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Abstract: Complex control applications, such as robotics and aerospace engineering, often
require nonlinear control strategies. In the backstepping, feedback linearization, and sliding
mode control, online trajectory generation is a major requirement in improving the controller
performance, leading to high precision tracking. Its purpose is to generate continuous and
bounded trajectories that are derivatives of a rough input reference signal, such as steps and
pulses. In this context, this paper proposes the use of a non-parametric filter based on the real-
time Singular Spectrum Analysis (SSA) method for online trajectory generation. The SSA is
highly adaptive to the behavior of signals, including non-stationary ones, through its spectral
decomposition. Additionally, is more selective than a simple Finite Impulse Response (FIR)
filter, commonly used for generating trajectories. It can identify and extract components,
smooth, and denoise a signal. Some experimental results show that SSA can be used as trajectory
filter, by successfully generating bounded derivatives from discontinuous input signals. Moreover,
empirical adjustment of the fixed filter parameters resulted in similar responses as those obtained
for a parametric trajectory filter. These findings provide a potential mechanism for further
researches regarding complex and non-stationary signals.

Keywords: Online Trajectory Generation; SSA Filter; Causal SSA Filter; Non-parametric
Filtering; FIR Filter; Filter Bank; Bounded Derivatives.

1. INTRODUCTION

Motion control and industrial robot control problems
usually require online computation of smooth and bounded
trajectories and their derivatives from a rough input signal.
They are also required in the design of nonlinear control
laws such as feedback linearization, backstepping and
Active Disturbance Rejection Control (ADRC) techniques.
Additionally, abrupt changes in an input signal often lead
to vibration, stress, and wear of mechanical components.
Therefore, the smoothness of trajectory signals can impact
the overall performance of control systems.

A common way to generate smooth and bounded trajec-
tories is using a filter-based approach. In this approach,
a rough input signal and its derivatives are smoothed by
successive applying Finite Impulse Response (FIR) Mov-
ing Average (MA) filters. They are simple, efficient, and
capable of complying with kinematic constraints imposed
on the shape of the trajectories.

Another approach is to use data-driven methods. Those
methods are called non-parametric filtering and differ from
the parametric filter-based approach by not assuming a
fixed distribution for the data, e.g., Gaussian. This way
those methods can better deal with model nonlinearities,
by adapting its output accordingly with the structure of
the data.

Given this, this paper investigates the use of a real-
time version of the non-parametric Singular Spectrum
Analysis (SSA) filter, known as Causal Singular Spectrum
Analysis (CSSA), as a novel online trajectory generating
approach. The method is based on a cascade of CSSA
filters that successively smooth an initially rough reference
input signal such as step, pulse, and sawtooth, and its
derivatives to generate smooth and bounded trajectories.

This paper is organized as follows. The trajectory filter
approach and the SSA method are briefly reviewed in sec-
tion 2. Section 3 details the cascaded FIR trajectory filter
approach and the SSA filter, its interpretation through
linear filtering as a Filter Bank (FB) of FIR filters and
its real-time version, the CSSA. The experimental results
on the proposed non-parametric SSA trajectory filter are
presented in section 4. Finally, concluding remarks are
given in section 5.

2. LITERATURE REVIEW

This section briefly describes traditional methods for com-
puting trajectories in control applications, as well as the
main aspects of the non-parametric SSA filter.

2.1 Trajectory Filter

Trajectory schemes aim at producing a set of signal profiles
from a rough reference input by computing its derivatives.
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Usually, the reference input represents the position, and
the trajectory scheme generates bounded velocity, acceler-
ation, jerk, snap, and so on, which also satisfy kinematic
constraints (Biagiotti and Melchiorri, 2012). Gerelli and
Bianco (2010) state that controlled robotics and mecha-
tronics applications require smooth signals produced by
trajectory generators to improve system performance.

