents
the camera intrinsic parameters and provides information
regarding the central points of the image (cx, cy) and
also the focal lengths, fx and fy (Gonzalez and Woods,
2007). These parameters are obtained through camera
calibration processes, therefore it is particularly important
having this information a priori. Then, the homogeneous
transformation matrix of the camera is presented, where
the terms rij refers to the rotation matrix that indicates
the orientation of the camera, and the parameters ti its
translation with respect to the detected object.

The points in the marker frame can be related to the
camera frame using
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where (XC , YC ,ZC) are the camera frame coordinates.

The marker provides four known points both in the image
plane and in the real world. The OpenCV has a function
called solvePnP that returns the rotation vector r and
the translation vector t, both of them w.r.t the marker
reference. In order to obtain the rotation matrix from r,
the Rodrigues formula is applied (Piña, 2011):

R = I + [r]x sin θ + r2 (1− cos θ) (3)

where R is the rotation matrix, the θ =
√
r2x + r2y + r2z ,

and [r]x is the skew-matrix of r defined as,

[r]x =

[
0 −rz ry
rz 0 −rx
−ry rx 0

]

In order to find the marker coordinates w.r.t the inertial
frame, a coordinate transformation has to be applied, the
relation between the frames is shown in Figure 4.

Figure 4. The coordinate transformations involved in the
procedure.
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In Figure 5, we present the pseudo-algorithm that de-
scribes the entire process from marker detection to its
orientation w.r.t the inertial frame.

Figure 5. Marker Detection and Orientation Estimation
Pseudo-Algorithm.

2.2 Attitude Kinematics

In aerospace systems, it is common to represent the
attitude through quaternions since it is free of singularities
and has an algebra that requires low computational power.
A quaternion can be defined as

q = [qv qs]
T

where qv = [qx qy qz]
T

is the vector component and qs is
the scalar component.

The dynamics of a quaternion can be expressed by,

q̇ =
1

2
Ω(ω)q

where

Ω(ω) =

[
−[ω]x ω
−ωT 0

]
where ω is the angular speed in body frame and [ω]x is
the skew-matrix of ω.

When the sampling frequency of the angular velocity has
high rate, the kinematics can be discretized employing a
series of powers, thus (Crassidis and Junkins, 2012),

q−k+1 = Ω(ω+
k )q+k (4)

with

Ω(ω+
k ) =
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where ω+
k is the gyroscope angular speed in k and ∆t is the

sensor sample rate. The superscript symbol ’+’ indicates
that such variable was compute after the measurement,
i.e a posteriori, whereas the subscript symbol ’−’ implies
that the variable was obtained before the measurement, i.e
a priori.

2.3 Sensors Model

MEMS gyroscopes are capable of providing the angular
velocity on each axis of the sensor and can be expressed in
a simplified way by the equation (Sabatini, 2011),

ωm = Kgωb + βg + vg (5)

(6)

where ωm is the measured angular speed in each axis, Kg

is the scale factor matrix, ωb is the angular speed vector
in body frame and vg is the white Gaussian noise vector.
βg is the drift (or bias) vector, modeled by:

β̇g = vu (7)

where vu is a white Gaussian process noise vector.

The accelerometer measures the linear acceleration of a
body and can be modeled as follow (Sabatini, 2011),

am = KaR
B
E (g + ab) + βa + va (8)

where am is the linear acceleration measured, Ka is the
scale factor matrix, RB

E is the rotation matrix from inertial
frame to body frame, g is the gravity acceleration, consid-

ered constant and given by [0 0 −9.81]
T

, βa is the bias
vector and va is the white Gaussian measurement noise
vector.

The measurement model given by an observation vector
from a sensor is (Crassidis and Junkins, 2012),

bi = A(q)ri + vi (9)

where bi is the i-th observation vector, ri is the i-th
reference vector, vi is the i-th white Gaussian noise vector
with variance σi, and A(q) is the rotation matrix obtained
by q,

A(q) =
[
qs − qTv qv

]
I + 2qvq

T
v − 2qs[qv]x

The measurement noise covariance matrix, in the instant
k, is expressed as follow,

Rk,i = σ2
i I (10)
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2.4 Multiplicative Extended Kalman Filter

This work implemented an alternative version of Extended
Kalman Filter (EKF) used, in general, for attitude es-
timation using the quaternion approach which is known
as MEKF. In a classical approach, the EKF update step
would violate the quaternion norm constraint. In order
to clarify such a problem, an example proposed by Cras-
sidis and Junkins (2012) is exposed. A real quaternion

q =
[√

0.999 0 0
√

0.001
]T

and a estimated quaternion

q̂ = [1 0 0 0]
T

are considered, where both are used in the
additive EKF update step, given by the error,

∆q = q̂− q

Note that the operation results in a quaternion that does
not have a unitary norm. To deal with this problem, the
MEKF uses the definition of error between two quater-
nions, given by the product,

δq = q⊗ q̂−1 (11)

where δq is the error quaternion, q̂−1 is the estimated
quaternion and q is the real quaternion.

