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Abstract: Multivariable (MIMO) processes are commonly found in the industry. The coupling
between the different loops makes the controller design difficult. To solve the problem of
controlling these processes, MIMO proportional integral (PI) controller design methods have
been found in the literature. In this paper, the review and the experimental application of MIMO
PI controller tuning methods with linear matrix inequalities constraints are presented. The
considered tuning methods are formulated as a non-convex optimization problem. Linearization
of the concave part around a known point is performed using the concave-convex procedure.
Frequency-domain process data are used to solve problems. The application of the methods is
done in two different processes: temperature module and Peltier module.
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1. INTRODUCTION

The proportional integral (PI) control is the most used
controller in the industry (Nisi et al., 2019). This is a
consequence of the simplicity of implementation and the
good performance achieved in a variety of plants. The most
common application of these controllers is in single input
and single output (SISO) process and many of the design
methods are based on the process model.

However, multivariable (MIMO) processes are often found
in the industry. A characteristic of these processes is the
coupling between the different loops. This coupling makes
process model identification difficult and can degrade the
control performance. Thus, the MIMO PI controller design
is not simple.

The PI control structures for MIMO processes are classi-
fied as: decentralized control, centralized control and de-
coupled control. For strongly coupled processes, decentral-
ized control may not result in the desired performance. So,
the best performance of MIMO control loops is obtained
with centralized control and decoupler control. Decoupler
control can be treated as a particular case of centralized
control.

The difficulty of modelling the MIMO process added to the
development of technology and computer science resulted
in the development of data-driven control design methods
(DDC) (Luo et al., 2020). Although, the first DDC control
design methods was proposed in 1993, many methods

⋆ This work was supported by Conselho Nacional de Desenvolvi-
mento Cient́ıfico e Tecnológico (CNPq).

have been proposed in the last twenty years (Formentin
et al., 2019). In DDC methods it is not necessary to know
the parametric process model. Time-domain or frequency-
domain data can be used.

Designing MIMO PI controller that guarantee robustness
and stability is not an easy task. Thus, optimization prob-
lems based on the 2-norm or ∞-norm and on frequency-
domain data have been presented. In Galdos et al. (2010),
a convex optimization problem is proposed to design the
linearly parameterized centralized controller. To guaran-
tee stability, the generalized Nyquist stability criterion is
approximated by a set of convex constraints. The diagonal
elements of the controller are tuned to satisfy the desired
performance according to a reference model, while the
remaining elements are designed to decouple the system.

In Hast et al. (2013), a convex optimization problem based
on the H∞ norm and the frequency response of SISO
processes is presented. The objective is to minimize the
sensitivity function at low frequency. The extension of
this method to stable MIMO processes is presented in
Boyd et al. (2016), where to guarantee the closed-loop
stability Linear Matrix Inequality (LMI) constraints are
inserted into the problem. As the constraints are non-
convex, the concave-convex procedure (Lipp and Boyd,
2016) is used. The result is a local optimum and depends
on the algorithm initialization parameters.

Convex optimization and LMI constraints are also used
in Karimi and Kammer (2017), where design methods
based on H2 andH∞ norms and loop shaping performance
criteria are presented. In this case, the controller is fully
parameterized in terms of matrix polynomial functions.
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To make the initial problem convex, the concave-convex
procedure is applied. The closed-loop stability is not guar-
antee when the method based on loop shaping presented in
Karimi and Kammer (2017) is used. Thus, control signal
magnitude constraints are inserted into the optimization
problem in Aguiar et al. (2021).

Practical aspects of the method that considers the H2

norm are discussed in Kammer and Karimi (2018). Ap-
plications of these methods in the primary and secondary
control of medium and low voltage networks, control of
grid-connected inverters and control of energy converters
of a particle accelerator are found in Kammer and Karimi
(2019), Kammer et al. (2019) and Nicoletti et al. (2017),
respectively.