Sudden changes in the control signal can lead to mechan-
ical vibration, wear of mechanical components, induced
noise, and disturbances (Lu, 2008). Zanasi et al. (2000);
Kim et al. (1994); Zheng et al. (2009) emphasize that the
availability of smooth reference trajectories with bounded
derivatives is fundamental in getting accurate and quick
tracking performance in complex motion control systems.
Gerelli and Bianco (2010) stress that smooth reference
signals are the most relevant requirement in the control
of robotic applications. The bounds on the derivatives,
i.e., minimum and maximum velocity and acceleration, are
a direct consequence of physical constraints of actuators,
such as voltage and current limits (Gerelli and Bianco,
2010; Zanasi et al., 2000).

Several techniques for trajectory generation are available
in the literature. In industrial robotic and mechanical
systems, smooth trajectories are usually obtained offline
by computing optimal profiles (Zanasi et al., 2000; Zheng
et al., 2009). Another offline approach is the selection of
polynomial functions (Jeon and Ha, 2000; Zheng et al.,
2009). These techniques are not suited for real-time appli-
cations due to their high computational cost (Zanasi et al.,
2000; Jeon and Ha, 2000). According to Gerelli and Bianco
(2010), an online alternative is to generate trajectories by
nonlinear filtering through a feedback controller. Studies
that explore this approach can be found in Zanasi et al.
(2000), Zanasi and Morselli (2003), Lu (2008) and Gerelli
and Bianco (2010).

Zanasi et al. (2000) proposed a nonlinear discrete-time
trajectory filter based on a Variable Structured Controller
(VSC), sliding mode control with a chain of integrators,
capable of providing a minimum-time response without
overshoot and symmetrical bounds on the first and sec-
ond derivatives. Zanasi and Morselli (2003) presented a
generalization of this method for higher-order derivatives
and a broader class of input signals. In Lu (2008) a
time-optimal jerk-constrained trajectory generator with
disturbance rejection capabilities was proposed for speed
control of electrical drives. Zheng et al. (2009) used a
modified nonlinear tracking differentiator, robust to noise,
to generate smooth trajectories from rough input signals
such as steps. In Gerelli and Bianco (2010) a VSC, based
on an algebraic nonlinear control law, in series with a
chain of three integrators, was used to produce continuous
trajectories for velocity and acceleration profiles.

Although trajectory filter generators with nonlinear con-
trollers can be used in robotic applications successfully,
they are rather complex and computational demanding
(Biagiotti and Melchiorri, 2012). A simpler online alter-
native can be obtained through linear filtering by FIR
filters (Biagiotti and Melchiorri, 2012; Besset and Béarée,
2017; Zheng et al., 2009). Studies that use this filter-
based approach are Kim et al. (1994); Olabi et al. (2010);
Biagiotti and Melchiorri (2012); Besset and Béarée (2017).

In Kim et al. (1994), a velocity trajectory is generated
through convolution with a digital filter for the control of
industrial robots and Computer Numerical Control (CNC)
machining tools, together with a PID controller and a
notch filter for vibration reduction. Olabi et al. (2010)
proposed a method of jerk-limited trajectory planning for
continuous machining robots that consist of convolving a
trapezoidal velocity-shaped signal with a FIR MA filter.
Biagiotti and Melchiorri (2012) used a cascade of FIR MA
filters, combined with the features of multi-segment poly-
nomial trajectories, to generate time-optimal profiles with
kinematic constraints on velocity, acceleration, and jerk.
Finally, in Besset and Béarée (2017), a low computational
complex acceleration-limited signal is convolved with a
FIR MA filter to generate jerk-constrained trajectories for
robot applications.

2.2 Singular Spectrum Analysis

The SSA is a technique for time series analysis and predic-
tion that includes classic elements of series analysis, statis-
tics, multivariate geometry, dynamic systems, and signal
processing (Golyandina et al., 2001; Alexandrov, 2009). It
decomposes the original time series in terms of its internal
components, which are additive and interpretable, such as
trend, periodical components, and noise (Golyandina and
Zhigljavsky, 2013b).

This technique can be applied in trend analysis, detection,
and extraction of quasi-periodic components, noise atten-
uation, and point change detection (Alexandrov, 2009).
According to Hassani (2007), other applications include
identification of trends and patterns with different reso-
lutions and complexity, smoothing, extraction of seasonal
components, cycles, and periodic signals with different am-
plitudes. Concerning distinct time-scales or non-stationary
signals, Leles et al. (2018) proposed a new algorithm that
introduces a moving subseries approach, addressing the
problem of how to combine distinct decompositions into a
single one.

