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Abstract—  The ill-conditioning of the inertia matrix of serial manipulators is a problem intrinsic to multi-
link open serial chains, which may potentially reduce the accuracy and performance of most motion control
techniques based on the robot’s dynamic model. In more extreme cases, the ill-conditioning can even result in
unstable behavior. In order to solve this, an adaptive control law is applied to the robot to improve the matrix
conditioning while ensuring that the well-conditioned inertia matrix is positive definite and hence continues to
have physical meaning. Simulation results on a serial manipulator with seven degrees of freedom show that
the proposed control law outperforms other commonly used techniques in terms of smoother behavior, smaller
steady-state error, and smaller condition number of the inertia matrix.
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Resumo— O mau condicionamento da matriz de inércia de manipuladores seriais é um problema intrinseco as
cadeias seriais abertas com multiplos elos, o que pode potencialmente reduzir a precisao e desempenho da maioria
das técnicas de controle de movimento. Em casos mais extremos, o mau condicionamento pode inclusive resultar
em comportamentos instaveis, Para soluciond-lo, uma lei de controle adaptativo é aplicada ao rob6 para melhorar
o condicionamento da matriz e a0 mesmo tempo garantir que a matriz de inércia bem condicionada seja positiva
definida e portanto continue a ter um significado fisico. Os resultados de simulagdo em um manipulador serial
com sete graus de liberdade mostram que a lei de controle proposta possui um desempenho melhor do que outras
técnicas usualmente utilizadas em termos de comportamento mais suave, menor erro em estado estaciondrio e
menor numero de condicionamento da matriz de inércia.

Palavras-chave— Rob6 manipulador, controle adaptativo, dinamica, matriz de inércia, mau condiciona-

mento.

1 Introduction

The joint space inertia matrix (JSIM) of a robot
manipulator plays an important role in the anal-
ysis and control of the robot’s dynamic behavior.
More specifically, the JSIM is specially important
when dealing with forward dynamics, which is es-
sential for simulation (Featherstone 2004, Shah
et al. 2017), and when designing motion con-
trollers based on the Euler-Lagrange equations
(Siciliano et al. 2009). Although it is well known
that the JSIM is positive definite independently
of the robot configuration, this property does not
guarantee the good conditioning of the matrix
(Shen & Featherstone 2003). In a multi-link open
serial chain, the links are connected to each other
in a way that the penultimate link carries the last
one, the antepenultimate link carries the last two
and so on, and the base link carries all the others.
As a result, the equivalent inertia of the links are
extremely disparate, and this difference increases
with the number of links, even if they are identical
to each other (Agarwal et al. 2014), which leads

to the ill-conditioning of the JSIM. Moreover, if
the links are not all the same size, the condition
number can be still higher (Featherstone 2004).

The ill-conditioning of the JSIM affects both
the accuracy of simulation results and the control
performance (Shen & Featherstone 2003). When
the JSIM becomes ill-conditioned, small pertur-
bations in the system can produce large changes
in the numerical solutions (Agarwal et al. 2014).
According to Featherstone (2004), this property is
not just a numerical problem; rather it is intrinsic
to a phenomenon of ill-conditioning in the mech-
anism itself, which suggests that the mechanism
may be more difficult to control even if the JSIM
is not used directly in the control input calcula-
tion.

Despite the fact that the JSIM’s ill-
conditioning is intrinsic to serial kinematic chains,
its effects can be mitigated and therefore the con-
trol performance can be enhanced. One way to
improve the JSIM’s condition number is to add a
well-conditioned positive definite matrix to it in
the Euler-Lagrange equations. Such matrix could



be related to the inertia of the actuators, instead
of just adding an arbitrary matrix, in order to pre-
vent the introduction of unnecessary inaccuracies
to the model. However, if the added actuators’ in-
ertia matrix does not correspond to the actual one,
the closed-loop system may still present steady-
state error, which appears when introducing any
inaccuracies in the robot model and these uncer-
tainties are neither eliminated nor compensated
by the control law. Adding an integrator to the
control law is not sufficient to solve the steady-
state error problem because, even though the ac-
tuators’ inertia matrix is usually constant (Shen
& Featherstone 2003), the disturbance depends on
the robot acceleration, therefore it is time varying.
More specifically, if the actual robot’s inertia ma-
trix is given by M = M + M ,, where M is the
nominal robot’s inertia matrix and M, is the ac-
tuators’ inertia matrix, the actual dynamic model
is given by

T=Mg+Cq+g(q) =Mg+Cq+g(q) +w,

where w = M, G is the time-varying disturbance.