In this paper, experimental results of PI MIMO control
tuning methods formulated as a convex optimization prob-
lem with LMI constraints are presented. The methods
proposed in Karimi and Kammer (2017) (loop shaping),
Aguiar et al. (2021) and Boyd et al. (2016) are consid-
ered. The experiments are performed in a thermoelectric
module. The centralized PI controller is considered.

This paper is organized as follows. The problem statement
is presented in section 2. In the section 3, considered PI
control design methods are revised. In section 4, implemen-
tation issues are commented. The module description used
in the experiments and the experimental results discussion
are presented in section 5. Finally, the conclusions are in
section 6.

2. PROBLEM STATEMENT

Consider a MIMO stable process G(s) ∈ Cn×n, where
n is the number of inputs and outputs. The process
parametric model is not known. The process frequency
response (G(jω)), ∀ω ∈ R+, is computed by the Fourier
transform of the process input and output signals. Also
consider a centralized controller C(s) ∈ Cn×n given by:

C(s) =









C11(s) C12(s) · · · C1n(s)
C21(s) C22(s) · · · C2n(s)

...
...

. . .
...

Cn1(s) Cn2(s) · · · Cnn(s)









, (1)

where each element Cij(s) is a PI controller. Then:

C(s) = Kp +
1

s
Ki (2)

Kp and Ki are proportional and integral gain matrices,
respectively.

The loop gain function is given by:

L(s) = G(s)C(s). (3)

From the loop gain function the sensitivity functions are
defined:

• closed-loop function or complementary sensitivity
function:

T(s) = L(s)(I + L(s))−1, (4)
where I is the identity matrix,

• sensitivity function:

S(s) = (I+ L(s))−1, (5)

• control sensitivity function:

Q(s) = C(s)(I + L(s))−1. (6)

The problem statement is: given the frequency response of
the process, calculate the controller gain matrices (Kp and
Ki), without knowledge of the parametric process model.

3. MIMO PI CONTROL DESIGN

In this section, three multivariable PI controller tuning
methods frequency-domain data-based are reviewed. The
methods are formulated as a convex optimization problem.
In two of them, LMI constraints are used to guarantee
the stability of the designed closed-loop (sections 3.2 and
3.3). The methods presented in sections 3.1 and 3.2 are
formulated considering a fully parameterized controller
and rewritten for the PI controller. Frequency domain data
can be obtained by Fourier transform of process input and
output data or from a parametric model.

3.1 Loop shaping

The method presented in Karimi and Kammer (2017) goal
to design a fully parametrized controller in terms of matrix
polynomial functions. The control problem is formulated
as optimization problem. The objective is to minimize the
infinite norm of the difference between loop gain function
(L(s)) and desired loop gain function (Ld(s)):

min
θ

‖L(s, θ)− Ld(s)‖∞

∀ω > 0,
(7)

where θ is the parameters matrix. The problem (7) can be
expressed as quadratic matrix inequality (QMI) form:

min
θ

γ

subject to:
(G(s)C(s, θ) − Ld(s))

∗(G(s)C(s, θ) − Ld(s)) ≤ γI
∀ω > 0,

(8)

where (·)∗ is a complex conjugate transpose and γ is a
scalar variable

Consider C(s, θ) = X(s, θ)Y−1(s, θ). The convex opti-
mization problem can be formulated from (8) using the
Schur complement and concave-convex procedure (Lipp
and Boyd, 2016). In this procedure the concave part is
linearized around a known point Cc(s) = Xc(s)Y

−1
c (s).

Thus, the controller is designed by solving the following
convex optimization problem:

min
θ

γ

subject to:
[

Ψ(s, θ) (G(s)X(s, θ)− Ld(s)Y(s, θ))∗

G(s)X(s, θ)− Ld(s)Y(s, θ) γI

]

≥ 0

∀ω > 0,
(9)

with Ψ(s, θ) = Y∗(s, θ)Yc(s)+Y∗

c (s)Y(s, θ)−Y∗

c (s)Yc(s).