Additionally, it does not require any statistical assump-
tions to be fulfilled for the time series or its components
(Golyandina et al., 2001). It is not necessary also a para-
metric model that characterizes its statistical distribution,
nor non-stationarity conditions (Zhigljavsky, 2010; Has-
sani, 2007). It is simple to use, requires few parameters to
be adjusted, and allows trend extraction in the presence
of noise and oscillating components (Alexandrov, 2009).
Because of these advantages, Zhang and Wang (2016)
adopted jointly the SSA and ADRC to resolve the complex
problem of attitude regulation of a liquid-filled spacecraft
model. The adaptive features of SSA show usefulness to
separate relevant modes from an undesirable signal, with-
out relying on much information from the system.

Despite being more selective and adaptive, there are some
drawbacks in using SSA as a filter. The necessity to
perform the Singular Value Decomposition (SVD) for each
new sample increased the computational cost. This could
be dealt with by the use of a recursive version of the SSA
method. A discussion on the computational cost of the SSA
method can be found in Leles et al. (2018). Since is a non-
parametric filter, SSA requires tuning of its parameters
to be done by empirical rules. This poses a challenge in
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finding the right degree of smoothness and is an open
problem in the signal processing field.

3. METHODS

This section describes the parametric trajectory filter
based on a cascade of FIR filters and the non-parametric
SSA method. In addition, it also addresses its interpre-
tation as a bank of FIR filters as well as the CSSA, its
adapted version for real-time processing.

3.1 Cascaded FIR Trajectory Filter

A trajectory filter based on a cascade of FIR filters, as
described in Biagiotti and Melchiorri (2012), is depicted
in Fig. 1. It generates a trajectory with the desired
smoothness from a rough input signal such as steps and
pulses. Successive filtering of the rough input signal f0 and
its derivatives by a MA filter Hi results in a bounded and
smooth trajectory.

H1
d
dt H2

d
dt

· · · Hn
d
dt

f0 f1 f2 fn f ′
n

FIR1 FIR2 FIRn

f ′
2f ′

1

Figure 1. Trajectory generating filter based on a cascade
of FIR filters.

The impulse response hi(t) and the i-th MA filter Hi(s)
are given in (1) and (2), for i = 1, 2, . . . , n. It performs an
averaging operation on the samples of the input signal from
t=0 to t=Ti. An example of how this process works, for
a scaled unit step input f0 = au(t), for a>0, is presented
in Figs. 2 and 3.

hi(t)=

{
1
Ti
, 0 ⩽ t < T

0, otherwise
(1) Hi(s) =

1

Ti

1− e−sTi

s
(2)

Assuming, for example, that f0(t) represents the position
and the application requires the knowledge of the velocity
trajectory from it. This information can be obtained
simply by taking the derivative of f0(t), resulting in
f ′
0(t) = aδ(t). As shown in Fig. 2 (b), it is not a bounded
signal, it has an area equals to a but infinite amplitude.
Therefore can not be used for trajectory tracking.

f0

t

a

h1

t

1
T1

T1

f1 = f0 ∗ h1

t

a
T1

T1

f ′
0

+∞

t

f ′
1

t

a
T1

T1

∗

d
dt

d
dt

(a) (c) (d)

(b) (e)

Figure 2. Effect of filtering a step input signal f0(t) = au(t)
by a MA filter h1(t).

Instead, before taking the derivative, the input signal f0(t)
is convolved with the MA filter h1(t), shown in Fig. 2 (c),
resulting in a smoother version given by f1(t) = f0(t) ∗

h1(t) in Fig. 2 (d), where ∗ stands for the convolution
operation. Its derivative now, given in Fig. 2 (e), is a
bounded signal and can be shaped according to the choice
of the filter parameter T1 and the amplitude a of the input.

