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Abstract: Control systems of aircraft dynamics focus on choosing configurations that meet
certain criteria related to speed response, damping ratio, error in steady state, among others.
Aeronautical engineering applications have safety requirements, and in this respect, the use
of optimization algorithms assist in the ability to develop models of increasing complexity.
Therefore, the main objective of this work is to develop a methodology for optimal tuning of
fractional order proportional integral derivative (FOPID) controller based on particle swarm
optimization (PSO) for multiple input multiple output (MIMO) aircraft model. This work can
contribute to the aeronautical performance through the development of simulations seeking
the best parameters from the controller, allowing flight conditions according to pre-established
requirements. Three stochastic optimization algorithms were studied: global random search
(GRS), local random search (LRS) and PSO. The PSO delivered the best results. Different
performance indices based on the integral of error were used as objective functions. The ITAE
(integral of time multiplied by the absolute error) index was chosen for presenting the best
performance. It was necessary to limit the input values of the models, taking into account the
limitation of the integrator term of the controller based on the anti-windup (AW) technique.
Based on the prerequisites for the aircraft, the performance metrics achieved results considered
adequate to the challeging demands of the task.

Keywords: Control Systems; Swarm Intelligence; Aircraft Dynamics; Particle Swarm
Optimization; Fractional Order PID

1. INTRODUCTION

Aircraft are primarily responsible for the rapid transport
of passengers and cargo over short or long distances and
are fundamental to the global economy. The design of an
aircraft depends on the automatic control system that
monitors and controls its subsystems. The development
of these systems played an important role in the growth
of civil and military aviation. Problems related to stability
and control are studied in order to guarantee greater safety
and comfort for the crew and passengers. Small variations
in the equilibrium condition are enough to cause changes
in the stable and maneuvering behavior of an aircraft
(Cook, 2012). Control systems ensure the change of a flight
condition to another quickly and smoothly, the aircraft
remaining stable.

The dynamic response characteristics of an aircraft vary
nonlinearly across the flight envelope. Traditionally, flight
control systems have used linearized mathematical models
in various flight conditions, with the controller parameters
varying with a variation of flight operating states. During
the past few decades, control techniques have experienced
many advances. In spite of these advances, an example
is the PID controller. It is widely used due to its simple

structure and acceptable performance in a wide range
of operating conditions (Gaing, 2004). A new possibility
of extending the standard PID was introduced relatively
recent, being called fractional order PID (FOPID). As a
generalization of the traditional PID, the FOPID con-
troller aims at dealing with plants of more complex dy-
namics, providing a more adequate control system (Shah
and Agashe, 2016; Podlubny, 1994). The fractional order
of the integral and derivative terms adds extra degrees
of freedom to the control task, since it has two additional
tunable parameters, keeping the same structure as the PID
controller (Grandi, 2018).

Despite the increasing interest of the control community
for the properties of the FOPID controller, some issues still
remain open, in particular those related with parameter
tuning. There are some heuristic methods to tune FOPID
controllers, although it is still difficult to determine the
optimal parameters (Krohling and Rey, 2001). Most PID
tuning approaches are aimed at controlling SISO systems,
as example the linear programming based methods (Eu-
zébio et al., 2020). Few works are focused on tuning con-
trollers for MIMO systems, some methods include, marine
predators algorithm (Yan Lieven Souza Lúcio and dos
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Santos Coelho., 2021), artificial neural networks (Hosseini
et al., 2020), neuro-fuzzy (Shi et al., 2020), and swarm
intelligence-based algorithms (Chang, 2007).

PSO is the state of the art in metaheuristic optimization
algorithms. It was developed through the simulation of
a simplified social system, and has been used for global
optimization of continuous nonlinear problems (Kennedy
and Eberhart, 1995). PSO is a population-based algorithm
and the search for the optimal solution is done in parallel
directions, instead of a single one.

In practical control systems, aeronautical engineering ap-
plications have increasingly restrictive safety requirements,
and in this respect, the use of optimization algorithms as-
sist in the development of suitable control systems. There-
fore, the main objective of this work is to develop a method
for optimal tuning of controller in a MIMO aircraft system
based on a set of techniques involving FOPID controller,
PSO algorithm and AW back-calculation strategy.

