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Abstract:
This paper approaches the problem of Luenberger-like observer design for a class of LTI discrete-
time descriptor systems. We present and prove sufficient conditions for the observer design
with a guaranteed decay rate where the admissible descriptor systems. In addition, assuming
some standard controllability properties, a separation principle is demonstrated considering an
observer-based output feedback control law. The observer design is also extended to cope with
model disturbances in an H2 sense. The effectiveness of the proposed methodology is illustrated
by numerical examples.

Keywords: Descriptor system, State observer, Linear Matrix Inequalities (LMIs), Separation
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1. INTRODUCTION

The introduction of the state-space approach in late 50’s
and early 60’s made possible to develop powerful mathe-
matical tools for the analysis and control synthesis of linear
feedback systems. To deal with more complex dynamic
phenomena, the standard state-space representation has
been extended to the class of descriptor systems which
is also referred in specialized literature as singular sys-
tems, implicit systems, generalized state-space representa-
tion and differential-algebraic systems. Descriptor models
are utilized in many applications such as social-economic
and biological systems as well as in many engineering
fields (e.g., electrical power systems, aerospace engineer-
ing, chemical processes, robotic systems, among others);
see, for instance, (Duan, 2010) and references therein.

In modern control theory, the control design is based on a
state feedback control law which assumes that the system
states are available online to the controller. Unfortunately,
in most of practical applications, the task of measuring all
system states for feedback purposes is hard or even impos-
sible to accomplish. In such cases, a common strategy is
to estimate the system states from the knowledge of a few
measurements by means of a state observer (Luenberger,
1966). Hence, the estimation problem of descriptor systems
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is of great interest. However, most of consolidate tech-
niques for observer design are dedicated to continuous-time
systems as, for instance, the seminal work of Kalman and
Bucy (1961) and the more recent ones of Koenig (2006),
Khalil and Praly (2014), Alma and Darouach (2014), Efi-
mov et al. (2015) and Nguyen et al. (2018), to cite a few.

In the context of discrete-time descriptor systems, several
works have addressed the estimation and filtering problems
exploiting the fast dynamics observability condition to
obtain a standard state-space representation that is more
suitable for observer design, such as Wang et al. (2012)
which addressed the estimation problem of linear and
Lipschitz systems; Boulkroune et al. (2013) and Wang
et al. (2015) which dealt with the fault detection and
isolation problem; and Wang et al. (2018) and Guo et al.
(2019) which proposed interval observers for nonvanishing
disturbances. However, none of the latter results have
studied the observer-based output feedback problem which
is particularly challenging considering that the current
estimation provided by these observers is a function of the
current measurement.

This work follows the latter observer design approaches
but assuming an observer-based output feedback applica-
tion and considering the free multipliers associated with
the fast dynamics observability condition as decision vari-
ables. We firstly propose an LMI feasibility problem for
designing an observer having a standard state-space rep-
resentation while guaranteeing a given estimation error
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convergence rate. Then, the observer design is extended
to cope with process disturbances considering the H2 set-
ting, and a separation principle is also established show-
ing that the observer-based output feedback control (i.e.,
the state-feedback of estimated state variables) can be
independently accessed under some mild assumptions. Nu-
merical examples demonstrate that the effectiveness of
the observer-based output feedback design as well as the
estimation error performance improvement with respect
to process disturbances when compared to some existing
approaches which consider fixed multipliers associated to
the fast dynamics observability condition.

Notation: C is the set of complex numbers, R is the set
of real numbers, N and N+ are respectively the sets of
non-negative and positive integer numbers, Rn is the n-
dimensional Euclidean space, Rm×n is the set of m × n
real matrices, ∥ · ∥ is the Euclidean vector norm, In is
the n × n identity matrix, 0n and 0m×n are the n × n
and m × n matrices of zeros, respectively, and diag{· · · }
denotes a block-diagonal matrix. For a real matrix W ,
rank(W ) is the rank of W , WT denotes its transpose
and W ♯ represents its Moore-Penrose pseudoinverse. For
a real and square matrix S, He(S) stands for S + ST and
S > 0 (S ≥ 0) means that S is symmetric and positive-
definite (positive semi-definite). For a symmetric block
matrix, ⋆ stands for the transpose of the blocks outside
the main diagonal block. For a nonnegative integer number
k and a vector sequence f(k), its ℓ2 norm is defined as

∥f(k)∥2 =

√√√√ ∞∑
k=0

f(k)T f(k).