In the MEKF, the quaternion is used to attitude propa-
gation, whereas a tridimensional attitude vector α is used
as local attitude-error state in EKF. The estimation error
is performed using the a priori quaternion as reference
(Chang et al., 2016). The quaternion is updated as the
product beetween the deviation calculated from α and the
estimated quaternion (Markley, 2003),

q = δq(α)⊗ q̂ (12)

where δq(α) represents the rotation, parameterized by
α, from the estimated quaternion to the real one. This
operation preserves the unitary norm constraint.

The estimated states used in EKF are,

∆x̃ =
[
δαT ∆βT

]T
(13)

The discrete transition matrix of the EKF states can be
expressed by (Crassidis and Junkins, 2012),
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[
Φk,1 Φk,2

0 I3x3

]
(14)

where
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Table 1. MEKF Recursive Estimation

Initialization: q̂0, β̂0, P0

Measurement and Covariance Update:
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Attitude Update:
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Propagation:
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where ω̂+
k is the angular velocity estimated vector, which

is determined through the angular velocity measured by

the gyroscope ω̃k and the estimated bias β̂k.

The discrete process noise transition matrix is,

Gk =

[
−I3x3 03x3
03x3 I3x3

]
(15)

with discrete process noise covariance matrix being,

Qk =

[(
σ2

g∆t+ 1
3
2
u∆t3

)
I3x3

(
1
2
2
u∆t2

)
I3x3(

1
2
2
u∆t2

)
I3x3

(
2
u∆t

)
I3x3

]
where σ2

g and σ2
u are the noise covariances of vg and vu,

respectively. The standard deviations of the sensors were
obtained by collecting 3000 samples of the measurements
when they were at rest. The values are shown in Table 2.

The recursive estimation process of MEKF is summarized
in Table 1.

2.5 Simulation

The proposed system consists of a quadrotor and a camera
fixed somewhere in the environment (Figure 6). Both
were implemented virtually based on the work of Costa
Fernandes et al. (2020). The camera is fixed in p =
(0,−2.1, 7.5) m, and rotated 30◦ around y-axis in camera’s
frame, considering that the standard orientation of the
camera is facing down. The camera calibration process
followed the same steps described by Costa Fernandes
et al. (2020).

The position of the quadrotor is obtained directly by
the camera measurements, in meters. In order to adjust
the measurements, calibration curves were obtained using
linear regression.
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Figure 6. Graphical representation of the simulation envi-
ronment.

xest = 0.868tx − 2.52

yest = 0.978ty − 0.0563

zest = 0.932tz + 0.725

where tx, ty and tz are the measured quadrotor position
provided by the camera, xest, yest and zest are the adjusted
quadrotor position in inertial frame.

On the other hand, the attitude is obtained through
MEKF using camera and MEMS sensors data. The ob-
servation vectors considered are

ya =
am
||am||

yc = RMF cx

where ya is the normalized accelerometer vector, as de-
scribed in (8). The camera observation vector, yc, is de-
termined by the product between the unit vector cx =

[1 0 0]
T

and the rotation matrix RMF , which is deter-

mined using the Algorithm 1, note that RMF = RT
FM .

The estimated observation vectors are computed as de-
scribed in (9), where the references vectors are defined as
follow,

ra = [0 0 −1]
T

rc = [1 0 0]
T

where ra is the accelerometer reference vector and rc is the
camera reference vector.

