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Abstract: PID controllers are still widely used in industrial processes, and their efficient
operation requires the design of a filter. This filter makes the derivative action feasible and
attenuates the measurement noise, reducing the variability of the control action. However, it
influences the closed-loop performance and robustness. In this context, we analyze the effects
of introducing a non-parametric noise filter based on the Singular Spectrum Analysis (SSA)
technique. The SSA decomposes a signal into a set of additive components, including the
measurement noise, in an adaptive manner. The filter was tested in First-Order Time Delay
(FOTD) models, typical in industrial processes, for PI and PID controllers, designed by a
optimized method, in scenarios with and without measurement noise. The Integral Absolute
Error (IAE) metric measured the performance and the Total Variance (TV) the signal variability.
The lag-dominated dynamics showed high sensitivity to changes in the filter attenuation degree
in comparison with other processes. In contrast, for balanced and delay-dominated dynamics,
the filter could improve both TV and performance. The PID achieved better performance than
the PI for all processes and scenarios considered, but for higher TV.

Keywords: PID control; Non-Parametric Filtering; Singular Spectrum Analysis; Measurement
Noise; FOTD model

1. INTRODUCTION

PID controllers are still the majority of controllers used
in the industry, due to their simplicity, few parameters,
and cost-effectiveness. According to Åström and Hägglund
(2001), they are used in process control, motor drive, op-
tical and magnetic memories, automobiles, flight control,
and instrumentation. PID controllers require the design of
a low-pass filter to make the derivative action realizable.
This filter is also conveniently used to attenuate high-
frequency measurement noise, inherent in sensor devices
in closed-loop systems.

Excessive noise leads to undesirable deviations in the con-
trol action, causing frequent and excessive actuator mo-
tion. As a mechanical device, this variation can lead to the
wear of its internal components and malfunction. On the
other hand, the filter dynamics impact the performance
and robustness of the control system. Thus, an attempt to
make the system more robust to the measurement noise
leads to a conflict: higher noise attenuation versus better
performance and robustness.

In this context, this study aims to investigate the effects of
using a non-parametric noise filter based on the Singular
Spectrum Analysis (SSA) algorithm in a PID control
system. This work investigates the the impact of filtering
on the closed-loop system, in terms of the performance

and variability of the control action and system output,
for different degrees of measurement noise attenuation.
For processes with balanced, lag, and delay-dominated
dynamics, as well as PI and PID controllers and scenarios
with and without measurement noise.

This paper is organized as follows. The noise filtering
problem in PID control and the SSA main aspects are
reviewed in section 2. Section 3 details the SSA filter, the
processes and model approximations, controller structure
and synthesis, as well as the performance metrics adopted.
The simulation results of the closed-loop system with
the non-parametric noise filter are presented in section 4.
Finally, the conclusions are given in section 5.

2. LITERATURE REVIEW

A disadvantage of feedback is that measurement noise is
introduced into the system (Segovia et al., 2013). Measure-
ment noise is typically high frequency and is assumed to
enter the system additively at the process output (Segovia
et al., 2014c). It causes high variations in the control

signal (Åström and Hägglund, 2006), and, consequently,
undesired movements of the actuator, leading to wear and
failure. One way to reduce these effects is to use a filter,
in this case, a parametric one, characterized by a time
constant (Hägglund, 2012; Segovia et al., 2014b).
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However, this filter introduces additional dynamics in the
control loop (Segovia et al., 2014b). According to Segovia
et al. (2014a), the filter changes the system dynamics,
and if poorly designed, it can deteriorate robustness and
load disturbance rejection. That is one of the reasons why
the derivative action is rarely used in industrial process
control (Isaksson and Graebe, 2002; Huba, 2015; Šekara
and Matausek, 2009).

According to Isaksson and Graebe (2002), the simpler
structure of the PI, compared to the PID, which has
different configurations (ideal, series, and parallel), is also
one of the reasons. In addition, it highlights the lack of
tuning methods for PID controllers that also take into
account the filter parameters. However, the main reason,
according to Isaksson and Graebe (2002); Åström and
Hägglund (2006); Kristiansson and Lennartson (2006);
Šekara and Matausek (2009), is the fact that the derivative
action amplifies the measurement noise, resulting in high
variations in the control signal, making the PID more
sensitive to it than a PI controller.