2. PROBLEM STATEMENT

Consider the following discrete-time linear time-invariant
(LTI) descriptor system

Ex(k + 1) = Ax(k) +Bu(k),

y(k) = Cx(k), x(0) = x0,
(1)

where x(k) ∈ Rn is the state vector, u(k) ∈ Rm is the
control input vector, y(k) ∈ Rp is the output vector, and
A, B, C and E are known real matrices with appropriate
dimensions with E allowed to be singular and satisfying
rank(E) = r ≤ n.

The nonsingularity of E induces some complexity in the
behavior of system (1). For instance, the initial condition
x0 is not an arbitrary vector in Rn, since it has to
satisfy the algebraic constraint related to the null space
of E (Karampetakis and Gregoriadou, 2014). To better
characterize the solvability conditions of (1), the following
definitions related to general discrete linear time-varying
descriptor systems are introduced.

Definition 1. (Barbosa et al., 2018) Consider the following
descriptor system

E(k)ξ(k + 1) = A(k)ξ(k) +B(k)v(k), ξ(0) = ξ0, (2)

where ξ ∈ Rn, v ∈ Rm, and A(k), B(k) are bounded
matrices for all k ∈ N, with ξ0 being a consistent initial
condition. Then:

(a) The system is said to be regular if for any v(k) ∈ Rm

and ξ0 there exists a solution ξ(k) for all k ∈ N and it
is unique.

(b) The system is said to be causal if it is regular and the
solution ξ(k) for any ξ0 and v(k) ∈ Rm is a function
of ξ0 and v(0), . . . , v(k) for all k ∈ N.

(c) The system is said to be exponentially stable if it is
regular and for any ξ0 and v(k) ≡ 0, there exist real
scalars α ≥ 1 and β ∈ (0, 1) such that

∥ξ(k)∥ ≤ αβk ∥ξ0∥, ∀ k ∈ N+.

(d) The system is said to be admissible if it is causal and
exponentially stable.

For LTI descriptor systems, the conditions for ensuring the
system admissibility are well-known in the literature and
are summarized in the following lemma.

Lemma 1. (Zhang et al., 2008) Let x0 be a consistent
initial condition. Then, system (1), or the pair (E,A), is
admissible if the following conditions hold:

1) det(zE −A) is not identically zero;
2) deg{det(zE − A)} = r, with deg{det(zE − A)} repre-

senting the degree of det(zE −A); and
3) ρ(E,A) < 1, with ρ(E,A) standing for the generalized

spectral radius.

Before introducing the problem to be addressed in this
paper, we assume the following with respect to system (1):

Assumption 1. The initial state x0 of system (1) is con-
sistent, in the sense that E0Ax0 + E0Bu(0) = 0, where
E0 ∈ Rq×n, with q = n− r, is a full row-rank matrix such
that E0E = 0.

Assumption 2. The pair (E,C) satisfies the following:

(i) rank

([
E
C

])
= n,

(ii) rank

([
(zE −A)

C

])
= n, ∀ z ∈ C : 1 ≤ |z| < ∞.

Note that Assumption 1 implies hereafter that x0 is
consistent, and Assumption 2 means that the slow and
fast dynamics of system (1) are respectively detectable and
observable (Dai, 1989).

The problem to be addressed consists in designing a state
observer to provide an estimate x̂(k) of x(k) such that:

1) The estimation error

e(k) := x(k)− x̂(k) (3)

converges to zero as k → ∞ with a given decay rate ρ;

2) The estimation error dynamics satisfies a given H2

performance with respect to process disturbances; and

3) The closed-loop admissibility of system (1) with

u(k) = −Kx̂(k)

is preserved, whereK ∈ Rm×n is a given admissibilizing
state-feedback gain.

We end this section by introducing the following lemmas
which are instrumental to derive the main results of this
paper.