When the PI controller is considered, the Y(s) matrix is
fixed. The convexification is not necessary. So, knowledge
of an initialization controller is not required. For the PI
controller, the problem (9) can be rewritten in the form:

min
θ

γ

subject to:
[

I (G(s)C(s, θ) − Ld(s))
∗

G(s)C(s, θ)− Ld(s) γI

]

≥ 0

∀ω > 0.

(10)
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The algorithm converges to a local optimum or saddle
point of the original non-convex problem. The designed
controller not guarantee the closed-loop stability.

3.2 Loop shaping plus constraints

For stable processes, closed-loop stability can be ensured
by limiting the a maximum value of the size of the
closed-loop actuator signal (6) (Boyd et al., 2016), this
is ‖Q(s, θ)‖∞ ≤ Qmax. So, in Aguiar et al. (2021), the
control signal magnitude bound is inserted as constraint
into the optimization problem presented in Karimi and
Kammer (2017).

The controller is designed by solving the optimization
problem given by:

min
θ

‖L(s, θ)− Ld(s)‖∞

subject to:
‖Q(s, θ)‖∞ ≤ Qmax

∀ω > 0.

(11)

The problem (11) can be rewritten in the QMI form:

min
θ

γ

subject to:
(G(s)C(s, θ) − Ld(s))

∗(G(s)C(s, θ) − Ld(s)) ≤ γI

Q∗(s, θ)Q(s, θ) ≤ Q2
maxI

∀ω > 0.

(12)

This problem is non-convex.

Consider the controller C(s, θ) = X(s, θ)Y−1(s, θ) and
the initialization controller Cc(s) = Xc(s)Y

−1
c (s). The

convexification (Lipp and Boyd, 2016) is performed by
linearizing the concave part around a known point (Cc(s)).
Using the Schur complement, the constraints of (12) are
written in the LMI form:

min
θ

γ

subject to:
[

Ψ(s, θ) (G(s)X(s, θ)− Ld(s)Y(s, θ))∗

G(s)X(s, θ)− Ld(s)Y(s, θ) γI

]

≥ 0





P
∗(s, θ)Pc(s) +P

∗

c (s)P(s, θ)−P
∗

c(s)Pc(s)

(

X(s, θ)

Qmax

)

∗

X(s, θ)

Qmax

I



 ≥ 0

∀ω > 0,
(13)

with P(s, θ) = Y(s, θ)+G(s)X(s, θ) and Pc(s) = Yc(s)+
G(s)Xc(s).

For the PI controller, the convexification of the first
constraint is not necessary. In this case, the problem (13)
is rewritten in the form:

min
θ

γ

subject to:
[

I (G(s)C(s, θ)− Ld(s))
∗

G(s)C(s, θ)− Ld(s) γI

]

≥ 0





P
∗(s, θ)Pc(s) +P

∗

c(s)P(s, θ)−P
∗

c (s)Pc(s)

(

C(s, θ)

Qmax

)

∗

C(s, θ)

Qmax

I



 ≥ 0

∀ω > 0,
(14)

with P(s, θ) = I+G(s)C(s, θ) and Pc(s) = I+G(s)Cc(s).

3.3 Low-frequency sensitivity

The method proposed by Boyd et al. (2016) aims to
minimize the sensitivity function (S(s)) of the system
for low frequency. For small values of s, we have that
S(s) → (G(0)Ki)

−1. Therefore, the objective is given by:

min ‖(G(0)Ki)
−1‖∞ (15)

where G(0)Ki is non-singular matrix.

To guarantee stability and the lowest control effort, con-
straints that limit the maximum values of the sensitivity,
complementary sensitivity and control sensitivity func-
tions are added to the problem (15):

min
θ

‖(G(0)Ki)
−1‖∞

subject to:
‖S(s, θ)‖∞ ≤ Smax

‖T(s, θ)‖∞ ≤ Tmax

‖Q(s, θ)‖∞ ≤ Qmax

∀ω > 0.