Supposing that the acceleration profile is also required,
to avoid getting an unbounded derivative again, such as
f ′′
1 (t) in Fig. 3 (f), f ′

1(t) is convolved with another MA
filter h2(t), shown in Fig. 3 (g), resulting in a signal
f2(t) = f ′

1(t) ∗ h2(t) (Fig. 3 (i)). Its derivative, f ′
2(t) in

Fig. 3 (j), is now a bounded signal. The smoothing effect
achieved by successive filtering of the original input signal
can be seen by taking the integral of f2(t), as shown in
Fig. 3 (h).
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a
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∫
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f ′
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T2 T1
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f ′
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d
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(f)

(g)

(h)
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Figure 3. Further filtering f ′
1 by another MA filter h2(t) to

get a bounded derivative for f ′
2.

This process repeats as higher-order derivatives are re-
quired. By the use of n FIR filters, as shown in Fig. 1, the
first n−1 derivatives are continuous and the n-th derivative
is a piece-wise constant signal.

3.2 SSA Algorithm

The non-parametric SSA filter, in its original form, is
applied to a real-valued time series XN of length N .

XN = (x0, x1, . . . , xn, . . . , xN−2, xN−1) (3)

The filtering process consists of four steps, divided in two
stages. The first is the Decomposition stage, which com-
prises the Embedding and SVD steps. The second is the
Reconstruction stage, which performs the Grouping and
the Diagonal Averaging steps. These steps are described
as follows.

1. Decomposition
1.1. Embedding: This step maps the original 1-dimensional

time series, given in (3), into a K-dimensional series
Xm, called the trajectory matrix, shown in (4).

Xm=[X1, . . . ,XK ], Xk=[xk−1, . . . , xk+L−2]
⊤

(4)

This trajectory matrix is made of a set of K column
vectors of length L that are subsets of the original
time series, with K = N−L+1. It is a Hankel matrix,
given that the elements in its anti-diagonals are the
same. The filter parameter L ∈ Z is called the window
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length or the embedding dimension and is constrained
to 2 ≤ L ≤ N/2. It represents the maximum number
of components into which the original time series is
decomposed.

1.2. Singular Value Decomposition:
The second step aims to decompose the trajectory
matrix in (4) in terms of its singular vectors U ∈
RL×L and V ∈ RK×K , and singular values Σ ∈
RL×K , by the use of the SVD method, resulting in (5).

Xm = UΣV T (5)

where the singular vectors and values are in a decreas-
ing order of magnitude: σ11 ≥ σ22 ≥ . . . ≥ σLK .

From the representation in (5), the trajectory matrix
is then split into q = max{i|σii > 0} ≤ L elementary
matrices, as illustrated in (6).

Xm =

q≤L∑
i=1

σiUiV
T
i (6)

resulting in a set of matrices XD that represents the
trajectory matrix of each component.

XD = {Xm1 ,Xm2 , . . . ,Xmq}, Xmi ∈ RL×K (7)

1.3. Eigendecomposition:
An alternative to the SVD method is the eigendecom-
position of the covariance matrix, given in (8).

Cm =
(
XmX⊤

m

)
/K, Cm ∈ RL×L (8)

which results in a representation of the original co-
variance matrix in terms of its eigenvalues S ∈ RL×L

and eigenvectors U ∈ RL×L, as shown in (9).

Cm = USUT (9)

From this representation, the original trajectory ma-
trix can be decomposed into q = max{i|λii > 0} ≤ L
matrices, by the projection of each column in Xm

onto the respective eigenvector in U, as shown in (10).

Xm =

q≤L∑
i=1

Ui(X
⊤
i Ui)

⊤ =

q≤L∑
i=1

UiX
⊤
pci (10)

where Xpci ∈ RK×L are the time series principal
components. This process results in the same set of
decomposed matrices XD as the one obtained in (7).

2. Reconstruction
2.1. Grouping:

In this step, the set of matrices XD, from the de-
composition stage, are merged into disjoint groups.
Defining I = {I1, I2, . . . , Ii, . . . , Ip} such that a given
set of indices Ii = {i1, i2, . . . , ipi

} corresponds to the
matrix indices that belongs to the i-th group. Then,
the grouping step is perform as in (11), by summing
up all the matrices that belongs to that group.