Lemma 2. Let ρ ∈ (0, 1) be a given scalar. The system

x(k + 1) = Ax(k), x ∈ Rn, x(0) = x0, (4)
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is asymptotically stable with a guaranteed decay rate ρ,
i.e.:

∥x(k)∥ ≤
√

λ2

λ1
ρk ∥x0∥, ∀ k ∈ N+,

if there exists a symmetric matrix P ∈ Rn×n satisfying the
following [

−ρP PA
A′P −ρP

]
< 0, (5)

where λ1 and λ2 are the smallest and largest eigenvalues
of P , respectively.

Lemma 2 follows straightforwardly from Proposition 4.4
in (Duan and Yu, 2013).

Lemma 3. (Han et al., 2018) LetW ∈ Rl×n and Y ∈ Rn×n

be given matrices, with l ≥ n. There exists a matrix
X ∈ Rn×l such that XW = Y if and only if

rank

([
W
Y

])
= rank(Y). (6)

Moreover, the general solution of XW = Y is given by

X = YW♯ + Z(Il −WW♯), (7)

where Z ∈ Rn×l is an arbitrary matrix.

3. OBSERVER DESIGN

Notice from assumption 2-(i) that there always exist real
matrices T ∈ Rn×n and R ∈ Rn×p such that the following
holds (Ben-Israel and Greville, 2003):

TE +RC = In. (8)

Furthermore, the general solution of (8) can be obtained
by means of Lemma 3 which yields:

[T | R] =

[
E
C

]♯
+ Y

(
In+p −

[
E
C

] [
E
C

]♯)
. (9)

with the matrix Y ∈ Rn×(n+p) being arbitrary.

Taking into account that Y in (9) is a free matrix, we can
assume without loss of generality there always exists a full
rank T such that (8) holds as summarized in the following
result.

Lemma 4. Let E ∈ Rn×n and C ∈ Rp×n be two given
matrices satisfying Assumption 2-(i). Then, there exists a
solution T ∈ Rn×n, with rank(T ) = n, and R ∈ Rn×p as
in (9) such that (8) holds.

Proof. Let Ω =
[
ET CT

]T
. Since Ω is full column rank, an

admissible Ω♯ is a left inverse of Ω, i.e., Ω♯Ω = In. Thus,
a possible Ω♯ is given by

Ω♯ =
(
ΩTΩ

)−1
ΩT =

(
ΩTΩ

)−1 [
ET CT

]
(10)

Hence, in view of (10), it follows that

In+p − ΩΩ♯ = In+p − Ω
(
ΩTΩ

)−1 [
ET CT

]
(11)

Next, considering (10) and (11), the following can be
readily derived from (9)

T =
(
In − Y Ω

)(
ΩTΩ

)−1
ET + Y1 (12)

R =
(
In − Y Ω

)(
ΩTΩ

)−1
CT + Y2 (13)

where Y1 ∈ Rn×n and Y2 ∈ Rn×p are arbitrary matrices
such that [Y1 Y2] = Y . In light of (12), there always exists
a matrix Y1 such that T is nonsingular. 2

Then, we introduce an algebraic model transformation
which yields a standard state-space representation of sys-
tem (1) based on (8). To this end, pre-multiplying the first
equation of (1) by T and taking (8) and the fact that
y(k) = Cx(k) into account yields:

TEx(k + 1) = TAx(k) + TBu(k)

(In −RC)x(k + 1) = TAx(k) + TBu(k)

x(k + 1) = TAx(k) + TBu(k) +RCx(k + 1)

leading to the following standard state-space representa-
tion

x(k + 1) = TAx(k) + TBu(k) +Ry(k + 1)

y(k) = Cx(k), x(0) = x0
(14)

Notice that the detectability of (1) implies the detectabil-
ity of (14) for a nonsingular matrix T ; see, e.g., (Guo et al.,
2019).

In view of the above developments, the following observer
is proposed:

x̂(k + 1) = TAx̂(k) + TBu(k) +Ry(k + 1)

+ L(y(k)− ŷ(k))

ŷ(k) = Cx̂(k), x̂(0) = x̂0,

(15)

where x̂ ∈ Rn is the observer state, ŷ is an estimate of y(k)
and L ∈ Rn×p is to be designed such that the estimation
error e(k) as defined in (3) converges to zero as k → ∞.

