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Abstract: Federated Learning is a promising technology to address crucial problems, such as
those related to data privacy, involved in training Machine Learning (ML)/Deep Learning
(DL) models in a distributed way. On the other hand, Human Activity Recognition (HAR) has
recently gained more attention due to the evolution of the technologies involved, such as sensor
availability, advances in ML/DL/Edge AI, and IoT. Due to computational resource constraints,
techniques must be employed to reduce the effort required to train the model on the device.
Meanwhile, there’s the need to customize the ML model of each Federated Learning (FL) client
with the specific data collected by that client. The present work explores the FL of an ML model
for HAR in a set of twelve simulated FL clients, each with its own set of data from smartphone
sensors. The FL loop starts from a global model that was previously trained in a centralized
way, using a large dataset, different from the data used individually by each client during the
FL. In this way, the FL constitutes a fine-tuning of the base model. The metrics collected are
balanced accuracy and loss. Data is pulled from the ExtraSensory dataset, creating a benchmark
for future applications across device farms and in-the-wild devices. The results show that our
models achieve equivalent or better performance than most methods found in the literature,
using a relatively simple Multilayer Perceptron (MLP) model. The proposed method can then
reduce the time needed to retrain the model when data is acquired from the device’s own sensors.

Keywords: Artificial Intelligence, Fuzzy and neural systems relevant to control and
identification, Human Activity Recognition, Federated Learning.

1. INTRODUCTION

According to Cisco, in 2018 there were 8.8 billion mobile
devices and connections globally which could grow to
13.1 billion by 2023 (Cisco, 2018). At the same time, the
development and improvement of Machine Learning (ML)
and Deep Learning (DL) techniques are revolutionizing the
way we interact with devices and the world itself. This
success depends on the availability of large-scale training
infrastructures, such as large GPU clusters and the ever-
increasing demand for large amounts of training data. The
most common approach to data storage and model training
is to use cloud servers running centralized machine learning
methods. Although some edge nodes collaborate with the
cloud performing distributed tasks, this protocol still has
inherent challenges, one of the most relevant being the
transmission over the network of all data collected from
edge devices to train a model in a centralized server. This
approach raises major concerns due to communication
costs, as well as issues of reliability, privacy and data
security and restrictions derived from administrative and
government policies.

Due to the ever-growing availability of embedded sensors,
as well as advancements in ML, AI and IoT, the research
topic of Human Activity Recognition (HAR) is getting

more attention. The main idea of HAR is to correctly
identify activities such as walking, sleeping, running, etc,
as well as placement (indoor or outdoor) by using a
combination of data collected from wearable/smartphone
sensors like accelerometers, microphones, and cameras.
HAR techniques can be used for medical applications
like disease diagnosis and elderly monitoring, smart home
applications like profile creation by the daily activity
recognition, and many others. A survey of HAR state-of-
the-art is presented in Jobanputra et al. (2019).

Looking at data privacy and security challenges, Federated
Learning (FL), introduced by McMahan et al. (2017),
is a promising approach to address such problems. In
recent years, FL has been seen as a paradigm that allows
collaborative training of ML and DL models to preserve
data privacy and security, according to Bonawitz et al.
(2019), Li et al. (2020) and others. Only the model weights
are shared between clients and the server. The data used
for training remains locally stored in the client. There are
two main types of communication in FL: central server
orchestrated and fully-decentralized (Kairouz et al., 2021).
The central-orchestrated type (Bonawitz et al., 2019),
the most prevalent, has in its structure a federation of
clients, which can be small mobile devices (smartphones)
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or even organizations (like, for example, hospitals). These
clients train a ML model and share its weights with the
FL server, which is responsible for aggregating the set of
weights from each client into a single global model, which
is then submitted to each client to start a new round. Li
et al. (2020) and Zhao et al. (2018) demonstrate that with
decentralized communication it is possible to update the
global weights directly.

According to IBGE (2019), about 81% of Brazilians over
ten years old own a smartphone, making Brazil the fifth
country in the world in terms of number of users. In the
banking technology sector, investment in Brazilian fintech
companies totaled around 9 billion reais in 2020, represent-
ing an increase of 86% over the previous year, according to
Fintechnews (2021). In 2020, half of the banking transac-
tions were carried out through mobile devices, according
to FEBRABAN (2021). Furthermore, the Brazilian pene-
tration level in social media is approximately 68%, based
on the studies of Statista (2022).