An alternative solution to improve the JSIM’s
conditioning is to use an adaptive controller to
compensate for the unknown inertia of the actua-
tors. The basic idea is to estimate the uncertain
parameters on-line based on the measured system
signals, and use those estimates in the control in-
put computation (Slotine & Li 1991). This would
solve not only the problem of ill-conditioning, but
also any uncertainties related to lack of informa-
tion or changes in the robot’s dynamics produced
by interaction with the environment. Cheah et al.
(2006 ) proposed an adaptive controller for robots
with uncertain kinematics and dynamics—in ad-
dition to adaptation to actuator parameters—and
showed that, although there is no guarantee that
the estimated parameters converge to the real
ones, the closed-loop system is asymptotic stable,
which is our goal.

Some adaptive controllers require the inver-
sion of the estimated inertia matrix (Wang & Xie
2011), which is not always ensured by the usual
adaptive control laws, since they do not guaran-
tee that the estimated matrix is positive definite
or even well-conditioned. To overcome that prob-
lem, it is sufficient to ensure that the estimated
parameters be positive to obtain a positive defi-
nite estimated inertia matrix, because the sum of
two positive definite matrices is positive definite.

This can be done by defining an appropri-
ate convex region, whose interior defines the set
of admissible positive parameters, and then us-
ing a projection algorithm to ensure that the pa-
rameters remain inside that region (Cheah et al.
2006b). Nevertheless, in discrete implementations
of the projection algorithm the estimated param-
eters may escape from that region, thus Wang &
Xie (2011) proposed an approach that guarantees

the positiveness of the estimated parameters while
retaining stability of the closed-loop system. Still,
they observed that when the parameter update
is too fast, the algorithm cannot project the es-
timated parameters into the region of admissible
parameters.

1.1 Statement of Contributions

The main contribution of this paper is to use
an adaptive controller, based on the ones pro-
posed by Slotine & Li (1987) and Cheah et al.
(20064,b), in order to control a serial robot ma-
nipulator while solving the problem introduced by
the ill-conditioning of the inertia matrix. In addi-
tion, an algorithm based on the one proposed by
Wang & Xie (2011) is developed to ensure that the
estimated parameters remain inside a suitable re-
gion, which means that the resulting robot inertia
matrix is still positive definite (hence invertible).
Furthermore, experimental results show that with
a proper choice of initial parameters, the final in-
ertia matrix is better conditioned than the original
one.

2 Dynamic model

The dynamic model of a n-link serial manipulator
is given by (Spong et al. 2006)

M(g)g+C(g.9)a+g(@ =7, (1)
where q = [ Q1 Qn ]T is the vector of
joints configuration, M (q) is the inertia matrix,
C (q, @) is a matrix with the Coriolis and centrifu-
gal terms, g (q) is the gravity vector and 7 is the
torque applied to the joints.

Usually the actuators’ dynamics are small
compared to the dynamics of the rigid multi-
link robot (Shen & Featherstone 2003), hence the
JSIM usually takes into consideration only the in-
ertia of the links. However, sometimes it is useful
to explicitly consider the inertia of the actuators,
as they can help in improving the condition num-
ber of the resultant inertia matrix. Considering a
robot whose links are connected through revolute
joints, and assuming that the motion of each link
is transmitted via a set of gears, its kinetic en-
ergy is the sum of the kinetic energies of the links
and those of the rotors (Kelly et al. 2005, Siciliano

et al. 2009); that is!,
. 1.7 A S
K (q,qvé’) =54 Mg q+;6 N,
where N = diag (n1,...,m,) is a diagonal posi-
tive definite matrix, whose elements are the ro-
tors” moments of inertia. When considering just

n this model, coupling effects between rotors and links
are neglected. According to Siciliano et al. (2009), some
couplings in joints’ dynamics may be reduced or eliminated
when designing the structure in order to simplify the con-
trol problem.



the “spinning” rotor velocity, the angular veloc-
ity of the axes after the set of gears is given by
0 = [ 7141 Tnln ], with r; being the gear
ratio of the i-th actuator. Therefore, the dynamic
model that explicitly takes into consideration the
actuators’ inertia is given by

M (q) + M,]G+C(q,q)qg+g(q) =7, (2)

where M ,,, = diag (m73,...,0,72).

