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AbstractThis paper presents a proposal to expand the Temperature Control Lab (TCLab)
educational tool for the ESP32 embedded platform, with a software interface adapted to the
Firmata protocol and Sysex commands. This migration adds ESP32 features as DAC, bluetooth,
WiFi and RTOS compatibility with its dual core architecture. Besides validating the usual
PID control experiments, a brain emotional learning algorithm (BELBIC) was simulated and
deployed, aggretating new educational skills and perspective to TCLab continuous development.
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1. INTRODUCTION

The Temperature Control Lab (TCLab) is an open project
with both hardware and software available (Rossiter et al.,
2019), for control education purpose. Originated from de-
mands for the process control teaching, it initially was
based on the concept of take-home kit which had particular
interest during remote classes, but it is equally applied
for in-person laboratory experiments conducted by stu-
dents due to its low cost (Oliveira and Hedengren, 2019;
de Moura Oliveira et al., 2020) and ease of programming in
Matlab/Simulink (Hacioglu et al., 2020) or Python, as an
suitable alternative to commercial solutions. Its Arduino-
based hardware with a printed circuit board of a simple
thermal plant as compatible shield, brings a pocket size
real system to the teaching-learning process (Figure 1),
satisfying student demand for practical applications be-
yond theory which thus may evolve a set of competencies
(Tupac-Yupanqui et al., 2022).

Figure 1. TCLab components: Arduino Leonardo, Thermal
system shield, USB cable, External power source

With a transistor temperature as the process variable and
a PWM base input as the control signal (Figure 2), a di-
versity of control related subjects can be explored, as mod-
eling and identification, parameter optimization (Oliveira
et al., 2020), linear and nonlinear control, machine learn-
ing, among other benchmark problems (Park et al., 2020).
TCLab is commercially available and has already been
successfully used by several universities throughout the
USA, and some institutions in Europe (UK, Portugal),
South Africa (Pretoria) and South America, where Herrera
et al. (2020) deployed a dynamic sliding mode control for
long delay systems. Indeed, it is already available a plenty
of educational resources, such as video classes and tutorials
as well as source code. However it is still an unknown
teaching tool outside its origin universities and co-workers.
This paper not only disseminates it for a broader audience,
but proposes its software integration to a well known
targeted Internet of Things (IoT) device ESP32 (ESPRES-
SIF, 2021), see Figure 3. Due to its higher availability
and flexibility of ADC and GPIO pins, dual core, Wi-Fi
and bluetooth native support (Junior et al., 2020; Misal
et al., 2020) it has been increasingly chosen as a preferable
platform. TCLab is based on a Arduino Leonardo board
with 8-bit, 16 MHz ATmega32u4 microcontroller, which
doubles the 10-bit ADC pins of the basic version Arduino
UNO. The ESP32 version used in this paper is based on
the XTensa® dual core 32-bit LX6, up to 240 MHz each
core, 34 GPIO with up to 18 pins (12-bit ADC) and 2 8-
bit channels DAC. This DAC is particularly interesting for
control systems when a PWM input signal is not suitable
for a specific plant.

Besides a first PID control validation replacing the pro-
cessing board from Arduino to ESP32, a Brain Emotional
Learning Based Intelligent Controller (BELBIC) (Lucas
et al., 2004) was due simulated on the plant model based
on the TCLab shield and then deployed to ESP32, ex-
panding the existing control challenges and topics. These
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Figure 2. TCLab project structure

Figure 3. Replacing Arduino Leonardo by ESP32 platform

developments were carried out as final project by students
of embedded systems at the undergratuate course on Anal-
ysis and Systems Development of Federal University of Rio
Grande do Norte, Brazil. All tutorials already available at
the TCLab repositories for the original Arduino Leonardo
board and software may be evaluated on ESP32 with the
open contributions of this paper.

2. ADAPTING AND RUNNING TCLAB TUTORIALS

2.1 Running on ESP32

TCLab core hardware is composed by two transistors
TIP31C acting as heaters, and two temperature sensors
TMP36. The aim of control is to maintain a desired
temperature at set point by adjustment of heater power
output. As stated by Herrera et al. (2020), the thermal en-
ergy from heater is transferred by conduction, convection,
and radiation to the temperature sensor, since each pair
sensor-transistor is bounded with thermal paste. Although
Multiple Input Multiple Output (MIMO) experiments can
be conducted, in this work only a Single Input and Single
Output (SISO) is used. The serial communication between
the desktop software and TCLab board is specifically han-
dled in Python with the pyserial library. Here the focus
is Python language instead of proprietary solutions, since
the low cost nature is not only in the hardware but in the
software as well.

Due to the unavailability of the TCLab plant shield
at the laboratory, the open TCLab schematics in Park
et al. (2020) was implemented in a protoboard with some
adaptations (Figure 4), thus replicating the operation of
the original TCLab. The temperature sensor TMP36 was
replaced by the LM35DZ and a thermal pad was used for
the bounding LM35DZ-TIP31C. Since only one TIP31C

is active for the SISO case, an external power source of
5V/1A was enough to provide electrical current for the
heater.