With the pervasiveness of edge devices in modern society,
such as smartphones and wearable devices, the growth of
private data originating from sources distributed through
wearable and inertial sensors has increased, according to
Cisco (2018). These data allow better and more discreet
recognition of human activity and the state of rest, sleep,
and stress. Combining these two factors (private sensor
data and artificial intelligence techniques) is gaining sig-
nificant interest in general customer products and systems
in an industrial context. The present work focuses on
technologies and techniques for HAR from mobile sensors
(accelerometers, gyroscopes, and others) data and their
applications in edge devices such as smartphones.

The present work explores Federated Learning through
the resources and structure of the Flower framework. The
objective is to evaluate the training of a federated model
based on a centralized one in an experiment to recognize
human activities with public data from the ExtraSen-
sory dataset by Vaizman et al. (2017). The Extrasensory
dataset aims to validate the recognition activities in-the-
wild, getting closer to practical applications that work in
a real-life environment.

The related works are in Section 2. The theory and tools
are in Section 3. The methodology and experiments are
in Section 4, and, finally, the final considerations are
presented in Section 5.

2. RELATED WORKS

In the past few years, relevant advancements in the area of
Human Activity Recognition took place. The use of Mul-
tilayer Perceptrons (MLP) and other structures to recog-
nize activities from mobile sensors is a common approach
in publications. Mantyjarvi et al. (2001) used waist ac-
celerometers to recognize a limited set of body movements.
The authors combined wavelet transform with principal
component analysis and independent component analysis
for feature generation. At the same time, for the classi-
fication task, a MLP classifier and the best classification
results for recognition of different human motions were 83-
90%. Kwapisz et al. (2011) used a built-in accelerometer
in a smartphone with fixed placement (front pant pocket)

to recognize six body states. They also compared differ-
ent models besides MLP, including logistic regression and
decision tree. The model achieves an accuracy of 98% in
some activities but underperforms in others. The model
is trained on some features generated from descriptive
statistics, the interval in milliseconds between peak val-
ues in sinusoidal waves associated with activities. Guiry
et al. (2014); Shoaib et al. (2015) showed the advantage
of fusing sensors from smartphones and smartwatches to
improve the detection of some activities, including those
associated with bad habits, like smoking. In Guiry et al.
(2014), five algorithms were evaluated, C4.5, CART, Naive
Bayes, MLP, and Support Vector Machines. The authors
reported 100% accuracy for all instances. In Shoaib et al.
(2015), only three algorithms were evaluated, Support Vec-
tor Machine, k-Nearest Neighbors, and Decision Tree. The
evaluation is for each sensor, set of sensors, and, finally, a
comparison is made between the approaches.

Kerr et al. (2016) showed that data collected under heavily
controlled conditions may result in poor generalization to
real-life situations. Natarajan et al. (2016) addressed prob-
lems that arise when training classifiers with data collected
in laboratory and validating with data collected in the
field, like class distribution and sensor feature distribution.
Also, they found it difficult to have reliable ground-truth
labels when collecting in-the-wild data. Ermes et al. (2008)
used a system where a participant could use a personal
digital assistant (PDA) to self-report activities and select a
physical activity, a location, and an indication of eating vs
non-eating. They addressed that modeling some structures
depends on researchers’ assumptions, which may not hold
in real-life situations. Choudhury et al. (2008) addressed a
system for practical context recognition, which is basically
about being unobtrusive and lightweight, allowing more
natural behavior. Khan et al. (2014) provided a smart-
phone and collected data of participants in their natural
environments for a month.

Nishio and Yonetani (2019) implemented federated aver-
aging into practical mobile edge computing (MEC) frame-
works. They used a MEC framework operator to manage
the resources of heterogeneous clients. Wang et al. (2019)
performed FL on MEC systems with limited resources.
They addressed the problem of how to manage limited
computing and communication resources at the edge effi-
ciently. They implemented many ML algorithms like linear
regression, SVM, and CNN using federated averaging. He
et al. (2020) also considered the limited computing re-
sources of edge devices, with the proposal called FedGKT,
where each device trains only a small part of an entire
ResNet to reduce computation overhead.

Vaizman et al. (2017) presented a work in which com-
pletely unconstrained, self-reported context data is identi-
fied through a series of individual Logistic Regression clas-
sifiers. Also, they introduced the ExtraSensory dataset, a
rich, publicly available dataset about in-the-wild collected
user data for HAR. In Vaizman et al. (2018b) the authors
presented an unified neural network model, modelling the
context identification as a multi-label classification prob-
lem. They also modified the objective function to better fit
unconstrained data. The app used to collect the data was
presented in Vaizman et al. (2018a) and is also available
as an open-source software.
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Besides the original paper (Vaizman et al., 2017), other
works used the ExtraSensory as the main dataset, e.g.
Vaizman et al. (2018b) where the same research group
presented a unified neural network model to solve a multi-
label problem, and Fazli et al. (2020), where the authors
presented an hierarchical classification with a Deep Neural
Network to classify the six main labels.