3 Motion control laws

This section first presents some well-known con-
trollers and discusses their behaviors with respect
to stability, steady-state error, and the condition-
ing of the JSIM. Then it presents an adaptive con-
troller, based on the ones proposed by Slotine & Li
(1987) and Cheah et al. (2006a,b), in order to con-
trol a serial robot manipulator while solving the
problem introduced by the ill-conditioning of the
inertia matrix. In addition, an algorithm based
on the one proposed by Wang & Xie (2011) is de-
veloped to ensure that the estimated parameters
remain inside a suitable region, which means that
the resulting robot inertia matrix is still positive
definite (hence invertible).

3.1 Inverse dynamics with feedback linearization

A common technique to control a robot manipula-
tor modeled by (1) is to design a control law based
on inverse dynamics with feedback linearization
(Spong et al. 2006); that is,

u=M(q)a,+C(q,9)q+g(q), (3)

where the control input w £ 7 is applied to low-
level (joints) torque controllers and a, = § is
the control law designed to stabilize the linearized
closed-loop system.

One can define an additional control law as
(Kelly et al. 2005)

aq:q(i_KUa_Kp[]a (4)

where K, and K, are symmetric positive definite
design matrices and ¢ £ g—q, denotes the error of
the joints. This controller is asymptotically stable
in the Lyapunov sense (Kelly et al. 2005).

Shen & Featherstone (2003) showed that the
control law (3) behaves poorly whenever the ma-
trix M (q) is ill-conditioned. Due to the difference
in the singular values of M (q), the torque of each
joint calculated from the inverse dynamics control
law (3) can be very different, even if the joints ac-
celerations are the same. This way, if the inertia
along a specific joint is very small, no matter how
large the position/velocity error or PD-coefficient
is, the correction torque applied on that joint will
be still small compared to the dominant torque,
which may result in some undesired stationary er-
ror in that joint.

3.2 PD controller

To circumvent the ill-conditioning of the JSIM,
Shen & Featherstone (2003) proposed the control
law

u=-K,g—K,q+C(q.q4)qg+g(qa). (5

which yields an asymptotically stable closed-loop
system if the PD gains are properly chosen (Shen
& Featherstone 2003, Kelly et al. 2005).

The PD controller (5) directly converts the
joint position/velocity error to drive torque and
is not affected by the ill-conditioning of the JSIM.
Yet, the inverse dynamics controller (3)-(4) should
achieve better accuracy since it has complete
knowledge about the robot dynamics (Shen &
Featherstone 2003). Still, the control law (5) only
considers the regulation problem, and does not
work for a trajectory tracking problem.

3.3  Adaptive control

Considering the necessity of guaranteeing the
JSIM’s positiveness and the assumption of previ-
ous knowledge of the robot’s kinematics and dy-
namics, an adequate alternative is the adaptive
controller proposed by Cheah et al. (2006a) for
the purpose of finding a suitable matrix M, in
(2). The adaptive controller is composed of two
steps: i) the control law and ii) the adaptation
law.

Regarding the adaptation law, a sliding vector
is defined to restrict the error to a sliding surface,
which is required to eliminate the steady-state po-
sition error (Slotine & Li 1987). In the joint space,
the adaptive sliding vector is defined as

5%{1—(11” (6)

where g, = ¢; — @ (q — q4), with « being a posi-
tive constant and g, is the vector of desired joints
configurations.

Substituting (6) and its derivative in (2) yields

[M(q) +Mn]3+C(q,q9)s+g(q)
+[M(q)+Mn]g, +C(q.9)q,=7. (7)

Since we assume that the dynamic parame-
ters of the links are known with sufficient accu-
racy, only the matrix M,, (which is related to
the joints’ inertia) needs to be estimated. In ad-
dition, as the robot dynamic model is linear in a
set of physical parameters and its linear combina-
tions (Cheah et al. 2006a), it is possible to rewrite
the last terms of (7) as

[M (q) + MG, +C(q.9)q, +9(q) =
Y. (Qr) am +v (‘L q,q,, Qr) ) (8)

where wv(q,q,4,,4,) € R" is a vector
containing the known dynamic model (i.e.,



v(4.9,4,.4,) = M (q) 4, + C(q.9)q, +9(a)),
Y..(qg,) = diag(g,) is the regressor, and
Ay = [mri nar2] T is the (constant) pa-
rameter vector.