(16)

The optimization problem (16) can be written in the QMI
form:

min
θ

γ

subject to:
((G(0)Ki)

−1)∗((G(0)Ki)
−1) ≤ γI

(S(s, θ))∗(S(s, θ)) ≤ S2
maxI

(T(s, θ))∗(T(s, θ)) ≤ T 2
maxI

(Q(s, θ))∗(Q(s, θ)) ≤ Q2
maxI

∀ω > 0.

(17)

The convex optimization problem with LMI constraints
is obtained from (17) using the Schur complement and
convexifying the concave part, as done in the previous
methods. Thus, the convex problem proposed by Boyd
et al. (2016) is given by:

min
θ

γ

subject to:
Z

∗(s, θ)Zc(s) + Z
∗

c(s)Z(s, θ)− Z
∗

c(s)Zc(s)− γI ≥ 0

P
∗(s, θ)Pc(s) +P

∗

c (s)P(s, θ)−P
∗

c(s)Pc(s)− (I/S2
max) ≥ 0





P
∗(s, θ)Pc(s) +P

∗

c (s)P(s, θ)−P
∗

c(s)Pc(s)

(

L(s, θ)

Tmax

)

∗

L(s, θ)

Tmax

I



 ≥ 0





P
∗(s, θ)Pc(s) +P

∗

c (s)P(s, θ)−P
∗

c(s)Pc(s)

(

C(s, θ)

Qmax

)

∗

C(s, θ)

Qmax

I



 ≥ 0

∀ω > 0.
(18)

where Z = (G(0)Ki)
−1, Zc = (G(0)Kic)

−1, P(s, θ) = I+
G(s)C(s, θ) and Pc(s) = I+G(s)Cc(s).

4. EXPERIMENTAL RESULTS

In this section, two thermoelectric process are used to
apply the multivariable PI controller design methods re-
viewed in this paper. Convex optimization problems are
solved by Matlab’s CVX framework (Grant and Boyd,
2008). The integral absolute error (IAE) and total value
(TV) indices are used to compare controller performance.
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Figure 1. Schematics of the didactic module printed circuit
board (Lima et al., 2018).

IAE =

∫

∞

0

|r(t)− y(t)|dt (19)

TV =
∞
∑

t=1

|u(t+ 1)− u(t)| (20)

4.1 Implementation issues

The formulated optimization problems are semi-infinite
problems, because it have infinite constraints (∀ω > 0).
To enable the solution of the problems a finite and large
set of frequencies was considered.

The frequency response of the process was obtained exper-
imentally. The process was excited with a pseudo random
binary signal (PRBS) signal. The PRBS signal clock pe-
riod Tck is defined as a function of the estimated dominant
process time constant Tst:

Tck =
Tst

5
. (21)

Then, the Fourier transform of the collected input and
output signals was performed.

The desired loop gain function (Ld(s)) was defined from
the closed-loop function (Td(s)). By definition:

T(s) = L(s)(I+ L(s))−1. (22)

Considering a closed-loop reference model (Td(s)), the
desired loop gain function was given by:

Ld(s) = Td(s)(I−Td(s))
−1. (23)

4.2 Temperature module

The first process is the temperature model presented in
Lima et al. (2018). The principle of this thermoelectric
module is heat dissipation caused by field effect transistors
semiconductors and heat propagation over a printed circuit
board. The module consists of two transistors, two LM35
sensors, a printed circuit board and an Arduino board.
Control is done by Matlab and communication by UBS.
The schematics of the didactic module printed circuit is
presented in Fig. 1, where the arrows indicate the expected
spread of heat generated

The reference model and the initialization controller are
given, respectively, by:

Td(s) =







1

47s+ 1
e−8.5s 0

0
1

19.56s+ 1
e−13s






(24)

and
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Figure 2. Closed-loop step response - Temperature module.