Another approach for unconstrained activity identification
was shown in Fazli et al. (2020), where the authors
presented an hierarchical division with the use of Deep
Neural Networks to identify six activities related with
body states, like standing, running or lying down.

2.1 Datasets

ExtraSensory was built from a collection of 60 partici-
pants. These participants performed a range of physical
activities (e.g., walking, running), daily activities (e.g.,
sleeping, watching TV), and in different locations (e.g.,
school, home, work). The data was collected from sen-
sors like accelerometer, gyroscope, magnetometer, clock
accelerometer, location, and audio. The complete dataset
has more than 300,000 minutes of collection. The advan-
tages of this dataset are: collections in realistic settings
(every day, without restriction of device position, natural
behavior), annotations that provide a more realistic view
of a person’s life, and complex activities performed such
as washing dishes, drinking alcohol, riding the bus, eating
and watching TV). ExtraSensory is the dataset used to
train and evaluate the model developed in this work.

The ExtraSensory dataset, originally presented in Vaiz-
man et al. (2017), has as a differential the way in which
the data was collected. As explained before in section
2, many of the datasets built for similar purposes deal
with the clutter of the human activity data by imposing
constraints on the use of the devices to capture the data.
The ExtraSensory dataset, on the other hand, is built by
capturing this data ”in the wild”, which means that each
volunteer subject was free to define the way they use the
devices. This feature makes ExtraSensory a good choice
if the objective is to recognize the subject’s actions in
the most natural situations possible, although it is a very
challenging dataset to deal with.

Other datasets have already been released to experiment
and evaluate human activity recognition using smart-
phones. Garcia-Gonzalez et al. (2020) built HAR as a
dataset of phone sensors. The HAR has a set of six activi-
ties, divided among these stationary ones, and was built in
a controlled environment. Another dataset is SHL3, built
by Gjoreski et al. (2018), which uses sensor data to identify
human activities during transport. The DU-MD mobility
dataset, built by Saha et al. (2018), is a dataset built to
assess daily activities.

Finally, ExtraSensory may be the closest to the expected
environment in real life among all these datasets. In addi-
tion, analyzing the data makes it possible to perceive the
number of challenges expected in human activity recogni-
tion through smartphone sensors. For these reasons, the
group chose ExtraSensory as a data source to evaluate the
distributed learning model.

3. THEORY AND TOOLS

3.1 Federated Learning

The term Federated Learning emerged in 2017, when
McMahan et al. (2017) presented the concept alongside
with the first algorithm of model aggregation, the Feder-
ated Averaging. The authors justify the name by stating
that the training process is made by a ”loose federation
of participating devices” and the main motivations are
the privacy and security risks of sharing a user’s raw
data and the communication constraints of mobile devices
with centralized servers. The Federated Optimization deals
with non-identically distributed (non-IID), very unbal-
anced data, like datasets built from specific users sensing.
That is, a single user’s data is not representative of an en-
tire population and, from all possible labels in a supervised
learning context, some labels could be extremely rare or
even nonexistent. Under such condition, some users will
have a lot more data than others, representing a heavier
usage of some service.

The Federated Averaging is a simple yet powerful algo-
rithm that plays a central role in the Federated Learning
approach. The main principle is to aggregate the weights of
the individual models by, iteratively, taking rounds of local
training, local model sharing with the server, updating
the aggregated model weights by taking the average of
each participating model’s weights and sending back this
model to a new round of local training. The algorithm 1
in McMahan et al. (2017) shows the pseudocode of this
method.

3.2 Flower

First presented in Beutel et al. (2020), Flower is a Fed-
erated Learning framework that is proposed to support
experimentation with both algorithmic and system-related
challenges. It offers a stable, language and ML framework-
agnostic implementation of core components of a Feder-
ated Learning System, dealing with the heterogeneity of
the Edge Devices ecosystem, as shown in Mathur et al.
(2021). In the present work, Flower was chosen as the Fed-
erated Learning framework because it shows good behavior
in both Linux x86 systems with Tensorflow (Abadi et al.,
2016) and Android ARM systems with Tensorflow Lite.
Although the experiments were executed in Python, in
threads running on a Linux PC, one of the possible future
works is to replicate the experiment in Android devices.