Therefore, the adaptive tracking control pre-
sented by Cheah et al. (20064), modified to be in
the joint space, is given by

u = _Kv;q_ Kpa_‘_v(qaibqraér) +Ym (qr) &m

(9)
and the actuator adaptation law is
C;'Jm = *LmYZ;L (qr) S, (10)

where diag (v1,...7v,) = Ly, € R™" is a diag-
onal positive-definite matrix that determines the
convergence rate of the adaptive parameters.?

Theorem 1 The closed-loop system given by (2)
under control law defined by (9) and (10) is
asymptotically stable.

Proof: Assuming u £ 7, the closed loop dynam-
ics is obtained by combining (7) and (8) and mak-
ing it equal to (9), which results in

[M (q) + M]3+ C(q,q)s
where Aa,, = @y, — Q.

By choosing the Lyapunov candidate function
V£V (s, Aan,q) as

1 1
1= §ST [M(q) + M,,)s+ §Aa,TnL,_nlAam

+-¢" (K, +aK,)q,

NI= o»

its derivative is

V= T [M(q) + M) 5 + %STM(q)S

—Adl L a, +¢" (K, +aK,)q (12)

m

Substituting [M (q) + M,,] 4 and a,, from
(11) and (10), respectively, in (12) yields

V=s"[-C(q,q)s— K.,q— K,q|

1 . _ -
+ isTM (@) s+q" (K, +aK,)g. (13)
Since the matrix A £ M (q) — 2C (q,q) is
skew-symmetric (Spong et al. 2006) and s” As =
0, Vs € R™ (Cheah et al. 2006a), then

. 1. . -
V= —sTgM (q)s—s" (K.,q+ K,q)

1 . - .
+ isTM (@)s+q" (K, +aK,)q.

2Since YL (§,) is a diagonal matrix, it is easy to see
that each element a; of an, is given by a; = —v;grisi,

where ¢, = [dr1 ijrn}T and s =[s1 -+ sn]

Using (6), we obtain
V=-¢"K,q-q"aK,q. (14)

Therefore, V< 0, which indicates that the closed
loop system is stable. From (14), we conclude
that V = 0 if and only if ¢ and g are zero, which
means that the system stabilizes asymptotically at
the equilibrium point (?], ?]) = (0,0), as desired.
O

Remark 2 Since the function V depends on s,
Aa,,, and q, then at the equilibrium point s = q+
aq = 0, but there is no guarantee that Aa,, will
converge to zero as well (sz =0 and Aa,, # 0,
then V > 0); therefore, there is no guarantee that
the estimated parameters will converge to their ac-
tual values. However, this is not necessary to en-
sure the asymptotic stability of (q, f}) = (0,0).

Although controller (9) ensures asymptotic
stability of ((37 Z]) = (0,0), there is no guarantee
that the estimated parameters are positive. How-
ever, in order to have a physical meaning, the iner-
tia matrix must be positive definite. To guarantee
that, the matrix M ,,, added to the JSIM must also
be positive definite, since the sum of two positive
definite matrices are also positive definite. There-
fore an algorithm based on the one proposed by
Wang & Xie (2011) is developed in the next sec-
tion to ensure that all estimated parameters re-
main positive.

3.3.1 Estimation of positive parameters

In order to guarantee the positive definiteness of
the estimated matrix M,, in (2), we define a
convex region for the parameter space that cor-
respond to the admissible parameter set (Wang &
Xie 2011), and ensure that the estimated parame-
ters are always projected onto this set. Since our
goal is to compensate for uncertainties in the iner-
tia of the joints, the parameter vector is given by
a, 2 [al an]T, where a; = mr% and the
convex region for each joint ¢ is defined as

Q= {nri>B:Be(0,0)},

where (8 is the lower bound for all a;. If each
estimated parameter a; is positive, then the ma-
trix M, in (2) is positive definite. Therefore, if
a; € Q;, Vi then M, > 0.

Let us consider a function f; (G;) such that

fi(a;) = —a; + B, (15)

where 4 corresponds to the i-th joint. When
fi (a;) <0, the estimated parameter is inside the
convex region (or on its boundary), and hence pos-
itive. If f; (4;) > O the parameter a; is outside the
admissible parameter set, and then it is necessary
to project it onto the set €;.



In order to ensure the estimation of positive
parameters, (10) is redefined as (Wang & Xie
2011)

i = .
Vi, otherwise,

. {—%)\Vfi,ai, if f; >0and v;Vf;s >0
a

(16)
where v; £ —~;GriS; is the i-th element of the nom-
inal adaptation vector @, in (10), ~; is the i-th
element of the diagonal of L,,, ¢,; is the i-th ele-
ment of q,., s; is the i-th element of s, the scalar
A is a positive value and Vf; 5, = df;/da; = —1.