Figure 4. Thermal plant schematics in protoboard

2.2 Firmata-esp32 communication and framework

According to the UML component diagram depicted in
Figure 5, the application algorithms (control, identifica-
tion and so on) written in Python for the host com-
puter, send and receive data through commands of a
high level framework (here it was chosen the pyFir-
mata: https://pypi.org/project/pyFirmata/) which com-
municates with the ESP32 by means of the middleware
protocol Firmata written in C++. Since the current Fir-
mata version at https://github.com/firmata/protocol is
only compatible with some Arduino boards and ESP8266,
a modified version was developed for ESP32 target hard-
ware (Oliveira, 2020), where the file Boards.h includes spe-
cific board specificiations (number of pins and respective
types, for instance). Instead of using the common analog
and digital report commands, this interface is based on
general System exclusive (sysex) messages, which are used
to define sets of core features (digital and analog I/O). The
general block diagram and basic functions are presented in
Figure 6. With the Sysex protocol, data communication
format uses MIDI messages.

Four commands were designed within FirmataExt.cpp for
the handleSysex method: 0x01 (digital output), 0x02 (ana-
log input, readTemp()), 0x03 (digital read) and 0x04 (ana-
log output, sendPWM()). These interactions are presented
in the sequence chart in Figure 7. Since sysex commands
are based on 7-bit bytes (0-127), an encode-decode method
is necessary for the commands 0x02 and 0x04 with ADC
and PWM resolutions ≥ 8 bits, respectively. The source
code may be found in Fonseca (2021).

In order to validate such architecture, Figures 9 and 8
present two initial proposed experiments for 1) regression-
based First Order Plus Dead Time (FOPDT) model identi-
fication (Figure 8) and 2) a PID controller running on the
host computer and communicating to the ESP32 board
and the actual plant (9). These are the same original
TCLab experiments adapted to ESP32. The input/output
.csv file from the identification routine feeds the online tool
PID Tuner, thus getting the parameters k = 0.3495, τ =
113.55, θ = 31.94 and the model

G1(s) =
k

τs+ 1
e−θs =

0.3495

113.55s+ 1
e−31.94s. (1)
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Figure 5. UML component diagram

Figure 6. Modified Firmata protocol for ESP32 boards
with Sysex commands

PID parameters are Kp = 10, τi = 50, τd = 1 with a
time constant T = 1s. Once these experiments presented
suitable results when compared to TCLab performance,
the next step was the evaluation of an intelligent control
experiment, thus adding another learning skills and control
strategies.

2.3 BELBIC

The Brain Emotional Learning Based Intelligent Con-
troller (BELBIC) is a reinforcement learning method (Lu-
cas et al., 2004) which has gained increasing interest for
control engineering applications (Beheshti and Hashim,
2010) and therefore its embedded deployments (Lucas,
2011) and simulation tools (Coelho et al., 2017). It compu-
tationally mimics the functional parts of the mammalian
limbic system, such as the Amygdala (AM), Sensory Cor-
tex (SC), Orbitofrontal Cortex (OC) and the Thalamus
(TH), as depicted in Figure 10 (Beheshti and Hashim,
2010). The presence of OC and AM weights acting on
the excitatory input signals (also named stimuli) suggests
similarities with neural networks, but BELBIC is simpler

Figure 7. UML sequence diagram

Figure 8. Open loop experiment with ESP32 for FOPDT
model identification

Figure 9. PID experiment on ESP32: hardware and soft-
ware architecture validation

since there is no activation functions, biases or hidden
layers. The Sensory Input may has multiple stimuli, since
besides control there are also machine learning tasks such
as optimization (Jafari et al., 2020), classification (Mei
et al., 2017) and prediction (Parsapoor and Bilstrup, 2012;
Parsapoor et al., 2014) where the emotional learning is
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successfully applied and is under active research (Lotfi
and Khazaei, 2018). For control objectives SI and the
reward signal (Rew) generated by the Emotional Signal
(ES) block in Figure 11 can be scalar values such as
the tracking/regulation error e or any function f(e, u) of
the tracking/regulation error and the control signal u, as
presented in Figure 11. Here the SI is the output of a PID
controller within the BELBIC structure as in Darestani
et al. (2011) and the Rew is the absolute error |e| to make
it simple.