2. THE AIRCRAFT MODEL

Aircraft modeling is based on two aspects: the estimation
of aerodynamic parameters and the development of dif-
ferential equations that describe the aircraft movement.
It is through the differential equations that the estimated
outputs of the model can be obtained. According to the
aerodynamics, propulsive and atmospheric models and the
adopted body coordinate system, the twelve equations that
represent the translational and rotational dynamics and
kinematics of an aircraft can be determined. The work of
Stevens et al. (2015) is a suitable reference for more details
about aircraft modeling.

The model used is a lateral-directional control augmenta-
tion system. The equations are decoupled and linearized
around the equilibrium point, allowing the derivation of
second order model in the state space and transfer function
for movements. It is a MIMO system for the F-16 jet
fighter. The reference for this model is the book Aircraft
Control and Simulation, example of Lateral-Directional
Stability Augmentation (Yaw Damper) (Stevens et al.,
2015).

The F-16 model does not include flaps and landing gear, so
the design is illustrated on a low-speed, and low-altitude
flight condition. The control augmentation systems (CAS)
state equations are linearized and the coefficient matrices
are represented by

ẋ = Ax+Bu (1)

x = Cy (2)

ẋ =


β̇

ϕ̇

ψ̇
ṗ
ṙ

 , u =

[
δa
δr

]
, y =

[
β
ϕ

]
(3)

A =


−0.1315 0.14858 0 0.32434 −0.93964

0 0 0 1 0.33976
0 0 0 0 1.0561

−10.614 0 0 −1.1793 1.0023
0.99655 0 0 −0.0018174 −0.25855

 (4)

B =


0.00012049 0.00032897

0 0
0 0

−0.1031578 0.020987
−0.002133 −0.010715

 (5)

C =

[
57.29578 0 0 0 0

0 57.29578 0 0 0

]
(6)

where the state variables are the sideslip angle (β), roll
angle (ϕ), yaw angle (ψ), roll rate (p) and yaw rate (r),
the input variables are aileron angle (δa) and rudder angle
(δr), and roll rate (p) and yaw rate (r) are the output
variables.

3. THE CONTROL SYSTEM

The PID is one of the most used controllers in the industry
(Koivo and Tanttu, 1991). One of the reasons for the
success of this controller is its mathematical simplicity,
which can be applied to an extensive number of dynamic
processes with a satisfactory performance. The most com-
mon form of the PID controller equation in the continuous
time domain is given by

u(t) = Kpe(t) +Ki

∫ t

0

e(t)dt+Kd
de(t)

dt
(7)

in which u(t) ∈ R is the control action, Kp, Ki and Kd

are the parameters for each controller term (gains), and
e(t) = r(t) − y(t) is the error signal at the current time
(e(t) ∈ R), that is, the difference between the reference
signal (or setpoint) r(t) ∈ R and the system output signal
(or controlled output) y(t) ∈ R.

The fractional order PID controller (FOPID) is an exten-
sion of the PID controller. The FOPID has drawn attention
in recent years due to its potential to offer extra degrees
of freedom to the modeling task while maintaining the
baseline simplicity of a PID controller (Grandi, 2018).

The math used by this controller is based on fractional
calculus, or non-integer order calculus. A characteristic
of fractional calculus is that it does not depend only
on the local properties of the function, it considers the
history and the non-local distributed effects (Das, 2008).
The FOPID controller is generically symbolized as PIλDµ

and described mathematically by the following differential
equation:

u(t) = Kpe(t) +KiD
−λe(t) +KdD

µe(t) (8)

in which λ is the order of the integral, µ is the order
of the derivative, and D is the derivative operator. The
parameters λ and µ are positive or null real numbers.

The Newtonian derivative is the basis for understanding
fractional order differential equations. Taking this into
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account, three methods stand out of many definitions for
the fractional derivative, that are the Grunwald-Letnikov,
Riemann-Liouville and Caputo. These definitions can often
be found in the literature related to the FOPID con-
troller (Das, 2008; Chopade et al., 2016). The definition of
Grunwald-Letnikov, used in this work, for fractional order
derivative/integral is given by

t0D
α
t f(t) = lim

h→0

1

hα

[t−t0/h]∑
j=0

(−1)j
(
α

j

)
f(t− jh) (9)

in which α is the order of the operator, determining
whether to perform an integration (α < 0) or a differenti-
ation (α > 0). The lower and upper limits for the operator
are defined by t0 and t, respectively. The upper limit of
the summation, defined as [(t− t0/h)], is the integer part
of the expression. It is observed that the differential and
integral operators are used into the fundamental operator
Dαf(t) represented by

Dαf(t) =



t0D
α
t f(t),

df(t)

dt
,∫

f(t)dt,

→

−1 < α < 1

α = 1

α = −1

∣∣∣∣∣∣∣∣∣∣∣∣
(10)

in which α is the parameter that determines the type of
operation that will be performed.