Before introducing the main result of this section which
establishes an LMI condition for designing the observer
gain L as well as the matrices T and R, notice that the
error dynamics can be easily derived from (3), (14) and
(15) yielding:

e(k + 1) = (TA− LC)e(k), e(0) = e0 = x0 − x̂0, (16)

and consider the following auxiliary notation associated to
the solution given in (9):[

E
C

]♯
= [X1 X2]

Y = [Y1 Y2] (17)

W = In+p −
[
E
C

] [
E
C

]♯
=

[
W11 W12

W21 W22

]
where X1 ∈ Rn×n, X2 ∈ Rn×p, Y1 ∈ Rn×n, Y2 ∈ Rn×p,
W11 ∈ Rn×n, W12 ∈ Rn×p, W21 ∈ Rp×n and W22 ∈ Rp×p.

In view of (9) and (17), notice that T and R can be cast
as follows:

T = X1 + Y1W11 + Y2W21 (18)

R = X2 + Y1W12 + Y2W22 (19)

Theorem 1. Consider the error system in (16), satisfying
Assumptions 1 and 2, the state observer in (15), and
the error dynamics in (16). Let ρ ∈ (0, 1) be a given
scalar. Then, the error dynamics is asymptotically stable,
with a guaranteed decay rate ρ, if there exist matrices
P = PT ∈ Rn×n, Z ∈ Rn×n, Y1Z ∈ Rn×n, Y2Z ∈ Rn×p,
LZ ∈ Rn×p, such that the following LMI holds

Sociedade Brasileira de Automática (SBA) 
XXIV Congresso Brasileiro de Automática - CBA 2022, 16 a 19 de outubro de 2022 

ISSN: 2525-8311 3653 DOI: 10.20906/CBA2022/3672



[
ρ(P−Z−ZT ) TZA−LZC

⋆ −ρP

]
< 0 (20)

where
TZ = ZX1 + Y1ZW11 + Y2ZW21. (21)

In affirmative case, the matrix Z is nonsingular, the
observer gain matrices are given by

L = Z−1LZ (22)

T = X1 + Z−1
(
Y1ZW11 + Y2ZW21

)
(23)

R = X2 + Z−1
(
Y1ZW12 + Y2ZW22

)
(24)

and the error trajectory satisfies

∥e(k)∥ ≤
√

λ2

λ1
ρk ∥e(0)∥, ∀ k ≥ 0, (25)

where λ1 and λ2 are the smallest and largest eigenvalues
of P , respectively.

Proof. Suppose that (20) is satisfied for some P , Z, LZ ,
Y1Z and Y2Z and let V (k) = e(k)TPe(k) be a Lyapunov
function candidate.

Firstly, note from (20) that Z + ZT > P > 0. Then, Z is
nonsingular and V (k) > 0 for all e(k) ̸= 0.

Next, taking into account that

P − Z − ZT ≥ −ZP−1ZT ,

for any nonsingular Z, it follows from (20) and (22) that[
−ρZP−1ZT Z(TA− LC)

⋆ −ρP

]
< 0 (26)

considering T as in (18) with

Y1 = Z−1Y1Z and Y2 = Z−1Y2Z .

Then, pre- and post-multiplying (26) by

diag{PZ−1, In} and diag{Z−TP, In},
respectively, leads to[

−ρP P (TA− LC)
⋆ −ρP

]
< 0, (27)

which from Lemma 2 implies that the error system (16) is
asymptotically stable with a decay rate ρ. 2

In the sequel, we provide a statement that if there is a
solution to Theorem 1, then T as defined in (22) turns out
to be nonsingular.

Proposition 1. Suppose there exist P = P ′, Z, Y1Z , Y2Z

and LZ satisfying the LMI in (20). Then, there is a
sufficiently small real number ϵ such that (20) holds for
the same matrices P = P ′, Z, Y2Z , LZ and Y1Z replaced
by

Ỹ1Z = Y1Z + ϵIn, (28)

and the matrix

TZ = TZ(Z, Ỹ1Z , Y2Z) = ZX1 + Ỹ1ZW11 + Y2ZW21

is nonsingular.