Isaksson and Graebe (2002) point out that, although PI
can deal satisfactorily with first-order process dynamics, a
well-tuned PID controller can achieve significant improve-
ments. As noted in Kristiansson and Lennartson (2006),
in which the use of the derivative action significantly
improved performance compared to PI, for equal stability
margins and only a moderate increase in control activity,
for all processes, including those with significant time
delay.

In this context, a well-designed filter can even improve the
closed-loop performance (Hägglund, 2013). Huba (2015)
emphasizes that the success of PID controllers depends
heavily on this. This leads to the following compromise:
choosing a filter with a given order and structure, seeking
to attenuate the measurement noise without impacting
too much the robustness and performance of the system
(Segovia et al., 2013).

The SSA is a technique for time series analysis and predic-
tion that includes classic elements of series analysis, statis-
tics, multivariate geometry, dynamic systems, and signal
processing (Golyandina et al., 2001; Alexandrov, 2009). It
decomposes the original time series in terms of its internal
components, which are additive and interpretable, such as
trend, periodical components, and noise (Golyandina and
Zhigljavsky, 2013).

This technique can be applied in trend analysis, detection,
and extraction of quasi-periodic components, noise atten-
uation, and point change detection (Alexandrov, 2009).
According to Hassani (2007), other applications include
identification of trends and patterns with different resolu-
tions and complexity, smoothing, extraction of seasonal
components, cycles, and periodic signals with different
amplitudes.

It does not require any statistical assumptions to be
fulfilled for the time series or its components (Golyandina
et al., 2001). It is not necessary also a parametric model
that characterizes its statistical distribution, nor non-
stationarity conditions (Zhigljavsky, 2010; Hassani, 2007).
It is simple to use, requires few parameters to be adjusted,

and allows trend extraction in the presence of noise and
oscillating components (Alexandrov, 2009).

As Alexandrov (2009) points out, it is similar to the
Principal Component Analysis (PCA) technique, which
is applied to a multidimensional series, decomposed by
the Singular Value Decomposition (SVD) method, and
returns a new representation, with a lower dimension
and different physical meaning. The SSA, nonetheless,
preserves its dimension and physical meaning throughout
the decomposition process.

Although relatively new, it is a powerful technique being
applied to many practical problems in different areas of
science (Hassani and Thomakos, 2010). Concerning control
process, in Zhang and Wang (2016) attitude regulation is
performed jointly by Active Disturbance Rejection Control
and SSA.

3. METHODS

The block diagram in Fig. 1 was considered to analyze the
effects of the non-parametric noise filter based on the SSA
method in the performance of the closed-loop system.

SSA C(s)
+

d

P (s)

+
η

+
r

e +u y

+

−

ProcessController

Noise Filter PID

Figure 1. Closed-loop system investigated. The blocks
SSA, C(s), and P (s) are, respectively, the noise filter,
the ideal PID controller, and the process. The signals
are: r, reference input, e, error, u, control action, d,
disturbance, y, system output, and η, noise.

It consists of a SSA noise filter in series with an ideal
PID controller, that aims to manipulate the process P (s),
subjected to a disturbance d, by comparing the measured
value of the output y, mixed with noise η, to its set-point
r. The design of each block in this system is explained in
the following sections.

3.1 Non-parametric Filter SSA

The non-parametric SSA filter, in its original form, is
applied to a real-valued time series XN of length N :

XN = (x0, x1, . . . , xn, . . . , xN−2, xN−1) (1)

The filtering process consists of four steps, divided in two
stages. The first is the Decomposition stage, which com-
prises the Embedding and SVD steps. The second is the
Reconstruction stage, which performs the Grouping and
the Diagonal Averaging steps. These steps are described
as follows.

1. Decomposition
1.1. Embedding: This step maps the original 1-dimensional

time series, given in (1), into a K-dimensional series
Xm, called the trajectory matrix, shown in (2).