4. PERFORMANCE INDICES

In the search for optimal solutions, a common and effec-
tive approach is to search for controller parameters that
optimize a performance index, such as an error function
between the desired and obtained response by a system
(Boudjehem and Boudjehem, 2016).

A function of the response error of a closed loop system
is, perhaps, the main measure for an objective function
in controller optimization. The combination of the error
accumulated with the time can be used in different possi-
bilities (Dorf and Bishop, 2001), and some of them can be
seen below.

Integral Squared Error (ISE):

ISE =

∫ T

0

e2(t)dt (11)

Integral Absolute Error (IAE):

IAE =

∫ T

0

|e(t)| dt (12)

Integral Time Squared Error (ITSE):

ITSE =

∫ T

0

te2(t)dt (13)

Integral Time Absolute Error (ITAE):

Figure 1. Windup phenomenon, where the output is the
elevator deflection and the control signal is the pitch
angle. It is possible to observe the saturation for
almost 2 seconds and the output response with a huge
overshoot and oscillating. The reference signal is 0 rad
for the elevator deflection angle, and 0.2 rad for the
pitch angle.

ITAE =

∫ T

0

t |e(t)| dt (14)

5. ANTI-WINDUP SYSTEM

In practical control systems, it may happen the control
variable to reach the actuator limits. When this happens
the feedback loop is broken and the system runs as an
open loop because the actuator will remain at its limit
independently of the process output. If a controller with
integrating action is used, the error will continue to be
accumulated. This means that the integral term may
become very large or, in layperson words, it winds up.
The consequence is that any controller with integral action
could yield large transients when the actuator saturates.
The windup phenomenon is illustrated in Figure 1.

The output remains saturated because of the large value
of the integral term. It does not leave the saturation limit
until the error has been negative for a sufficiently time to
let the integral part comes down to a small level. The effect
is a large overshoot and a damped oscillation. The back-
calculation method (Kavyashree et al., 2022; Fertik and
Ross, 1967) can be used to avoid windup phenomenon.

If the output saturates, the integral term is recomputed
and its new value yields an output at the saturation limit.
It is advantageous not to reset the integrator instanta-
neously but dynamically with a time constant Tt. In Figure
2, it is shown a block diagram of a PID controller with
anti-windup (AW) based on back-calculation.

6. MIMO FOPID TUNING BY PSO ALGORITHM

Optimization algorithms, such as metaheuristic optimiza-
tion, are an option for adjusting parameters of complex
systems. The GRS and LRS algorithms have one candidate
solution being evaluated per iteration (Horst and Pardalos,
2013; Horst and Tuy, 2013; Boender and Romeijn, 1995),
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Figure 2. Block diagram of a PID controller with AW based
on back-calculation.

Figure 3. Flowchart of a swarm intelligence algorithm.

while the PSO algorithm has many candidate solutions
being evaluated per iteration. In Figure 3, it is shown the
flowchart of a general swarm intelligence algorithm.

The PSO is inspired by social behavior and the self-
organization of groups of migratory birds and schools
of fish (Shi and Eberhart, 1999). The solutions are rep-
resented by particles with specific position and velocity
forming a swarm in a space of possible solutions (Mendes
et al., 2004). The variables that make up the solution are
grouped into a vector formed by real numbers. There is
an exchange of global and local information, that is, there
is a balance between exploration and exploitation (Mattos
et al., 2014). The step-by-step for PSO approach can be
seen below.

(1) Initialize all xi and vi with random values and pi and
pg with null values.

(2) Calculate the value of the objective function f(x) for
each particle. The vector pi of each particle receives
xi, while vector pg receives the position corresponding
to the best objective function of the swarm.

(3) Update vi and xi applying the particle update rules
(Equations (19) and (20)).

(4) If xi exceeds the searching space limits it receives the
values of the last pi.

(5) Evaluate the objective function f(x) for all particles.

(6) Update pi if the i-th particle current position corre-
sponds to a better cost function.

(7) Update pg if a better global solution is found.
(8) Repeat the process from Step 3 until a stop condition

is found.

where xi is the d-dimensional position vector of the i-th
particle, vi is the d-dimensional velocity vector of the i-
th particle, pi best solution found by the i-th particle, pg
is the best global solution found by the swarm, w is the
inertia parameter, c1, c2 are the accelerating coefficients,
and r1, r2 are the pseudo-random numbers uniformly dis-
tributed between 0 and 1.