Proof. Let the left-hand side of (20) be denoted as
Ω(P,LZ , Y1Z , Y2Z , Z). Then, it follows that

Ω(P,LZ , Ỹ1Z , Y2Z , Z) = Ω(P,LZ , Y1Z , Y2Z , Z)

+ ϵ∆Ω, (29)

where

∆Ω =

[
0 W11A
⋆ 0

]
,

and

TZ(Z, Ỹ1Z , Y2Z) = TZ(Z, Y1Z , Y2Z) + ϵW11 (30)

If TZ(Z, Y1Z , Y2Z) is singular, in view of (29), (30) and
the fact that Ω(P,LZ , Y1Z , Y2Z , Z) < 0, then there exists

a sufficiently small ϵ such that Ω(P,LZ , Ỹ1Z , Y2Z , Z) < 0

and TZ(Z, Ỹ1Z , Y2Z) is nonsingular. 2

4. H2 OBSERVER DESIGN

Suppose that system (1) is subject to an exogenous dis-
turbance vector w ∈ Rg, that is:{

Ex(k + 1) = Ax(k) +Bu(k) +Bww(k),

y(k) = Cx(k),
(31)

where Bw ∈ Rn×g. To ensure that the initial condition
x0 is consistent according to the first statement of Def-
inition 1, we assume that w(k) is a zero mean white
noise sequence with identity power spectral density with
w(0) = 0.

This section deals with the design of a state observer to
deliver an estimate x̂(k) of the state vector x(k) of system
(31) in an H2 sense with respect to a performance signal
defined by a linear combination of the estimation error

e(k) := x(k)− x̂(k),

which is represented by the output performance vector
s ∈ Rh to be defined later in this section.

Then, pre-multiplying the dynamic equation of (31) by T
and noting that

TEx(k+1) = x(k+1)−RCx(k+1)

leads to the following (standard) state-space representa-
tion

x(k+1) = TAx(k)+TBu(k)+Ry(k+1)+TBww(k) (32)

Next, considering the state observer defined in (15) and
the above system representation, we are interested in
determining the matrices L, T and R such that

∥G∥22 ≤ µ (33)

where µ is a given positive scalar and ∥G∥2 denotes the
H2-norm of the estimation error system defined as follows:

G :

{
e(k+1) = (TA−LC)e(k) + TBww(k)

s(k) = Cse(k), e(0) = 0,
(34)

with Cs ∈ Rh×n.

The next theorem presents an LMI method for designing
the observer defined in (15), which ensures a prescribed
upper bound on the H2-norm of system G.

Theorem 2. Let µ be a given positive scalar. Consider
the system in (31), satisfying Assumption 2, the state
observer in (15), and the error dynamics in (34). Then,
there exists an observer such that ∥G∥22 < µ if there are

matrices P = PT ∈ Rn×n, M = MT ∈ Rh×h, Z ∈ Rn×n,
Y1Z ∈ Rn×n, Y2Z ∈ Rn×p and LZ ∈ Rn×p such that the
following LMIs hold
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µ− trace{M} > 0 (35)[
M Cs

⋆ Z + ZT − P

]
> 0 (36) −P ⋆ ⋆

(TZA−LZC)T P − Z − ZT ⋆
(TZBw)

T 0 −Ig

 < 0 (37)

where TZ is as in (21). Moreover, the observer gains are as
given in (22), (23) and (24).