4. METHODOLOGY AND EXPERIMENTS

The main goal of the present work is to test Federated
Learning techniques in a task that is both complex and
privacy-sensitive - HAR. As the objective is to move
towards the development of a model that should achieve
a good training performance on edge devices, the choice
was to start with a reduced scope. In this sense, the
developed classifier considered only the six main labels
of the Extrasensory dataset: ’standing’, ’sitting’, ’lying
down’, ’running’, ’walking’ and ’bicycling’. Those labels
are mutually exclusive, which means that a subject cannot
choose both ’running’ and ’sitting’ in the same sample,
for example. Taking this approach at an early stage of
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development would simplify the problem. The data were
split into training (and validation) and testing sets in an
80-20 ratio, so that the ratio between the six labels was
kept in the split, as the classes in the dataset are highly
unbalanced.

To test the generalizability of the model, a cross-validation
technique was used, in which the dataset was partitioned
among the various FL clients. Thus, the data from the
60 subjects in the dataset were split into 5 folds, each
containing data from a different set of 12 subjects/clients,
while the data from the remaining 48 subjects were used to
train a base model. Thus, the FL process is a fine-tuning
of the base model, as the weights of the global model are
initialized with the values resulted from the centralized
pre-training, using data from a comprehensive set of 48
individuals, different from the data used at each client of
the FL. In this way, it is expected to reduce the number
of epochs needed to customize the model in federated
mode. Such a result will be of great importance when the
experiment is carried out on edge Android devices, with
limited CPU and memory capabilities.

4.1 Centralized Training

The first part of the training consists of a traditional
ML training process with the combined data of 48 users.
The used model was a feed-forward MLP (Multilayer
Perceptron) Neural Network, in which a Random Search
hyperparameter optimization was performed. The tested
values of each hyperparameter were:

• number of hidden layers: 1 or 2
• number of neurons on each hidden layer: 4 to 64, with
a step size of 4

• learning rate: 1e-1, 1e-2, 1e-3 or 1e-4

The metric to optimize was the Balanced Accuracy, better
explained bellow. The model used Rectified Linear Unit
(relu) as the activation function in all neurons of the
hidden layers, as well as a sigmoid activation function
in the output layer. The loss function choosen is the Bi-
nary Crossentropy, and the Adaptive Moment Estimation
(Adam) is the optimizer.

As the authors explain (Vaizman et al., 2018b, 2017), the
Balanced Accuracy is a good choice when dealing with a
high imbalance between the classes of the dataset, avoiding
false conclusions caused by underrepresented classes. The
metric can be defined as:

BalancedAccuracy = 0.5 ∗ (specificity + sensitivity)

where
specificity = tn/(tn+ fp)

sensitivity = tp/(tp+ fn)

, and tp, tn, fp and fn stand for True Positive, True
Negative, False Positive and False Negative, respectively.

The optimal model found by the hyperparameters op-
timization are show in Table 1. Notice that the table
shows one hidden layer (dense 38) and the output layer
(dense 39). The learning rate found alongside with this
topology was 0.01.

Table 1. Optimal model found by hyperparam-
eters optimization

Layer (type) Output Shape Param #

dense 38 (Dense) (None, 44) 9988
dense 39 (Dense) (None, 6) 270

Total params 10,258
Trainable params 10,258
Non-trainable params 0

4.2 Federated Training

Starting with the previously 5 trained models, the clients
were implemented using the Flower FL framework in
individual threads of a Linux system, as mentioned before.
Here, each client performed training and test rounds with
their own datasets and shared the model weights with the
FL server (also running locally) between those rounds.
Figure 1 illustrates the process.

Figure 1. Federated Learning scheme illustration. Each
individual client trains its local model with its own
data. The weights are then shared with the FL server,
which aggregates them with the Federated Averaging
algorithm and the intermediate global model is then
passed to all clients. The process continues iteratively,
until a predetermined number of rounds has passed.

Flower allows to tune some strategy’s parameters, like the
fraction of clients that are chosen each round and the
minimal available clients to start the learning process. The
FederatedAveraging Strategy was configured as follows:

• fraction fit : 1.0
• fraction evaluation: 1.0
• minimum fit clients: 6
• minimum evaluation clients: 12
• minimum available clients: 12
• batch size: 50
• local epochs: 3
• number of rounds: 40

Five rounds of the FL training was run - one for each folder
in the cross-validation process mentioned above - on 12
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threads running each flower client. The clients loaded the
base model for each fold and train locally using their own
data.

5. RESULTS AND CONCLUSIONS

Here are the discussions of the results. First, there was a
low correlation between the number of samples available
and the Balanced Accuracy for each client (approximately
0.282 using Pearson’s correlation). Second, as can be seen
in Table 2, there was a small difference in the metrics
between the best and the worst fold (around 3.4% in
Balanced Accuracy), lying between 0.826 and 0.853.