Xm=[X1, . . . ,XK ], Xk=[xk−1, . . . , xk+L−2]
⊤

(2)

This trajectory matrix is made of a set of K column
vectors of length L that are subsets of the original
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time series, with K = N−L+1. It is a Hankel matrix,
given that the elements in its anti-diagonals are the
same. The filter parameter L ∈ Z is called the window
length or the embedding dimension and is constrained
to 2 ≤ L ≤ N/2. It represents the maximum number
of components into which the original time series is
decomposed.

1.2. Singular Value Decomposition:
The second step aims to decompose the trajectory
matrix in terms of its singular vectors U ∈ RL×L and
V ∈ RK×K , and singular values Σ ∈ RL×K , by the
use of the SVD method, resulting in:

Xm = UΣV T (3)

where the singular vectors and values are in a decreas-
ing order of magnitude: σ11 ≥ σ22 ≥ . . . ≥ σLK . From
the representation in (3), the trajectory matrix is then
splitted into q = max{i|σii > 0} ≤ L elementary
matrices, as illustrated in:

Xm =

q≤L∑
i=1

σiUiV
T
i (4)

resulting in a set of matrices XD that represents the
trajectory matrix of each component:

XD = {Xm1 ,Xm2 , . . . ,Xmq}, Xmi ∈ RL×K (5)

1.3. Eigendecomposition:
An alternative to the SVD method is the eigendecom-
position of the covariance matrix, given in (6).

Cm =
(
XmX⊤

m

)
/K, Cm ∈ RL×L (6)

which results in a representation of the original co-
variance matrix in terms of its eigenvalues S ∈ RL×L

and eigenvectors U ∈ RL×L, as shown in:

Cm = USUT (7)

From this representation, the original trajectory ma-
trix can be decomposed into q = max{i|λii > 0} ≤ L
matrices, by the projection of each column in Xm

onto the respective eigenvector in U, as shown in:

Xm =

q≤L∑
i=1

Ui(X
⊤
i Ui)

⊤ =

q≤L∑
i=1

UiX
⊤
pci (8)

where Xpci ∈ RK×L are the time series principal
components. This process results in the same set of
decomposed matrices XD as the one obtained in (5).

2. Reconstruction
2.1. Grouping:

In this step, the set of matrices XD, from the de-
composition stage, are merged into disjoint groups.
Defining I = {I1, I2, . . . , Ii, . . . , Ip} such that a given
set of indices Ii = {i1, i2, . . . , ipi

} corresponds to the
matrix indices that belongs to the i-th group. Then,
the grouping step is perform as in (9), by summing
up all the matrices that belongs to that group.

XIi =
∑

i∈Ii
Xmi = Xmi1+Xmi2+· · ·+Xmipi

(9)

Extending to all sets of indices, results in (10), a set
of grouped matrices.

XI = {XI1 ,XI2 , . . . ,XIp} (10)

This step relies on prior knowledge about the sep-
arability of the components, the magnitude of the

eigenvalues, the existence of patterns between the
eigenvectors, among others. Roughly speaking, at this
step the filtering effectively occurs, by dismissing some
matrices.

2.2. Diagonal Averaging:
This step seeks to map each matrix resulting from the
grouping step, back into a 1-dimensional time series,
X̃N, with the same length N as the original one.

X̃
(k)
N = (x̃

(k)
0 , x̃

(k)
1 , . . . , x̃(k)

n , . . . , x̃
(k)
N−2, x̃

(k)
N−1) (11)

Let XIi = A = (a
ij
)L,K
i,j=1 represent one of the ma-

trices obtained from the grouping step. The recon-
structed time series in (11) is obtained by performing
an average operation on each anti-diagonal of A. This
operation is shown in (12), and it is repeated for
n = 0, 1, . . . , N − 1.

x̃(k)
n =



1

n+ 1

n+1∑
i=1

a∗ij′ , 0 ⩽ n < L∗ − 1

1

L∗

L∗∑
i=1

a∗ij′ , L∗ − 1 ⩽ n < K∗

1

N − n

N−K∗+1∑
i=n−K∗+2

a∗ij′ , K∗ ⩽ n < N

(12)

where j′ = n−i+2, L∗=min(L,K), K∗=max(L,K),
N = L +K − 1, a∗ij = aij for L < K, and a∗ij = aji
for L ≥ K.