Proof. From the Extended H2-norm computation result
of (De Oliveira et al., 2002, Theorem 1), with

Z = G−1 and P = G−1PG−T ,

the system in (34) is asymptotically stable and ∥G∥22 < µ,
if there exist P = PT ∈ Rn×n, Z ∈ Rn×n, and M =
MT ∈ Rh×h such that the following matrix inequalities
are satisfied

µ− trace{M} > 0 (38)[
M Cs

CT
s Z + ZT − P

]
> 0 (39) −P ⋆ ⋆

(TA− LC)TZ P−Z−ZT ⋆
(TBw)

TZ 0 −Ig

 < 0 (40)

Next, letting

ZT = TZ = Z(X1 + Y1W11 + Y2W21)

ZY1 = Y1Z

ZY2 = Y2Z

ZL = LZ

the conditions in (38), (39) and (40) are equivalent to (35),
(36) and (37), respectively. The expression of R in (24)
follows straightforwardly from (19), which completes the
proof. 2

Notice without loss of generality that TZ (and thus T ) can
be be assumed nonsingular following the arguments stated
in Proposition 1.

Remark 1. When the matrices T and R are given a priori,
notice that Theorem 2 provides a necessary and sufficient
condition to ensure that ∥G∥22 ≤ µ. However, as shown in
Section 6, considering the matrices T and R as decision
variables will either provide the same result or lead to a
smaller upper bound on ∥G∥22 ≤ µ.

5. SEPARATION PRINCIPLE

Let the system defined in (1), with the control law

u(k) = −Kx̂(k), K ∈ Rm×n, (41)

and consider the following assumption

Assumption 3. There exists a real matrix K ∈ Rm×n such
that system (1), with the following control law

u(k) = −Kx(k), (42)

is admissible.

The above assumption implies that the slow dynamics of
(1) is stabilizable, i.e.,

rank ([(zE −A) B]) = n, ∀ z ∈ C : 1 ≤ |z| < ∞,

and its fast dynamics is causal-controllable (Belov et al.,
2018), i.e.,

rank

([
E 0 0
A E B

])
= n+ r.

Then, we show in the sequel that the control law in (41)
under Assumption 3 preserves the admissibility of the
closed-loop system. More specifically, we demonstrate a
separation principle property for the following augmented
(closed-loop) system:

Ex(k+1) = Ax(k) +Bu(k)

y(k) = Cx(k),

x̂(k+1) = (TA−LC)x̂(k) + TBu(k)

+Ry(k + 1) + Ly(k)

u(k) = −Kx̂(k)

(43)

meaning that the control gainK and the observer matrices
L, T and R can be designed independently provided that
(8) holds.

In view of (16) and (43), notice that the closed-loop system
can be described in terms of x(k) and e(k) via the following
equation:

Ex(k + 1) = (A−BK)x(k) +BK
(
x(k)− x̂(k)

)
(44)

which together with (16), lead to the following descriptor
representation:[

In 0n
0n E

] [
e(k+1)
x(k+1)

]
=

[
TA−LC 0

BK (A−BK)

] [
e(k)
x(k)

]
(45)

By noting that the dynamic matrix of the augmented
system (45) is lower block triangular, then the eigenvalues
of the estimation error sub-system can be freely assigned.
Furthermore, the system closed-loop dynamics defined in
(44) is admissible from Assumption 3 and the fact that
e(k) = x(k) − x̂(k) vanishes to zero as k → ∞ assuming
that (TA− LC) is Schur stable.

The above developments are summarized in the following
result.

Theorem 3. Let K ∈ Rm×n be a given matrix such that
Assumption 3 holds. Then, system (43) is admissible if and
only if the matrix (TA− LC) is Schur stable.

The proof of above theorem is straightforward from the
system representation in (45) and is omitted for brevity.

6. NUMERICAL EXAMPLES

The following numerical examples show the potentials of
the proposed approach for observer and observer-based
output feedback control design for linear discrete-time
systems.

6.1 Output feedback design

Consider the descriptor system defined in (1) with the
following matrices:

E =

[
1 0 0
0 0 0
2 0 1

]
, A =

[−0.25 0.00 0.00
−0.50 0.50 2.00
0.75 −1.00 −1.50

]
,

B = [0 0 1]
T
, C =

[
1 0 0
0 1 0

]
, (46)
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which has adapted from (Belov and Andrianova, 2019,
Example 5.1).