Since the discrete form of this algorithm is
necessary when implementing it in a digital com-
puter, we use the Euler integration to update the
parameters a; in (16) according to

G [k + 1] = @ [k] + @, [K] T,

where T is the sampling period. The value of X is
determined by the solution of the equation

fi(ai [k +1]) = fi (ai [k] = viAV fia,T) =0,
(17)

and indicates the value necessary to project the
parameter onto the boundary of §2; in one step.
From (15) and (17) we obtain

— (dl [k] — Vi/\vfi,d,-T) + ,8 = O,
which implies

\ o 0 k] +5
T
Remark 3 If the sampling period T is not small
enough, some estimated parameters may become
temporarily negative until the projection equation
(16) is applied in the next step. However, in those
situations the resultant matriz (M + M,,) can
be temporarily not positive definite, which can be
overcome by increasing the value of B or decreas-
ing the sampling period.

4 Simulation results and discussions

In order to evaluate the proposed technique,
we run three simulations of a seven-link KUKA
LBR4+ robot in MATLAB?® using the DQ
Robotics library:*

1. In the first simulation we compare the be-
havior of the Adaptive Controller (9)-(10) to
the Adaptive Controller with Positive Param-
eters (ACPP) (9)-(16) with respect to the val-
ues of the estimated parameters;

2. In the second simulation we evaluate the ef-
fect of the sampling time on the parameter
estimation in ACPP;

Shttps://www.mathworks.com /products/matlab.html
4http://dqrobotics.sourceforge.net

3. Last, the third simulation was performed in
order to compare the ACPP to both PD and
Inverse Dynamics with Feedback Lineariza-
tion (IDFL).

For the sake of simulation, we considered two
models. The first one, given by (1), does not con-
sider the actuators’ model and was used as the
nominal model. The second one, given by (2),
explicitly takes into account the actuators’ model
and was used as the “real” robot.

The simulation sample time was 25ms for
simulations 1 and 3, whereas simulation 2 used
different sample times. The gain values for all
control laws were K, = 9I, K, = 61, where
I € R™7 is the identity matrix. For the adaptive
controller, &« = 1.5, L,, = 0.15I, g = 0.015, and
the initial estimated parameters were a.,[0] =
[01 005 004 003 002 002 0.02]",
The values of the gains as well as the lower bound
B were chosen empirically. The choice of the
initial values for the estimated parameters were
also chosen empirically; however, we took into
account the fact that the motors at the base of a
serial manipulator are usually larger and heavier
than the ones closer to the end-effector, and
hence have a larger inertia. Therefore, the first
values of a,, [0] are larger than the last ones.

The robot’s initial and de-
sired configurations were given by
q=1[0 76 0 =57/s 0 0 0]" and

qu=1[0 72 ~mf2 =57/5 0 0 0], re
spectively, and were used in all simulations. In
addition, the simulation was executed in 2000
iterations, which was sufficient for all controllers,
except for the IDFL, to achieve steady state (i.e.,
Jal < 1079)

We first compare the behavior of the adaptive
controller (9)-(10) to the adaptive controller with
positive parameters (ACPP) (9)-(16) with respect
to the values of the estimated parameters. On the
one hand, Fig. 1a shows that two estimated pa-
rameters in the adaptive controller have negative
values, which is undesirable because the estimated
parameters should represent the joints’ inertia and
gear ratio; consequently they should have positive
values. On the other hand, Fig. 1b shows that
all estimated parameters in ACPP have positive
values, as the theory predicts, which is consistent
with the physical meaning of the estimated vector
Q-

A second simulation was performed to evalu-
ate the effect of the sampling time on the param-
eter estimation in ACPP. Figure 2 shows that all
estimated parameters are positive in steady state,
although for some values of 8 and T it is possible
for the parameters to become negative in the tran-
sient state. For instance, if 8 = 1072 and Ap(0) =

[0.05 005 005 0.05 0.05 0.05 0.05],

some parameters can become negative if the
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Figure 1: Estimated parameters for the adaptive
control (a) and for the adaptive control with pos-
itive parameters (b).

sampling time 7T is not small enough. However,
there is a value T for which all parameters are
always positive.