Extending this procedure for each component k =
1, 2, . . . , q ≤ L, the original time series is approxi-
mated by a reconstructed one, X̃R

N , as shown in (13).

X̃R
N =

R∑
k=1

X̃
(k)
N (13)

where R is a parameter that controls the number of
components used to approximate the time series, with
1≤R≤L. If R=L, then X̃R

N = XN , the reconstructed

series is equal to the original one, if R<L, then X̃R
N is

an approximation of XN considering the first R most
important components.

The SSA filtering steps are summarized in the pseudo-
algorithm shown in 1.

Algorithm 1: SSA Algorithm

Input: XN ∈ RN : original time series
L ≤ N/2 ∈ Z: embedding dimension
R ≤ L ∈ Z: components for reconstruction

Output: X̃R
N ∈ RN : reconstructed time series

Function SSA(XN , L,R):
Xm ← Embedding(XN , L) # Trajectory matrix
XD ← Decomposition(Xm) # SVD
XI ← Grouping(XD, I)
X̃R

N ← DiagonalAveraging(XI , R)
end

The SSA filter requires all the samples of the time series
to be available when applying the method. In order to
use it in a real-time application, a modified version of it,
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proposed in Leles et al. (2017, p. 4), called Causal Singular
Spectrum Analysis (CSSA), was adopted.

The method collects samples from a continuous time signal
xn=x(nTs) with Ts the sampling interval, to form a time
series XN of fixed length N . After that, as new samples
arrive, the old ones are discarded, as in a sliding window.

Besides, for each incoming sample, xn, instead of perform-
ing the diagonal averaging on each component’s matri-
ces, its reconstruction, x̃n, is done directly from the up-
dated eigenvectors U of the decomposition step, according
to (14), which performs the same operation as (8).

x̃(k)
n =

L∑
i=1

u
(k)
L u

(k)
i xn−L+i (14) x̃R

n =
R∑

k=1

x̃(k)
n (15)

where u(k) are the eigenvectors of the k-th component.

The reconstructed sample considering then the first R
components of the time series is obtained by (15). The
pseudo-algorithm of this filter is presented in 2.

Algorithm 2: CSSA Algorithm

Input: xn ∈ R: sample of the original time series
N ∈ Z: minimum number of samples
L ≤ N/2 ∈ Z: embedding dimension
R ≤ L ∈ Z: components for reconstruction

Output: x̃R
n ∈ R: reconstructed sample

Function CausalSSA(xn, N, L,R):
n← 0, XN ← 0
while new sample to process do

if n < N then
XN ← AddSample(XN , xns)
x̃R
n ← xn

else if n == N then

X̃R
N ← SSA(XN , L,R) # SSA filter

else if n > N then
XN ← UpdateTimeSeries(XN , xn)
Xm ← Embedding(XN , L)
U ← Eigendecomposition(

(
XmX⊤

m

)
/K)

x̃R
n ← Reconstruction(XN ,U) # (14)-(15)

end
n← n+ 1

end
end

In the CSSA algorithm, n and XN represent global vari-
ables (maintain its state between function calls) that are
initialized once. The filter executes as long as new samples
arrive. For n < N , the filter is inactive. When n = N , the
minimum number of samples has been reached, then the
SSA filter is executed on XN . After that, for n > N , the
series is updated with the new sample, the eigendecompo-
sition is performed on the new covariance matrix and the
operations in (14) and (15) are executed to compute the
reconstructed sample.

3.2 Process Dynamics and Model

The processes P (s) used in Fig. 1 were based on Segovia
et al. (2013, 2014b). They were selected to cover a sig-
nificant range of dynamics encountered in process control.

They were: (i) lag-dominated; (ii) balanced, and (iii) delay-
dominated dynamics. Its Transfer Functions (TFs) are
given in (16), (17) and (18), respectively.