Table 2. Folds’ statistics outlining a small
difference in the metrics between the best and

the worst fold

fold mean loss mean n samples mean balanced accuracy

0 0.170 1110.454 0.853
1 0.198 1321.818 0.838
2 0.208 1279.727 0.825
3 0.162 1333.454 0.840
4 0.200 1277.636 0.826

Figures 2 and 3 show respectively a swarmplot and a
boxplot of the Balanced Accuracy for each fold. The
distribution shows that, despite most of the clients’ BA
being between 0.8 and 0.88 (the first and third quartile
of all folds are in this range), the individual result can
be as low as 0.75 or as high as 0.925. We argue that this
phenomenon is close related with the diversity of data:
clients that have higher diversity in the six main activities
will produce data better suitable for the classification task.
Bicycling and Running, for example, are activities that not
everyone does.

Figure 2. Swarm plot for each fold in the Federated Learn-
ing process. Note that despite most of the clients’
BA being between 0.8 and 0.88 (the first and third
quartile of all folds are in this range), the individual
result can be as low as 0.72 or as high as 0.92.

Figure 4 shows the distribution of the Balanced Accuracy
considering all 5 folds. The shape loosely resembles a
gaussian distribution, but most of the curve is actually
worst than the base models, which have a mean Balanced
Accuracy of 0.854. We again argue that these discrepancies
are due the diversity of data between the clients.

Figure 3. Box plot for each fold in the Federated Learning
process. Note that the dispersion of the clients’ BAs
are relatively stable with close first and third quartile
range, but the tails of the distributions may present
very different values.

Figure 4. Histogram of Balanced Accuracy results con-
sidering all folds. The blue curve is a kernel density
estimate (kde) that helps visualizing the data distri-
bution.

Table 3 shows a comparison between the models of the
present work and models found in publications using
the same dataset. Numbers in parenthesis represent the
number of neurons in hidden layers, that is, (8) would
represent one hidden layer with 8 neurons while (16, 16)
represents two hidden layers with 16 neurons each. Notice
that the first two, from (Vaizman et al., 2018b) are for 51
labels, not only the main six activities. The models of the
present work (the last two) achieved equivalent or better
performance than most methods. Comparing with HHAR-
Net, they are built also with simpler topology, being easier
to embed in edge devices.

The experiments show that the approach of fine-tuning
the centralized model in a federated manner can lead to
good metrics for the HAR problem, with the advantage of
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having lighter models that could be trained on the edge
devices, with a limited hardware. However, we know that
some simplifications were made and an experiment with
real devices would bring new challenges.

Table 3. Comparison between the models of the
present work and models found in publications

using the same dataset.

Classifier Balanced Accuracy

MLP(8) (Vaizman et al., 2018b) 0.772 (51 labels)
MLP(16,16) (Vaizman et al., 2018b) 0.773 (51 labels)
Decision Tree (Fazli et al., 2020) 0.759
k-NN (Fazli et al., 2020) 0.788
SVM (Fazli et al., 2020) 0.792
Random Forest (Fazli et al., 2020) 0.709
MLP (Fazli et al., 2020) 0.814
Flat DNN (Fazli et al., 2020) 0.841
HHAR-Net (Fazli et al., 2020) 0.852
MLP(44) 0.854
Fed-Net 0.836

6. DISCUSSION

In this work we present a method that can be seen as
a compromise between using user-specific data and the
benefit of more data and a wider range of labels in non-
IID applications, like Human Activity Recognition. This
approach also keeps users privacy and could, theoretically,
deal with ”cold-start”problem, that is, a fairly good model
can be achieved even when new clients with small per-
sonal datasets begin to use an application. The practical
effectiveness of the method is subject to limitations of
network band, latency, users’ connectivity and personal
devices’ computational power. Particularly in this work,
as we ran all distributed clients in a single server, we were
not affected by such limitations. We sought to apply it in
a ”on-device trainning” fashion, but we needed to better
delimiter our proposal before adding possible issues, like
hardware limitations.

We argue that the results show evidences about the use
of Federated approaches in Human Activity Recognition
while keeps users privacy. Also, as can be seen in table
3, our method achieved better or somewhat equivalent
performance than previous works. This hybrid approach
could also be extended to other ML-based applications
that deals with sensitive data and need large amount of
data to perform well.

7. FUTURE WORKS

As future works we expect to design and run experi-
ments considering real Android devices or Android device
farms to be able to measure parameters on those specific
hardwares. We would like to collect network performance
metrics in poorly or intermittent available connection and
observe how these adversities affects performance. Also, we
would like to produce more descriptive labels for future us-
age with Natural Language Processing (NLP) techniques
for further investigation.
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