The above matrices imply that system (1) in open-loop
is unstable, but it satisfies Assumptions 2 and 3. Hence,
in this example, we are interested in determining an
admissibilizing output feedback control law as in (41). To
this end, we design a state-feedback control law following
the approach of (Masubuchi and Ohta, 2013) with a
guaranteed decay rate of 0.9 leading to:

K = − [0.710 1.000 2.230] (47)

Then, Theorem 1, with ρ = 0.2, is applied to determine
the state observer (i.e., the matrices L, T and R) which
yields

L =

[−0.1250 0.0000
0.0000 0.0000
0.6311 −0.6311

]
, R =

[
0.5 0.0
0.0 1.0

−1.0 0.0

]
, (48)

T =

 0.5000 0.0000 0.0000
0.0000 1× 10−12 0.0000

−1.0000 0.7377 1.0000

 .

Figures 1, 2 and 3 show respectively the states of the
closed-loop system with u(k) = −Kx̂(k) (i.e., output
feedback) and u(k) = −Kx(k) (i.e., state-feedback) as
well as the estimation error trajectory e(k) = x(k) −
x̂(k) considering the output feedback controller and an
admissible initial condition given by

x(0) = [1 5 −1]
T

with x̂(0) = 0. Notice the fast response achieved by the
proposed observer and the good performance achieved by
the output feedback control law u(k) = −Kx̂(k) when
compared to the state feedback controller u(k) = −Kx(k)
demonstrating the efficiency of the proposed methodology.
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Figure 1. State trajectories of the closed-loop system with
u(k) = −Kx̂(k) (output feedback controller).

6.2 H2 observer design

Consider the following system adapted from (Wang et al.,
2012, Example 1) and suppose that w(k) is a zero mean
white noise:{

Ex(k + 1) = Ax(k) +Bww(k)

y(k) = Cx(k)
(49)
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Figure 2. State trajectories of the closed-loop system with
u(k) = −Kx(k) (state feedback controller).
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Figure 3. Estimation error trajectory for e(0) = x(0).

where

E =

[
1 2 1
0 2 1
1 0 0

]
, A =

[
0.153 0.045 0.069
0.156 0.252 0.156
0.135 −0.171 −0.635

]
,

Bw =

[
1.0
0.5
0.5

]
, C = [0 0 1] .

Note that Assumption 1 holds for the descriptor system
defined by the above matrices. This example aims at
designing an observer as in (15) which minimizes ∥G∥2,
where G is the transfer function matrix of the estimation
error system defined in (34) with

Cs =

[
1 0 0
0 1 0

]
.

To this end, we apply the optimization problem:

min
P,M,Z,LZ ,Y1Z ,Y2Z ,µ

µ subject to (35)-(37)

leading to the following results:
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L =

−4.6023× 10−1

5.7175× 10−1

1.6099× 10−4

 , (50)

T =

3.1764× 10−1 −3.1764× 10−1 6.8236× 10−1

9.0356× 10−1 −4.0356× 10−1 −9.0356× 10−1

1.7753× 10−5 −1.7753× 10−5 −1.7753× 10−5

 ,

R =

[
0.0

−0.5
1.0

]
, ∥G∥2 =

√
µ = 0.5923.

On the other hand, if we consider that the matrices T and
R are fixed and given by

T =

[−7.0 7.0 8.0
−7.0 7.5 7.0
−7.0 7.0 7.0

]
, R =

[
0.0
−0.5
1.0

]
,

we obtain ∥G∥2 = 1.0094 which is 70% larger than the
proposed result.

7. CONCLUDING REMARKS

This work has proposed sufficient conditions for observer
and observer-based output feedback design for linear
discrete-time descriptor systems. Precisely, the equality
constraint associated to the observability condition of the
system fast dynamics is applied to derive a state observer
having a standard state-space representation with a guar-
anteeing convergence rate. Contrasting with similar results
in specialized literature, we consider arbitrary matrices
linked to the solution of the fast dynamics observability
constraint as decision variables yielding less conservative
results for H2 observer-based filtering design when compar-
ing to the results utilizing fixed arbitrary matrices. More-
over, a separation principle has been demonstrated, with
some mild assumptions, showing that the observer and the
state-feedback can be independently designed. Numerical
examples have clearly demonstrated the potentials of the
proposed approach as a tool to observer and observer-
based output feedback design.
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