P1(s) =
1

(s+ 1)(0.1s+ 1)(0.01s+ 1)(0.001s+ 1)
(16)

P2(s) =
1

(s+ 1)4
(17) P3(s) =

e−s(
5

100s+ 1
)2 (18)

For the controller design, the processes were approximated
by the First-Order Time Delay (FOTD) model in (19).

G(s) =
kpe

−τds

τs+ 1
(19)

where kp, τd and τ are the steady-state gain, the dead-
time, and the time constant, respectively.

These model parameters were determined by the reaction
curve of each process to a step input. The gain kp were
calculated by the step and process output steady-state
gains. The time delay τd was obtained through the inter-
section of the tangent line at the inflection point of the
response curve with the time axis, and the time constant
was given by τ = t63.2−τd, where t63.2 is the instant when
the response reaches ≈ 63.2% of its steady-state value.

3.3 PID Controller and Synthesis

The Proportional-Integral (PI) and PID controllers shown
in the block diagram in Fig. 1 are given by the TFs in (20)
and (21).

CPI(s) = kc

(
1 +

1

Tis

)
= kc +

ki
s

(20)

CPID(s) = kc

(
1 +

1

Tis
+ Tds

)
= kc +

ki
s

+ kds (21)

where kc, ki = kc/Ti, and kd = kcTd are the controller
parameters. Which were set by the Approximated M-
constrained Integral Gain Optimization (AMIGO) tuning
rules, proposed in Segovia et al. (2013) and reproduced in
Tab. 1.

Table 1. AMIGO tuning rules for PI and PID
controllers for process modeled by a FOTD.

PI PID

kc
0.15

kp
+

τ

kpτd

(
0.35−

τdτ

(τd + τ)2

)
1

kp

(
0.2 + 0.45

τ

τd

)
Ti 0.35τd +

13τdτ
2

τ2 + 12τdτ + 7τ2
d

τd
0.4τd + 0.8τ

τd + 0.1τ

Td -
0.5τdτ

0.3τd + τ

3.4 Performance Measurement

As in Segovia et al. (2014b), the Integral Absolute Error
(IAE) metric in (22) was chosen to measure the perfor-
mance of the controller in the closed-loop system of Fig. 1.

IAE =

∫ ∞

0

|e(t)|dt (22)

where e is the error due to a unit step input.

To measure the degree of the measurement noise present
in the control signal u and the system output y, the Total
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Variance (TV) metric was chosen. This metric was defined
in Huba (2015) and is given in (23) and (24).

TV (u) =
∑

k
|u(k + 1)− u(k)| − |2um − u∞ − u0| (23)

TV (y) =
∑

k
|y(k + 1)− y(k)| − |2ym − y∞ − y0| (24)

where k is the sample index, ym /∈ (y0, y∞) and um /∈
(u0, u∞) are extreme values of y and u, y0, u0, y∞ and u∞
the initial and steady-state values of y and u, respectively.

4. RESULTS AND DISCUSSION

The simulations of the system in Fig. 1 aimed to investi-
gate the behavior of the closed-loop system performance,
measured by the IAE, and the amount of noise present
in the signal of interest, measured by the TV, as the
values of L and R were changed, considering both the
presence and absence of measurement noise. The error
signal was decomposed into a fixed number of components,
constant value of L, while its reconstruction was made with
a different number of components, varying R for each L.

The PI and PID controller parameters used in the simula-
tions are shown in Tab. 3. Which were obtained applying
the AMIGO tuning rules in Tab. 1 on the FOTD model
parameters of the processes, presented in Tab. 2, for a
sensitivity of M = 1.4.

Table 2. FOTD model approximation parame-
ters for each process.

P1 P2 P3

kp 1 1 1
τd 0.08 1.43 1.01
τ 1.04 2.92 0.09

Table 3. PI and PID controller parameters for
each process from the AMIGO tuning rules.