Ci(s) =







0.00015

s

−0.00009

s
−0.00009

s

0.00017

s






. (25)

The other design parameters were Qmax = 0.0766, Tmax =
1.8 and Smax = 1.8. The designed controllers gains are
presented in Table 1.

Table 1. Controller gains - Temperature
module.

C11 C12

Kp Ki Kp Ki

Aguiar et al. (2021) 0.028 0.0002 -0.010 -0.0003

Karimi and Kammer (2017) 0.042 0.0003 -0.012 -0.0004

Boyd et al. (2016) 0.029 0.0003 -0.019 -9 10−5

C21 C22

Kp Ki Kp Ki

Aguiar et al. (2021) -0.009 -0.0001 0.046 0.0004

Karimi and Kammer (2017) -0.015 -0.0002 0.058 0.0005

Boyd et al. (2016) -0.006 -0.0003 0.025 0.0003

The closed-loops step responses with the Aguiar et al.
(2021), Karimi and Kammer (2017) and Boyd et al.
(2016) controllers are presented in Fig. 2. Note that the
closed-loops with the Aguiar et al. (2021) and Karimi
and Kammer (2017) controllers approach the reference
model. Being the lowest IAE achieved when the Karimi
and Kammer (2017) controller is used, see Table 2.

The closed-loop with the Boyd et al. (2016) controller is
smoother, observe the loop 2. In this case, the coupling
between the loops is greater. This is a consequence of the
smaller variation of the control signal, as seen in Fig. 3 and
Table 2, where the control signal and the total variation
are shown.

Table 2. Performance index - Temperature
module.

Loop 1 Loop 2

Integral absolute error (IAE)
Aguiar et al. (2021) 628.6 383.9
Karimi and Kammer (2017) 488.3 330.9
Boyd et al. (2016) 589.6 661.0

Total value (TV)
Aguiar et al. (2021) 3.269 3.452
Karimi and Kammer (2017) 4.792 4.292
Boyd et al. (2016) 3.994 1.947

In this example, the smallest variation of the control signal
was obtained with the Aguiar et al. (2021) controller, when
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Figure 3. Input signal - Temperature module.

Figure 4. Peltier module diagram.

compared to the Karimi and Kammer (2017) controller.
Furthermore, comparing Aguiar et al. (2021) and Boyd
et al. (2016) controllers, note that for loop 2 there was a
41.93% reduction in the IAE when the Aguiar et al. (2021)
controller was used. On the other hand, for loop 1 there
was an increase of 6.5%.

4.3 Peltier module

The Peltier module used is composed of two Peltier mod-
ules, two LM35 temperature sensors, two aluminium cylin-
ders, two heat exchange and two fans. For temperature
control, a programmable logic controller (PLC) - Rockwell
Compact Logix L32E and a computer are used.

Each Peltier insert has a face attached to a heat exchange
and a fan, to facilitate the exchange of heat with the
environment, as shown in Fig. 4. The other side of the
inserts is thermally coupled to a cylinder, in which the
temperature sensors are fixed. Peltier modules are made
up of thermoelectric chips, which operate as heat pumps.
The temperature varies between 10oC and 70oC. Power is
applied through PWM actuators.

The controller design is based on the open-loop frequency
response. The reference model and the initialization con-
troller, respectively, are given by:

Td(s) =







1

12s+ 1
e−2.74s 0

0
1

8s+ 1
e−2.52s






(26)

and

C(s) =







1.125 +
0.022

s
0

0 1.049 +
0.020

s






. (27)

0 2 4 6 8 10 12 14
38

40

42

44

46

T
em

pe
ra

tu
re

 (
o  C

)

Loop 1

Aguiar et al. (2021)
Karimi and Kammer (2017)
Boyd et al. (2016)
Reference model
Setpoint

0 2 4 6 8 10 12 14

Time (min)

40

42

44

46

T
em

pe
ra

tu
re

 (
o  C

)

Loop 2

10 11
39.5

40

40.5

6.5 7 7.5

45

45.5

Figure 5. Closed-loop step response - Peltier module.