XIi =
∑
i∈Ii

Xmi = Xmi1 +Xmi2 + · · ·+Xmipi
(11)

Extending to all sets of indices, results in (12), a set
of grouped matrices.

XI = {XI1 ,XI2 , . . . ,XIp} (12)

This step relies on prior knowledge about the sep-
arability of the components, the magnitude of the
eigenvalues, the existence of patterns between the

eigenvectors, among others. The reader is referred
to Golyandina and Zhigljavsky (2013a, p. 43) and
Golyandina and Korobeynikov (2014, p. 12-15) for a
more detailed discussion about these aspects.

2.2. Diagonal Averaging:
The step seeks to map each matrix resulting from the
grouping step, back into a 1-dimensional time series,
X̃N, with the same length N as the original one.

X̃
(k)
N = (x̃

(k)
0 , x̃

(k)
1 , . . . , x̃(k)

n , . . . , x̃
(k)
N−2, x̃

(k)
N−1) (13)

Let XIi = A = (aij )
L,K
i,j=1 represent one of the ma-

trices obtained from the grouping step. The recon-
structed time series in (13) is obtained by performing
an average operation on each anti-diagonal of A. This
operation is shown in (14), and it is repeated for
n = 0, 1, . . . , N − 1.

x̃(k)
n =



1

n+ 1

n+1∑
i=1

a∗ij′ , 0 ⩽ n < L∗ − 1

1

L∗

L∗∑
i=1

a∗ij′ , L∗ − 1 ⩽ n < K∗

1

N − n

N−K∗+1∑
i=n−K∗+2

a∗ij′ , K∗ ⩽ n < N

(14)

where j′ = n−i+2, L∗=min(L,K), K∗=max(L,K),
N=L+K−1, a∗ij=aij for L<K, and a∗ij=aji for L≥K.

Extending this procedure for each component k =
1, 2, . . . , q ≤ L, the original time series is approxi-
mated by a reconstructed one, X̃R

N , as shown in (15).

X̃R
N =

R∑
k=1

X̃
(k)
N (15)

where R is a parameter that controls the number of
components used to approximate the time series, with
1≤R≤L. If R=L, then X̃R

N = XN , the reconstructed

series is equal to the original one, if R<L, then X̃R
N is

an approximation of XN considering the first R most
important components.

The SSA filtering steps are summarized in the pseudo-
algorithm shown in 1.

Algorithm 1: SSA Algorithm

Input: XN ∈ RN : original time series
L ≤ N/2 ∈ Z: embedding dimension
R ≤ L ∈ Z: components for reconstruction

Output: X̃R
N ∈ RN : reconstructed time series

Function SSA(XN , L,R):
Xm ← Embedding(XN , L) # Trajectory matrix
XD ← Decomposition(Xm) # SVD
XI ← Grouping(XD, I)
X̃R

N ← DiagonalAveraging(XI , R)
end

3.3 SSA as a FIR Filter Bank

The SSA method can also be interpreted in terms of
a linear filtering process. The projection operation that
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results in the set of decomposed matrices XD through (6)
or (10), in the decomposition and the diagonal averaging
operation, lead to the FB description of the SSA shown in
Fig. 4.

XN Al(z) Sl(z) pl + X̃N

AL(z) SL(z) p
L

A1(z) S1(z) p1

...

...

X̃
(l)
N

X̃
(1)
N

X̃
(L)
N

D1(z)

Dl(z)

DL(z)

...

...

Figure 4. Block diagram of the SSA as a FIR FB.

The eigenvectors obtained from the decomposition of the
trajectory matrix form the coefficients of the filters Al(z)
and Sl(z), for each component l = 1, 2, . . . , L. Equation
Al(z), given in (16), is a causal filter that represents
the projection operation that results in the principal
components, called forward filtering. Meanwhile, Sl(z),
given in (17), is an anti-causal filter and is responsible for
the inverse projection and the diagonal averaging step by
normalizing it by L, performing reverse filtering.