P1 P2 P3

PI PID PI PID PI PID

kc 4.13 6.44 0.41 1.1 0.18 0.24
ki 7.67 17.86 0.16 0.47 0.47 0.51
kd 0 0.24 0 0.69 0 0.03

The simulation lasted 15 s, with sampling period of Ts =
0.01 s, for a unit step reference input r applied at t = 5 s,
with no disturbance, d = 0. The measurement noise η
added at the process output y was generated from a
Gaussian distribution with zero mean and Signal-to-Noise
Ratio (SNR) of 0.01.

For the CSSA, the non-parametric noise filter, the size
of sliding window for the time series was N = 200
samples. The values of L and R for each scenario were:
(i) L = [15, 25, 35, . . . , 85, 95], and R was varied from 1 to
15 components, for each L; and (ii) R = [1, 2, . . . , 10], and
L was varied from 10 to 100, for each R.

These values of L and R satisfy the filter constraints,
2 ≤ L ≤ N/2 and 1 ≤ R ≤ L, and cover a wide
range of L, given the choice of N . The combination of L
and R results in different noise attenuation degrees. Since
the reconstruction with a few but significant components
dispose the high-frequency ones, that are less significant
in spectral terms, usually where the noisy components are
located.

4.1 Lag-dominated dynamics

The results for P1, lag-dominated dynamics, are shown in
Figs. 2 and 3. Each point in Fig. 2 represents the value
of the IAE and TV of the control action u and system
output y, obtained from the simulation of the closed-
loop system for a given combination of L and R. Where
Ri, i = 1, 2, . . . , 15, means that the error signal e was
reconstructed with the first i components.

The results in Fig. 2, in the absence of measurement
noise, as the attenuation degree increases, by increasing
L and reducing R, both the performance and the signal
variability deteriorates, i.e. larger IAE and TV, of u and
y, for both PI and PID controllers. The best result is
achieved when the filter is not activated, which happens for
L = R = 15. This suggests that, in the absence of noise,
the filter is discarding important information present in
the signal when disregarding some of its components.

Meanwhile, in the presence of measurement noise, the
higher the attenuation degree, the lower is the TV of u
and y, as expected, since the suppression of the noise
results in less signal variability. But at the expense of
worse performance, higher IAE, for both controllers. At
some point, as can be seen for the TV (y), greater noise
attenuation results in an increase of the TV as well.
Moreover, the PID controller performed better than the
PI, for most simulations, but for higher values of the TV.

Some of these results can be seen by the time behavior
of the control action u and system output y, for the case
where noise is added to the output and for some values of
L and R, as shown in Fig. 3.

The worsening of the system’s performance can be seen
clearly for R = 1 as L increases from 15 to 95, equivalent to
increasing the degree of noise attenuation. It deteriorates
to the point that the system is no longer stable, for the PI
controller, and marginally stable for the PID, see L = 95
and R = 1. Also from Fig. 3, is clearly seen the greater
variability of the control action for the PID compared
to the PI controller. Which reflects on the TV metric
and is caused by the amplifying effect of high-frequency
components by the derivative part of the controller.

4.2 Balanced dynamics

The simulation results for process P2, of balanced dy-
namics, are presented in Fig. 5. For better viewing, some
results are enlarged. For this process, in the absence of
measurement noise and for any value of L and R, the
TV of the output y were negligible, as can be seen from
the magnitude values on the x-axis. In contrast, they were
significant for the control action u and show a larger gap
between the PI and PID controllers results.

Moreover, in the absence of measurement noise, the filter
deteriorates both the performance and the TV, even for
small values of L, as can be seen from the points labeled
with R1. As the degree of noise attenuation is decreased,
by making R closer to L, the performance converges to
≈ 4.8 (PI) and ≈ 2.25 (PID), while the TV continues to
decrease.
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Figure 2. IAE versus TV of u and y for lag-dominated
dynamics, for a unit step input, SNR = 0.01,N = 200,
R varying from 1 to 15 for each L, and Ts = 0.01 s.
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In the presence of measurement noise, the pattern changes.
Although the gap between PI and PID remains large, now,
as the attenuation degree increases, moving from right to
left, the results split into two curves, one directed upwards
and the other downwards, for both the control action u
and output y. This suggests that for this type of dynamics,
some values of L and R can achieve, simultaneously, better
performance and greater noise attenuation.