To design the controllers, Qmax = 110.94, Tmax = 1.8
and Smax = 1.8 were considered. The multivariable PI
controllers designed with each method considered are
presented in Table 3. Observe that the C12 and C21

parameters value are significantly lower than those of C11

and C22. This is due to the weak coupling existing in this
process.

Table 3. Controller gains - Peltier module.

C11 C12

Kp Ki Kp Ki

Aguiar et al. (2021) 2.677 0.041 -0.005 -0.005
Karimi and Kammer (2017) 4.885 0.045 1.070 -0.006
Boyd et al. (2016) 1.219 0.024 0.037 -0.012

C21 C22

Kp Ki Kp Ki

Aguiar et al. (2021) 0.016 -0.001 2.356 0.044
Karimi and Kammer (2017) 0.202 -0.002 4.635 0.044
Boyd et al. (2016) 0.014 -0.011 1.314 0.023

In Fig. 5, the closed-loops step responses with the Aguiar
et al. (2021), Karimi and Kammer (2017) and Boyd et al.
(2016) controllers are presented. Note that the closed-loop
with the Aguiar et al. (2021) controller approaches the
reference model. Furthermore, the Aguiar et al. (2021) loop
showed lower coupling and IAE, see Table 4.

The controller of Karimi and Kammer (2017) is more
aggressive, resulting in higher overshoot in loop 2, on
the other hand, the response of loop 1 did not reach the
reference when the step up was applied. The closed loop
with the Boyd et al. (2016) controller is smoother and does
not reach the steady state in the time period considered
for each step, resulting in the highest IAE.

Table 4. Performance index - Peltier module.

Loop 1 Loop 2

Integral absolute error (IAE)
Aguiar et al. (2021) 213.1 129.5
Karimi and Kammer (2017) 294.7 184.4
Boyd et al. (2016) 617.8 483.4

Total value (TV)
Aguiar et al. (2021) 56.58 49.59
Karimi and Kammer (2017) 159.7 130.7
Boyd et al. (2016) 21.42 26.44
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Figure 6. Input signal - Peltier module.

The control signals are shown in Fig. 6. The highest
control signal was obtained with the Karimi and Kammer
(2017) controller, as well as the highest control variation,
as shown in Table 4. With the Aguiar et al. (2021)
controller, lower control signal values were obtained when
compared to Karimi and Kammer (2017), due to the
constraints inserted in the optimization problem. However,
the smoothest control signal and the smallest variation are
obtained with the Boyd et al. (2016) controller.

In summary, with the Aguiar et al. (2021) controller, lower
values of IAE and TV were obtained when compared to the
controller of Karimi and Kammer (2017). In relation to the
controller of Boyd et al. (2016), the TV of the Aguiar et al.
(2021) controller was bigger, however the IAE reduced
significantly. In this example, with the Aguiar et al. (2021)
controller, it was possible to achieve the desired closed-loop
response with the smallest possible control signal.

5. CONCLUSION

In this paper, experimental results from the application
of PI MIMO controller design methods to a thermoelec-
tric process were discussed. The considered methods are
formulated as a convex optimization problem with LMI
constraint. The open-loop process frequency response is
used to solve the optimization problem.

All designed closed-loops were stable. The closed-loop
response with the controller proposed by Karimi and
Kammer (2017) was faster, with a more aggressive control
signal. The controller signal proposed by Boyd et al. (2016)
was smoother, with a very slow closed-loop response.

On the other hand, the controller proposed in Aguiar
et al. (2021) presented at the same time the advantages
of the controllers Karimi and Kammer (2017), response
speed and Boyd et al. (2016), smoothness of the control
signal. Thus, for the thermoelectric processes studied, the
method presented in Aguiar et al. (2021) resulted in the
best performance when compared to the other methods
considered.
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