Al(z) =

L−1∑
k=0

u
(l)
k z−k (16) Sl(z) =

1

L

L−1∑
k=0

u
(l)
k zk (17)

where u(l)=
[
u
(l)
0 u

(l)
1 . . . u

(l)
k . . . u

(l)
L−1

]⊤
are the eigenvectors

of the l-th component.

The binary gain pl ∈ {0, 1} in Fig. 4 indicates whether or
not a given component is selected for the reconstruction of
the time series. The l-th branch of the FB, for pl = 1,

relates the l-th reconstructed component X̃
(l)
N with the

original time series XN through the transfer function of
a FIR filter Dl(z) given by (18).

Dl(z)=
X̃

(l)
N (z)

XN(z)
=Al(z)Sl(z)

=

(
L−1∑
k=0

u
(l)
k z

−k

)(
1

L

L−1∑
k=0

u
(l)
k z

k

)

=
L−1∑

k=−(L−1)

d
(l)
k zk =

L−1∑
k=1−L

 1

L

L−1∑
i=|k|

u
(l)
i u

(l)
|k|−i

zk (18)

According to Tomé et al. (2018), the filter coefficients d
(l)
k

are the entries of the matrix Dl = u(l)u(l)⊤ along the k-
th diagonal. With the main diagonal given by k = 0, and
above and below the main diagonal by k > 0 and k < 0,
respectively. Dl is a symmetric matrix, d−k = dk, and
the sum of each matrix component results in an identity
matrix as shown in (19).

L∑
l=1

Dl =
L∑

l=1

u(l)u(l)⊤= I
L×L

=⇒
L∑

l=1

d
(l)
k = δ(k) (19)

where δ(k) is a unit impulse signal.

This implies that if the reconstruction is done with all
the components, pl = 1, ∀l=1,2,...,L, then the original time
series is exactly recovered. Equivalent to convolving the
series with an impulse in the time-domain.

In addition, the symmetry property leads the frequency
response of the filter Dl(z) to be expressed in a closed-
form as in (20).

Dl(e
jω) = d

(l)
0 + 2

L−1∑
k=1

d
(l)
k cos (kω), ∀l=1,2,...,L (20)

Which is of a real-valued and zero-phase filter, implying
that each component is not distorted and is in phase with
the original time series.

Therefore, regarding the reconstruction stage, the SSA can
be seen as a linear filtering process performed through a
bank of FIR filters generated by the spectral decomposi-
tion of the time series in terms of its eigenvectors. Another
characterization of SSA as eigenvector filters is provided
by Leles et al. (2016).

3.4 Real-time SSA

The SSA filter requires all the samples of the time series
to be available when applying the method. In order to use
it in a real-time application, a modified version of it, was
adopted in Leles et al. (2017, p. 4), called CSSA.

The method collects samples from a continuous time
signal, xn = x(nTs), with Ts the sampling period, to form
a time series XN of fixed length N . After that, as new
samples arrive, the old ones are discarded, as in a sliding
window.

Besides, for each incoming sample, xn, instead of perform-
ing the diagonal averaging on each component’s matri-
ces, its reconstruction, x̃n, is done directly from the up-
dated eigenvectors U of the decomposition step, according
to (21), which performs the same operation as (10).

x̃(k)
n =

L−1∑
i=0

u
(k)
L−1u

(k)
i xn−L+i, n = 0, 1, 2, . . . (21)

where u(k) are the eigenvectors of the k-th component.

The reconstructed sample considering then the first R
components of the time series is obtained by (22).

x̃R
n =

R∑
k=1

x̃(k)
n (22)

The pseudo-algorithm of this filter is presented in 2.