From Figure 10 the following equations were derived by
Lucas et al. (2004) for the AM and OC blocks:

Ai = Si × Vi, i = 1 . . . n, (2)

ATH = max(Si), (3)

Oi = Si ×Wi, (4)

where n is the length of SI array. Each Ai andOi represents
a particular node within its blocks. An additional TH
signal ATH acts on the AM when SI has more than one
input, what is not the situation in the example when the
SI is the output of a PID controller in the SISO case. The
following weights Vi and Wi are updated according to the
following differences ∆:

∆Vi = α×

Si ×max

0, Rew −
∑
j

Aj

 , (5)

∆Oi = β × (Si × (E⋆ −Rew)) , (6)

where j = 1 . . . n+1 since it includes ATH and α, β > 0 ∈
R are parameters associated to learning rates, which must
be tuned. E and E⋆ are the compensatory errors which do
include and does not include ATH , respectively and thus
are written as

E⋆ =
∑
i

Ai −
∑
i

Oi, (7)

E =
∑
j

Aj −
∑
i

Oi, (8)

and therefore E is indeed the BELBIC control signal u.
From (5) one has the excitatory nature for the AM, since
when the AM nodes do not exceed the Rew signal, there
is no change in V and ∆Vi ≥ 0. The inhibitory task is
handled by the OC, increasing or decreasing the learning
as the process evolves.

Equations (2)−(8) have been implemented mostly in its
matrix form on Digital Signal Processors (DSP) as in Go-
labian et al. (2009), and embedded applications on FPGA
(Iranpour and Sharifian, 2017; Jamali et al., 2009) due
to its parallel architecture for AM and OC computations.
Since ESP32 boards have native RTOS support and are
dual core, it is a suitable platform for BELBIC as well.

3. SIMULATIONS AND BELBIC EXPERIMENTS

To keep the compatibility with TCLab source codes,
BELBIC was implemented as a Python script (Fonseca,
2021) and validated with the automatic voltage regulator
model (9) in Valizadeh et al. (2008), as presented in Figure
12. The control signal saturation is 3.3 to reflect the actual

Figure 10. Graphical representation of Brain Emotional
Learning

Figure 11. Closed-loop BELBIC block diagram

voltage limit for ESP32 pins. The simulation parameters
were α = 0.45, β = 0.01, V1 = 0.81,W1 = 1.0,Kp =
3.98,Ki = 0.58,Kd = 0.63.

G2(s) =
VT

VE
=

KAKEKG

(1 + τAs)(1 + τEs)(1 + τGs)
, (9)

where KA = 10, τA = 0.1,KE = τE = KG = τG = 1 and
the simulation step is h = 0.01s.

Figure 12. BELBIC simulation - Python script

Once simulations results were validated, the interface to
ESP32 and the circuit in Figure 4 was established based
on the system architecture in Figure 5. For this exper-
iment the BELBIC parameters were: α = 0.001, β =
0.00001, V1 = 0,W1 = 0,Kp = 10,Ki = 0.2,Kd = 10,
with a time constant T = 1s. The bottom plot in Figure

Sociedade Brasileira de Automática (SBA) 
XXIV Congresso Brasileiro de Automática - CBA 2022, 16 a 19 de outubro de 2022 

ISSN: 2525-8311 4153 DOI: 10.20906/CBA2022/3739



Figure 13. BELBIC running on ESP32 for the TCLab-
based thermal system. Top plot: heater temperature
tracking; Middle plot: PWM control signal; Bottom
plot: detail on actual×model output

13 highlights the validation of the FOPDT model (1). In
order to contribute as a teaching-learning approach, Tables
1 and 2 present some usual descriptive statistics based on
the gathered data of the PID and BELBIC experiments.
The idea here is not in the controllers comparison, already
detailed for more complex systems in the references cited
throughout this work, but how students can derive some
simple metric to evaluate oscilations (process output and
control signal standard deviation std) and average perfor-
mance (mean and peak errors).

PID performance indicators

Temperature (degC) Heater (%) error

count 900.000000 900.000000 900.000000

mean 42.681112 15.084637 -3.019121

std 6.302056 22.948615 5.746636

min 30.791789 0.000000 -21.808407

25% 37.145650 0.000000 -4.335288

50% 41.544477 5.010056 -1.319648

75% 49.853372 22.975460 -0.078201

max 53.763441 100.000000 13.831867

Table 1. PID performance indicators

BELBIC performance indicators

Temperature (degC) Heater (%) error

count 900.000000 900.000000 900.000000

mean 43.034648 14.094379 -3.371571

std 5.924422 24.252915 6.313546

min 31.280547 0.000000 -21.808407

25% 37.634409 0.000000 -5.679374

50% 42.521994 0.000000 -2.297165

75% 48.875855 20.660079 -0.830890

max 54.740958 100.000000 12.854350

Table 2. BELBIC performance indicators

4. CONCLUSION

Based on the TCLab software and plant shield, this pa-
per presented a proposal for adapting the source code to
ESP32 boards, with advanced hardware specifications and
more suitable for the IoT context and control objective,

due to its native Wi-Fi, dual core and DAC features.
The main existing PID and identification experiments
were replicated on ESP32, as well as an intelligent control
experiment based on the BELBIC method was proposed
and evaluated. These findings do motivate further develop-
ments of a TCLab-based PCB version integrated to ESP32
and its continuous use by educational institutions to add
active learning based on low cost control experiments.
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