In Step 3, xi and vi are updated by applying the particle
update rules. The velocity of a particle is updated by

vi(t+ 1) = vi(t) + ∆vi(t) (15)

The ∆vi(t) consists of two parts (local and global), and it
is represented by

∆vi(t) = ∆v
(1)
i (t) + ∆v

(2)
i (t) (16)

The topology ∆v
(1)
i (t) (local part) represents the difference

between the best position of the i-th particle pi and its
current position xi, which is represented by

∆v
(1)
i (t) = c1r1(pi − xi(t)). (17)

In the global part of Equation (16), ∆v
(2)
i (t) represents the

difference between the best global position of the particle
swarm pg and the current position of the i-th particle xi,
which is represented by

∆v
(2)
i (t) = c2r2(pg − xi(t)). (18)

The terms r1 and r2 help in the search randomness while
the terms c1 and c2 command the acceleration of the
coefficients. Therefore, the Equation (15) can be described
by

vi(t+1) = wvi(t)+c1r1(pi−xi(t))+c2r2(pg−xi(t)). (19)

The term w is an inertia parameter that acts against
sudden movements. It provides stability to the algorithm.
The position of a particle is updated by

xi(t+ 1) = xi(t) + vi(t+ 1) (20)

Thereby, optimization through the PSO algorithm can be
understood by Equations (19) and (20). The optimal solu-
tion or solutions are dependent on the objective function
which is a fundamental part of the problem design.

7. METHODOLOGY

The first parameters are those related to the discretization
of the model, they are: h = 0.01 s; Tsim = 10 to 20 s; t
= (Tsim/h) + 1; L = size of vector t. In which h is the
discretization step, Tsim is the simulation time, t counts
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the sampling instants, L serves to know the size of the
desired, or reference, output vector.

For the FOPID controller, the gains Kp, Ki and Kd

are chosen within the range between -10 and 10. The
initial exponents λ and µ start with the value of 1,
which corresponds to a common PID, as the exponents
go through the search space, which varies between 0 and
1, the controller stops being PID and become FOPID.
The parameter K0 is set to the value 1 that means linear
fractional controller.

The execution of PSO can be seen in details through the
following steps:

(1) Initialize all xi and vi with random values and pi and
pg with null values.

(2) Calculate the value of the objective function f(x) for
each particle. The vector pi of each particle receives
xi, while vector pg receives the position corresponding
to the best objective function of the swarm.

(3) The algorithm starts through the use of the initial
parameters M (population size, or vector size) = 50,
c1 = c2 = 2 and, r1, r2 and w = 0.1;

(4) Define all variables as vectors of size M ;
(5) The interval constraints for the search variables (con-

troller parameters) are specified in Table 1;
(6) The initial random parameters are set as the best cur-

rent parameters (Kp(best), Ki(best), Kd(best), λ(best),
µ(best)) resulting in a best solution (J(best));

(7) Initialization of vi with null values, xi with random
values, pi with the best current parameters (Kp(best),
Ki(best),Kd(best), λ(best), µ(best)), and pg with the best
current parameters of the population M ;

(8) Calculate the value of the objective function J(cand)
for each particle. The vector pi of each particle
receives Kp(cand), Ki(cand), Kd(cand), λ(cand), µ(cand))
while vector pg receives the position corresponding to
the best objective function of the swarm;

(9) Update vi and xi applying the particle update rules
of Equations (19) and (20);

(10) Evaluate the objective function J(cand) for all parti-
cles;

(11) Update pi if the current position of the i-th particle
corresponds to a better objective function, and up-
date pg if a better global solution is found;

(12) Update the inertial parameter (w) for each iteration
Ni:

w = r2 +
(r1 − r2)(Ni − t)

Ni − 1
(21)

(13) The process is repeated for 500 iterations (Ni) in 40
epochs (z);

(14) At the end of the process it will have 40 best different
solutions (J(best)) with their respective parameters
(Kp(best), Ki(best), Kd(best), λ(best), µ(best));

(15) From the 40 best different solutions, the one with the
minimum value will be chosen.

Table 1. Limits of the control signals (actua-
tors) considering real-world safety constraints.

Control surface Displacement range Displacement rate

Rudder [-30, +30] deg 120 deg/s
Aileron [-21.5, +21.5] deg 80 deg/s

Figure 4. Closed-loop steps response for the FOPID con-
troller tuned by the PSO algorithm.