In the CSSA algorithm, n and XN represent global vari-
ables (maintain its state between function calls) that are
initialized once. The filter executes as long as new samples
arrive. For n < N , the filter is inactive. When n = N , the
minimum number of samples has been reached, then the
SSA filter is executed on XN . After that, for n > N , the
series is updated with the new sample, the eigendecompo-
sition is performed on the new covariance matrix and the

Sociedade Brasileira de Automática (SBA) 
XXIV Congresso Brasileiro de Automática - CBA 2022, 16 a 19 de outubro de 2022 

ISSN: 2525-8311 3872 DOI: 10.20906/CBA2022/3702



Algorithm 2: CSSA Algorithm

Input: xn ∈ R: sample of the original time series
N ∈ Z: minimum number of samples
L ≤ N/2 ∈ Z: embedding dimension
R ≤ L ∈ Z: components for reconstruction

Output: x̃R
n ∈ R: reconstructed sample

Function CausalSSA(xn, N, L,R):
n← 0, XN ← 0
while new sample to process do

if n < N then
XN ← AddSample(XN , xns)
x̃R
n ← xn

else if n == N then

X̃R
N ← SSA(XN , L,R) # SSA filter

else if n > N then
XN ← UpdateTimeSeries(XN , xn)
Xm ← Embedding(XN , L)
U ← Eigendecomposition(

(
XmX⊤

m

)
/K)

x̃R
n ← Reconstruction(XN ,U) # (21)-(22)

end
n← n+ 1

end
end

operations in (21) and (22) are executed to compute the
reconstructed sample.

4. EXPERIMENTAL RESULTS

The proposed method consists of replacing the FIR filter
of the trajectory generating scheme in Fig. 1 by the real-
time version of the non-parametric SSA filter, the CSSA,
as shown in Fig. 5.

CSSA1
d
dt

CSSA2
d
dt

· · · CSSAn
d
dt

f0 f1 f2 fn f ′
n

FB1 FB2 FBn

f ′
2f ′

1

Figure 5. Block diagram of a non-parametric trajectory
filter composed of a cascade of CSSA FIR FB.

Instead of a single parameter, as was Ti for the moving
average filter, the CSSA requires three parameters to be
tuned: (i) the sliding window length N ; (ii) the embedding
dimension L; and (iii) the number of components for
reconstructing the time series R. Consequently, to investi-
gate the response of this trajectory filter, the experiments
carried out sought to vary one of the parameters, L or R,
while the other remained unchanged.

The proposed method was compared to a parametric
trajectory filter in state-space form, as described in Farrell
and Polycarpou (2006) and shown in (23)-(25). In this
approach, the low-pass filter in (23) is represented in its
controllable canonical form in (24)-(25), which returns, as
states, the n− 1 desired derivatives of the input.

G =
Y

U
=

a0
sn + an−1sn−1 + · · ·+ a1s+ a0

(23)


ẋ
ẍ
...

x(n−1)

x(n)

=


0 1 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 1
−a0 −a1 . . . −an−1




x
ẋ
...

x(n−2)

x(n−1)

+

0
0
...
0
a0

u (24)

y =


0 0 . . . 0
0 1 . . . 0
...
...
. . .

...
0 0 . . . 1




x
ẋ
...

x(n−1)

 (25)

Figs. 6, 7, and 8 show the results of the CSSA and
the parametric trajectory filters applied to the following
signals: pulse, ramp and sawtooth, respectively. These
signals and their filtered versions for the CSSA and the
FIR filter are shown in Figs. 6-8 (a). While its first and
second filtered derivatives are shown in Figs. 6-8 (b) and
(c), respectively.

The beginning of the simulations in which the filter was
not yet active but only accumulating samples to reach the
sliding window length N are not shown. The simulations in
Figs. 6 and 7 were performed for N = 150 samples, with
sampling period Ts = 0.01 s, signal’s decomposition into
L = 100 components, and reconstructing with only the
first, R = 1. While in Fig. 8, were used N = 50, Ts = 0.1 s,
L = 40. For the parametric filter were chosen a0 = 102,
a1 = 120 and a2 = 21.
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Figure 6. CSSA and a parametric trajectory filter for the
first two derivatives of a discontinuous pulse signal:
N = 150, Ts = 0.01 s, L = 100, R = 1, a0 = 102,
a1 = 120 and a2 = 21.

The results in Figs. 6, 7 and 8 show that the parametric
and non-parametric trajectory filters obtained similar re-
sults, with the non-parametric resulting in signals with
a slightly larger amplitude. Nonetheless, they returned
bounded derivatives from an initial discontinuous input
signal, at least for Fig. 6 and 8. The results in Fig. 7 show
that if the input is not discontinuous, then filtering it does
not distort the signal derivatives significantly.