The numerical simulations consider four cases in which
the movement of the quadrotor starts in an initial state
and is controlled to keep the UAV hovering 5m above
the ground w.r.t the inertial frame origin. The adopted
control strategy is the Linear Quadratic Regulator (LQR)
as in Costa Fernandes et al. (2020). The initial states are
defined by

Table 2. The parameters of the estimation
system

Accel. Standard Deviation σa 3.7 × 10−3(G)
Camera Standard Deviation σc 2.6 × 10−3(unit)
Gyroscope Standard Deviation σg 3.5 × 10−2(rad/s)
Bias Standard Deviation σu 1.5 × 10−4(rad/s2)
MEMS Sensor Frequency fMEMS 100(Hz)
Cameras Frequency fcam 10(Hz)
Simulation Time Ts 6(s)

x0 = [X Y Z qs qx qy qz]
T

whereX, Y e Z are the quadrotor position states in inertial
frame.

The configuration of each case is described as follow:

• Case 1: Attitude estimation using camera and MEMS
sensors, with:

x0 = [−0.3 1.0 4.0 0.775 −0.342 −0.092 0.525]
T

• Case 2: Attitude estimation using only MEMS sen-
sors. The initial states are the same as in Case 1.
• Case 3: Attitude estimation using camera and MEMS

sensors, with:

x0 = [0.5 0.3 4.5 0.831 −0.212 0.227 −0.462]
T

• Case 4: Attitude estimation using only MEMS sen-
sors. The initial states are the same as in Case 3.

The initial covariance matrix considered is,

P0 = I6x6 × 103

3. RESULTS

In this section, the results obtained through numerical
simulations in the different scenarios, cases 1 to 4, are
presented. The simulations parameters are shown in Table
2. The camera data acquisition rate is 10 Hz, since such
value is a reasonable update rate for real applications
proposes.

Table 3 shows the Root Mean Square Error (RMSE) of the
position estimation of the quadrotor. It can be seen that
the measurements error is on the order of centimeters. This
result is satisfactory for simple navigation scenarios which
do not require high position accuracy. Note that the RMSE
of the measures Y and Z showed higher values in Cases 1
and 2. This result can be explained by the fact that the
quadrotor is hovering at a lower height than in cases 3 and
4, then the marker fixed on the UAV become smaller on
the image plane. Because of that, the detection presents
less accuracy causing fluctuations in measurements.

Table 3. RMSE Camera Position Estimation

Case
Position (cm)

X Y Z

1 1.749 2.877 4.045
2 1.745 2.877 4.045
3 2.469 2.638 2.345
4 2.469 2.639 2.345

Figure 7 shows the trajectory of the real and estimated
position states of the quadrotor. Only the curves of cases
1 and 3 are plotted since there are no significant changes
concerning the others cases, as exposed in Table 3.
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Figure 7. Quadrotor Position - (A) Case 1: with camera ;
(B) Case 3: without camera

The real and estimated attitude curves of the quadrotor
are depicted in Figures 8 and 9. The attitude estimation
results are better when were used both camera and MEMS
sensors in MEKF. This estimation case precision is im-
proved because accelerometer can estimate only rotations
around the x and y axes, therefore the yaw angle suffers
drift, as shown in the Figures 8B and 9B.

From the obtained results it is possible to observe that the
camera acted as a satisfactory reference sensor, therefore,
it is an adequate alternative to the magnetometer.

Table 4. RMSE Results of MKEF Attitude
Estimation

Case
Quaternion (10−3)

qs qx qy qz
1 5.064 2.604 3.624 12.34
2 20.59 3.627 7.720 168.2
3 12.26 2.627 3.453 20.71
4 26.33 4.437 4.377 205.8

The RMSE attitude values found are consistent with the
data shown in the curves of Figures 8 and 9 since the
RMSE of the quaternions qs and, mainly, qz, obtained
from Case 2, present high values concerning the others
(See Table 4). This is due to the drift angle of the yaw
angle of the quadrotor, described above.

4. CONCLUSION

The use of computer vision proved to be an alternative
for estimating the translational and rotational states of
the UAV. The position measured by the camera provide
an adequate precision for simple navigation of a quadrotor

Figure 8. Quadrotor Attitude - (A) Case 1: with camera;
(B) Case 2: without camera

in indoor environment. Besides, the attitude estimation
performed by MEKF demonstrated that computer vision
prevented the drift of the yaw angle. Therefore, the use of
computer vision proved to be an alternative to the use of
GPS to obtain the position, and also to the magnetometer
for observation of the yaw angle.

Further works will include simulations in ROS/Gazebo
environment, which is widely used by the scientific com-
munity. Moreover, experimental implementations and tests
can be done to verify other aspects of the proposed solu-
tion, such as observation noises, processing time, and data
communication in a real-time system.
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