8. RESULTS AND DISCUSSIONS

The results of preliminary experiments were used to define
the components of the methodology for tuning the param-
eters of the FOPID controller, that is, which optimization
algorithm and which performance index will be used. The
proposed methodology was analyzed in 4 controller config-
urations: PID, PID+AW, FOPID, and FOPID+AW. The
results were discussed based on the performance results for
each situation.

8.1 Effect of the Performance Indices

In Figure 4 is shown different responses for ISE, ITSE,
IAE and ITAE indices using PSO. The chosen methods
were the ITAE performance index and the PSO search
algorithm, as they provided the lower overshoot and the
lower accomodation time in steady state. The number of
iterations, realizations, and population size will be 100, 40
and 50, respectively. The reference signal is 0.2.

8.2 Anti-Windup Implementation

It is necessary to limit the input values of the model for
safety reasons, taking into account the limitation of the
integrator term of the controller. For this, the anti-windup
system is used. The results of the input and output values
are satisfactory, within the design prerequisites, as can be
seen in Figure 5.

8.3 Lateral-Directional Control Augmentation System

The desired response in steady state for the regulator
sideslip angle (β) is 0 degrees and the desired step response
for bank angle (ϕ) is 15 degrees. These values are within
the parameter limits for both outputs.

PID Control Results In Table 2 are shown the optimal
values of the PID gains associated with the best value of
the ITAE index after 40 independent realizations of the
PSO-based tuning methodology.
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Figure 5. Input (top) and output (bottom) responses
with saturation constraints on the control signal and
applying the anti-windup system. The reference signal
is 0 rad for the elevator deflection angle, and 0.2 rad
for the pitch angle.

Figure 6. Control signals for the the PID control.

Figure 7. Output responses for the the PID control.

The input signals are shown in Figure 6. The output
responses are shown in Figure 7. The reference signal is 0
degrees for the sideslip angle, and 15 degrees for the bank
angle. The performance results for the system output are
shown in Table 3.

Table 2. Optimal parameters of MIMO PID
controller tuned by PSO.

Kp1, Ki1, Kd1 Kp2, Ki2, Kd2 ITAE

-9.0056, 1.1215, -9.9991 -2.9913, -0.5786, -3.7387 39.4095

Table 3. Performance of the PID controller.

Output Rise Peak Overshoot Setlling SSE

β - 0.32 s 334.83 % 0.36 s 0.0144 %

ϕ 0.18 s 0.24 s 16.94 % 0.28 s 0.003 %

Figure 8. Control signals for the the PID+AW control.

Figure 9. Output responses for the PID+AW control.

The closed loop MIMO system using PID controller is
stable by observing the steady-state errors of the output
responses. These errors are null or constant with nearly
null values. The performance results can be considered
adequate, however, it is necessary to take into account
the limitations of the control signals. In Figure 6 is
possible to observe that the rudder actuator reaches close
to 1000 degrees in milliseconds, and the aileron actuator
reaches close to 6000 degrees in milliseconds, an infeasible
situation in real-world scenario. The processing time after
40 independent realizations of the PSO-based tuning was
6.50 minutes.

PID+AW Control Results In Table 4 are shown the
optimal values of the PID+AW gains associated with
the best value of the ITAE index after 40 independent
realizations of the PSO-based tuning methodology.

Table 4. Optimal parameters of the MIMO
PID with AW tuned by PSO.

Kp1, Ki1, Kd1 Kp2, Ki2, Kd2 ITAE

-2.2674, 0.3435, -7.0244 -0.6166, -0.1097, -0.6312 497.7268

The input signals are shown in Figure 8. The output
responses are shown in Figure 9. The reference signal is 0
degrees for the sideslip angle, and 15 degrees for the bank
angle. The performance results for the system output are
shown in Table 5.

Table 5. Performance of the PID+AW.

Output Rise Peak Overshoot Setlling SSE

β - 0.92 s 230.9408 % 1.54 s 0.0892 %

ϕ 0.74 s 0.87 s 8.959 % 1.41 s 0.0065 %

The performance results can be considered satisfactory
even with the limitations imposed on the control signals.
In Figure 8 is possible to observe that the control signal is
within the specified limits of the actuator. The processing
time after 40 independent realizations of the PSO-based
tuning was 36.21 minutes.
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Figure 10. Control signals for the the FOPID control.

Figure 11. Output responses for the the FOPID control.