To further analyze and compare the non-parametric trajec-
tory filtering response, the values of L and R were varied.
The results are shown in Fig. 9, for L in [10 :5 :45] for
each value of R = [1, 2, 3, 4], and Fig. 10, for R varying
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Figure 7. CSSA and a parametric trajectory filter for
the first two derivatives of a continuous ramp signal:
N = 150, Ts = 0.01 s, L = 100, R = 1, a0 = 102,
a1 = 120 and a2 = 21.
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Figure 8. CSSA and a parametric trajectory filter for
the first two derivatives of a continuous ramp signal:
N = 50, Ts = 0.1 s, L = 40, R = 1, a0 = 102, a1 = 120
and a2 = 21.

in [1, 2, . . . , 10] for each value of L = [10, 20, 30, 40]. The
simulation used N = 50, Ts = 0.1 s, a0 = 103, a1 = 102

and a2 = 30.

In Fig. 9 the best results were obtained for R = 1, the
lowest possible value. In this case, by reconstructing the
signal with its most important component, the method
provides a ramp-like signal that was faster than the ramp
obtained by the parametric filter. The exception was for
L = 25. All the other values of R > 1, regardless of the
values of L, provided faster signals, in comparison with the
parametric filter. However, it resulted in a distorted signal
with some overshoot or undershoot. Once again, the case
for L = 25 exhibited the worst performance.

The fastest response is verified for R = 1 and L = 45, both
in its extreme limits since N = 50 is an upper bound for L
and R can not be lower than 1. Additionally, in all cases,
the pair of values of L = (10, 40), (15, 35) and (20, 30)
showed a similar response. Indicating that lower values of
L could achieve a similar smoothness degree. But with a
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Figure 9. CSSA trajectory filter for a discontinuous step
signal for varying L for each value of R: N = 50,
Ts = 0.1 s, L = [10:5 :45], R = [1, 2, 3, 4], a0 = 103,
a1 = 102 and a2 = 30.

lower computational cost, given that the decomposition
occurs in a lower dimension.
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Figure 10. CSSA trajectory filter for a discontinuous step
signal for varying R for each value of L: N = 50,
Ts = 0.1 s, L = [10, 20, 30, 40], R = [1, 2, . . . , 10],
a0 = 103, a1 = 102 and a2 = 30.

Similar results were verified considering the inverse pro-
cess, i.e., by varying R for each constant value of L, as
shown in Fig. 10. For any value of L considered, only for
R = 1, the non-parametric trajectory filter was able to
smooth the step signal to some degree. The reconstruction
of the original signal with any other component besides the
first and most important one does not result in a smoother
signal, however, it still results in bounded and fast changes,
approximating the step signal.

5. CONCLUSIONS AND FUTURE PERSPECTIVES

This paper investigated the use of CSSA as a novel trajec-
tory filter approach, suitable for nonlinear control meth-
ods. The exploratory results showed that the proposed
non-parametric CSSA filter could be employed in an online
trajectory generating scheme. The simulations returned
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bounded derivatives from initially discontinuous input sig-
nals. The proposed filter followed the same principle of
a cascade of FIR filters, which is the successive filtering
of the input signal and its derivatives. These results are
encouraging, since the frequency analysis for nonlinear sys-
tem is a far more complex task than the linear counterpart.

One of the advantages of CSSA are the additional degrees
of freedom provided by the parameters available. The
proposed trajectory filter could also be used for more com-
plex input signals, with non-stationary characteristics. For
instance, to identify and extract specific components and
attenuate noise. In addition, it is an adaptive filter, whose
parameters could be automatically updated according to
structural changes in the signals, in future researches. A
disadvantage is the lack of systematic methods for SSA
parameters selection, which is a open problem in the signal
processing field. In general, there are some rules of thumb,
depending on the kind of application.

Further studies could test its application on more complex
signals and apply it to real control problems. Deriving rules
for tuning the parameters based on the behavior of some
well-known input signals is another possibility.
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