Last, a third simulation was performed in or-
der to compare the ACPP to both PD and IDFL.
Figure 3 shows the error norm of all control laws.
Although the error norm decreases for all con-
trollers, the IDFL presents an oscillatory behav-
ior, takes longer to reach the stability point and
exhibits a steady-state error. The PD controller
presents a smaller oscillation than the IDFL and
reaches the equilibrium point faster and without
steady-state error, but the oscillation at the begin-
ning is substantial. The ACPP is smoother than
both the PD and the IDFL, and the equilibrium
point is reached even before the PD controller,
also without steady-state error.

Figure 4 shows that, for the IDFL, the first
four joints reached the desired configurations, but
the fifth one took a long time to reach the desired
set-point and the last two did not even reach it.
This is explained by the difference in the singu-
lar values of the inertia matrix, as show in Fig. 5.
Since the smallest values are almost zero, the cor-
rection torques applied to the corresponding joints
are much smaller than the dominant one (i.e., the
one corresponding to the largest singular value),
hence stationary error is observed in those joints,
as predicted by Shen & Featherstone (2003). Fur-
thermore, the first and fourth joints have slower
time response and larger overshoot for the ACPP
when compared to the PD controller, although
the ACPP has smoother overall error dynamics,
as previously discussed, and they both achieve

steady state at approximately the same time.

Figure 6 shows that the condition number of
the resultant inertia matrix (i.e., M (q¢) + M,,)
in the ACPP is much smaller than the condition
number of the inertia matrix of the nominal model
(i.e., M), which implies that M (q) + M, is bet-
ter conditioned than M. Without considering the
estimated parameters, the condition number of
the JSIM is close to 8 x 103, whereas the con-
dition number of the resultant inertia matrix is
close to 100. Although we only have formal guar-
antee that the estimated inertia matrix is always
positive definite, as shown in Section 3.3.1, Fig. 6
indicates that the ACPP is capable of improving
the conditioning of the robot inertia matrix.

5 Conclusion

This paper proposes a solution to an intrinsic
problem of multi-link open serial chains: the
ill-conditioning of the joint-space inertia matrix
(JSIM) in the Euler-Lagrange equations. This
problem is observed in simulation and control of
many serial robot manipulators; therefore it must
be solved in order to improve both the accuracy
of the controllers and closed-loop stability. In-
deed, when the control input is given by a dou-
ble integrator (which is very common in simula-
tion) and the JSIM must be inverted (as in con-
trol laws based on feedback linearization), an ill-
conditioned matrix may result in arbitrarily large
joint velocities.

An adaptive control law in joint space has
been implemented to improve the condition num-
ber of JSIM. This controller estimates a positive
definite matrix related to the joints’ inertia, which
is then added to the nominal robot inertia matrix
to obtain a better conditioned JSIM. The pro-
posed technique was compared in simulation to
a proportional-derivative (PD) controller and to
an inverse-dynamics feedback-linearizing (IDFL)
controller. The results showed that the adap-
tive controller has the smoothest time response,
whereas both PD and IDFL present an oscilatory
behavior. In addition, both the adaptive and the
PD controllers have zero steady-state error, which
is not the case for IDFL.

When forcing the estimated parameters to be
positive, the condition number of the resultant
matrix (M (q) + M ,,) was smaller than the orig-
inal M (q) in all simulations. However, there is
no guarantee that the sum of two positive defi-
nite matrices will result in a better conditioned
matrix. In fact, the sum (M (q) + M,,) is bet-
ter conditioned than M (q) if and only if M,
is better conditioned than M (q). This way, it
is possible to initialize the estimated parameters
with appropriate values such that the initial con-
dition number of (M (q) + M ,,) is smaller than
M (q). Therefore, since the condition number of
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T = 0.005s all parameters are positive.
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Figure 3: Norm of the vector of joints error.
The adaptive controller with positive parameters
(ACPP) presents the smoothest decay among all
compared controllers.

(M (q) + M ,,) does not change significantly, as
observed in the simulation, it remains small dur-
ing the whole trajectory.

Future works will be focused on formally en-
suring that the estimated robot inertia matrix
(i.e., the one that takes into account the nom-
inal inertia matrix plus the joints’ inertia ma-
trix) is better conditioned than the nominal in-
ertia matrix, in addition to the implementation
of the adaptive control law in task space, as well
as on the stability proof of the closed-loop sys-
tem that takes into account the estimation of pos-
itive parameters, and the implementation on a real
robot.
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