FOPID Control Results In Table 6 are shown the opti-
mal values of the FOPID gains associated with the best
value of the ITAE index after 40 independent realizations
of the PSO-based tuning methodology.

Table 6. Optimal parameters of MIMO FOPID
tuned by PSO.

Kp1, Ki1, Kd1, λ1, µ1 Kp2, Ki2, Kd2, λ2, µ2 ITAE

-0.99 -8.41, 4.46, 0.44, 0.96 -1.08, 2.43, 1.24, 0.61, 0.82 2001.46

The input signals are shown in Figure 10. The output
responses are shown in Figure 11. The reference signal is 0
degrees for the sideslip angle, and 15 degrees for the bank
angle. The performance results for the system output are
shown in Table 7.

Table 7. Performance of the FOPID control.

Output Rise Peak Overshoot Setlling SSE

β - 1.34 s 185.8715 % 1.86 s 12.4236 %

ϕ 0.68 s 1.06 s 25.2284 % 1.52 s 1.52 %

The performance results can also be considered adequate,
however, it is necessary to take into account the limitations
of the control signals. In Figure 10 is possible to observe
that the rudder actuator reaches close to 1800 degrees
in milliseconds, and the aileron actuator reaches close to
150 degrees in milliseconds, an infeasible situation in real-
world scenario. The processing time after 40 independent
realizations of the PSO-based tuning was 182.40 minutes
(3.04 hours).

FOPID+AW Control Results In Table 8 are shown the
optimal values of the FOPID+AW gains associated with
the best value of the ITAE index after 40 independent
realizations of the PSO-based tuning methodology.

Table 8. Optimal parameters of the MIMO
FOPID with AW tuned by PSO.

Kp1, Ki1, Kd1, λ1, µ1 Kp2, Ki2, Kd2, λ2, µ2 ITAE

-1.78 -9.43, 9.98, 0.04, 0.97 -3.12, 8.13, 8.7, 0.16, 1 6087.3

Figure 12. Control signals for the the FOPID+AW control.

Figure 13. Output responses for the the FOPID+AW
control.

The input signals are shown in Figure 12. The output
responses are shown in Figure 13.The reference signal is 0
degrees for the sideslip angle, and 15 degrees for the bank
angle. The performance results for the system output are
shown in Table 9.

Table 9. Performance of the FOPID+AW con-
trol.

Output Rise Peak Overshoot Setlling SSE

β - 1.26 s 33.3454 % 1.61 s 1.3805 %

ϕ 1.06 s 1.36 s 20.8131 % 1.66 s 0.0218 %

The performance results can be considered satisfactory
even with the limitations imposed on the control signals.
In Figure 12 is possible to observe that the control signal is
within the specified limits of the actuator. The processing
time after 40 independent realizations of the PSO-based
tuning was 862.23 minutes (14.37 hours).

Evaluation of the Control Strategies The results for the
four different approaches can be considered satisfactory,
as they are within the specified prerequisites. Comparing
PID, PID+AW, FOPID and FOPID+AW controllers, it is
observed that the FOPID and FOPID+AW results are bet-
ter only in terms of the overshoot. The PID and PID+AW
performed better in terms of rise time, peak time, settling
time and steady state error. Therefore, taking into account
the importance of overshoot for different control situations
and the small difference between the results of rise time,
peak time, settling time and steady state error, we can
conclude that the FOPID controller is a more appropriate
choice.

9. CONCLUSIONS

The main objective of this work was the development of a
methodology for optimal tuning of controllers in a MIMO
aircraft model based on a set of techniques involving
both, PID and FOPID controllers, PSO algorithm and
anti-windup back-calculation strategy. In addition, other
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objectives were also pursued: a comparison of the perfor-
mance of the PSO algorithm with alternative stochastic
optimization algorithms, the GRS and the LRS; an eval-
uation of the influence of different performance indices,
such as ISE, IAE, ITSE and ITAE, in the performance
of the optimal control system; and the application of an
anti-windup strategy to limit control signals according to
the real-world constraints of aircraft’s actuators (ailerons,
rudder) in order to guarantee the most possible realistic
simulation.

There is a limited amount of research on control systems
involving FOPID controllers, and when incorporated into
MIMO system using anti-windup strategy, no work was
observed in the area of aerodynamic models developing
something similar. The concern with the simulation being
the closest to reality added yet another weight factor, the
use of the anti-windup strategy to limit the control signals
as they occur in real practices. It can be concluded that
the implementation of this set of techniques, which are
at the forefront of science, provide a differential in the
implemented methodology.
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