From the time behavior of the system output, y in Fig. 4,
the PI response is slower than that of the PID, which
explains its smaller IAE. Besides, as L and R vary, for this
type of process, there are no major differences between
the response curves, except for R = 1 for the control
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Figure 5. IAE versus TV of u and y for balanced dynamics,
for a unit step input, SNR = 0.01, N = 200, R varying
from 1 to 15 for each L, and Ts = 0.01 s.

action and of the PI controller. In addition, the magnitude
of the control action for the PID was smaller than that
of the process P1. It is also worth mentioning that no
combination of L and R values resulted in an unstable
closed-loop system.

4.3 Delay-dominated dynamics

The simulation results for the process P3, of delay-
dominated dynamics, are shown in Fig. 6. The results for
the absence of measurement noise were not significant and
therefore are not presented. Meanwhile, in the presence
of measurement noise, the patterns are similar to those
obtained for process P2, but with PI and PID performances
closer. As the noise attenuation degree decreases, the two
curves converge to ≈ 2.1 (PI) and ≈ 1.95 (PID). Also, the
IAE values obtained are much lower than those of process
P2 and slightly higher than of P1.
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Figure 6. IAE versus TV of u and y for delay-dominated
dynamics, for a unit step input, SNR = 0.01,N = 200,
R varying from 1 to 15 for each L, and Ts = 0.01 s.

The time behavior for the system output y in Fig. 7 shows
a similar performance for PI and PID. Likewise process P2,
no combinations of L and R destabilized the closed-loop
system.

5. CONCLUSION

This paper investigated the effects of using a non-
parametric noise filter based on the SSA method in a
Proportional-Integral-Derivative (PID) control loop. The
simulations consisted of varying the filter attenuation de-
gree for processes with balanced, lag, and delay-dominated
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Figure 7. Closed-loop performance of the delay-dominated
dynamics, for a unit step input, in the presence of
measurement noise with SNR = 0.01, N = 200, R
varying from 1 to 15 for each L, and Ts = 0.01 s.

dynamics, for PI and PID controllers, both in the presence
and absence of measurement noise. The trade-off between
performance and measurement noise attenuation was an-
alyzed through the IAE and TV of the control action and
system output.

In the absence of measurement noise, no filtering achieved
the best performances for both PI and PID controllers,
regardless of the process dynamics. Since there is no noise,
the SSA filters relevant components of the error signal,
causing the control action and output performance to
deteriorate, with an unnecessary increase in variability.
Meanwhile, the trade-off between performance and noise
attenuation was noticeable in the presence of measurement
noise. For the lag-dominated dynamics, a higher attenua-
tion degree resulted in less signal variability, to a certain
extent, at the expense of worse performance. On the other
hand, for the balanced and delay-dominated dynamics,
for some values of L and R, a higher attenuation degree
simultaneously improved the performance and the TV.

In addition, the PID achieved better performance than
the PI across all processes, independent of the presence
or absence of measurement noise. The largest discrepancy
between PI and PID was obtained for the balanced dy-
namics, followed by the delay and lag-dominated dynam-
ics. Furthermore, the balanced dynamics process showed
greater sensitivity to changes in the filter attenuation
degree. Resulting in an unstable closed-loop system for
the PI and marginally stable for the PID in the extreme
case. In contrast, the delay and lag-dominated dynamics
showed robustness to changes in L and R, resulting in
stable systems with similar response curves.

The SSA is an adaptable filter that uses the time series’
spectral composition to identify its components. It is more
general than a low-pass filter since it can identify and
extract oscillatory elements and trends. The drawbacks are
the computational cost due to the SVD step and the need
to adjust the parameters N , L, and R for each problem.

Suggestions for future work include simulations for a
more diverse set of dynamics and the use of other tuning
methods. Given the plausibility of SSA as a noise filter
in PID loops, an open avenue of research is to consider
an automatic algorithm for selection in the grouping step,
which can render optimal/sub-optimal trade-offs.
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