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Abstract: Power Distribution Systems are a critical infrastructure, and there is a growing
interest related to their capacity to deliver and maintain power supply to the final customer.
In this sense, the failure response of a typical Distribution System (DS) must be correctly
assessed, especially when considering Low Frequency, High Impact (LFHI) events, such as
extreme weather scenarios. Previous studies focus on topological and qualitative approaches,
thus not considering the impact of extreme weather on the DS’s reliability metrics related to
the frequency and duration of the failure. In this work, a fragility curve model was used to
sample time until failure and time to repair inside a daily time window of a real Brazilian
DS while taking weather variables into account. The Monte Carlo method was used to verify
both power flow parameters and weather variables’ influence on the frequency and duration of
failures. A gradual node removal approach was also modelled to investigate the impact of energy
not supplied. Results show that the weather variables values can drastically change the failure
response of the DS in both the time window and node removal approaches. Furthermore, when
considering redundancy (alternative energy paths), in the most extreme weather scenario, an
increase in system redundancy did not improve failure response, contrary to what is expected.
In this sense, an extreme weather failure response analysis is recommended in any investment
study related to a DS - such as switch or protective device placement.

Keywords: Power Distribution System; Resilience; Survival Analysis; Extreme Weather Events;
Reliability Metrics; Monte Carlo Simulation

1. INTRODUCTION

Electrical Power Systems (EPS) is considered one of the
most important critical infrastructures (CI) where its con-
tinuity performance index is the subject of several pieces
of research (Yusta et al., 2011). It is possible to define
a failure in a typical DS as any abnormal condition in
the system that leads to an electrical failure in given
equipment (such as transformers, generators and buses),
which can further lead to loss of energy supplied to the
final consumes (Shen et al., 2021). Most of the power
outages experienced by the customers are specifically in
the Distribution Systems (DS) sector (Gómez-Expósito
et al., 2018), which is responsible for making the ulti-
mate connection with the customers. Consequently, DS
failure response is the object of several studies, particularly
in understanding how internal and external factors can
cause interruptions/failures in the DS (Shen et al., 2021).
This comprehension can further be used to improve the
structure of the system itself, in areas such as planning,
updating and expansion of power systems (Afzal et al.,
2020).

⋆ This work was partially fomented by São Paulo Research Founda-
tion(FAPESP), grant 2021/12220-1, 2019/06531-4 and 2014/50851-
0, CNPq 465755/2014-3, BPE Fapesp 2018/19150-6 and CAPES -
Brazil.

Since the placement of DSs is usually in large areas, ex-
ternal factors can influence their failure response. As an
example, extreme weather events constitute one of the
leading causes of failures in the DS (Jufri et al., 2019).
They are categorized as Low Frequency, High Impact
(LFHI) events, which despite happening with a low degree
of frequency, can cause a significant level of disruption.
When assessing the failure response of Distribution Sys-
tems, the consideration of LFHI is essential to understand
further its impact on the continuity of power delivered.
Two factors are significant regarding DSs failure response:
failure frequency, regarding how many disruptions hap-
pened in a given time interval, and failure duration related
to the total needed time to restore electrical energy to out-
of-service customers. The minimization of both factors is
of extreme importance, allowing the utility to avoid higher
fines, as well as to assure power continuity at global and
individual levels (Heydt, 2010).

In that regard, for a given failure in a DS, it is often
important to know how long it took for it to happen (time
to failure) and how long the system will take to recover
itself (time to repair) (Bessani et al., 2016). Moreover,
for a better understanding of failure frequency in DSs,
recent studies separate the failure into groups (coupling
together similar causes), including extreme weather events
(Fogliatto et al., 2020; Jufri et al., 2019).
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Regarding the impact of extreme weather events on the
failure response of DSs, the work done by (Bessani et al.,
2019) focuses on the probabilistic assessment of power
systems under extreme weather scenarios. The authors use
failure history data and Monte Carlo Simulations to create
fragility curves for the failure and repair models and a
stochastic approach to address the frequency and duration
of failures in a DS. In (Bessani et al., 2018), the authors
apply a multi-agent simulation over a power distribution
network, with the primary goal of enhancing system ro-
bustness by opening/closing switches between nodes. The
authors in (Fogliatto et al., 2020) distinct different causes
of failures in a DS, including a model for addressing the
repair time in function of various environmental variables
(such as temperature, wind speed and precipitation level).

On the other hand, from a vulnerability analysis point of
view, the works above do not consider the particularity of
extreme weather events. The possible influence of weather
variables on the failure rate and repair time of each
component, for example, is ignored. Additionally, for each
extreme weather scenario, the reliability metrics related
to frequency and duration of failures for both the final
customer and the whole system (Heydt, 2010) must be
calculated. Previous works neglect that, thus failing to
address and differentiate the impact of each failure in the
DS power continuity.

Additionally, the collective impact of system redundancy
(in terms of alternative connections and switches avail-
able), load demand and feeder capacity on the failure re-
sponse of extreme weather events are neglected in previous
works, despite their importance to the system (Hilbers
et al., 2021; Jordehi, 2018). Finally, despite the develop-
ment of curves related to the time until failure and the
time to repair DS components, they are yet to be tested
as a scenario generator model in a failure response analysis
of a real distribution system.

This paper develops a Monte Carlo Simulation (MCS)
approach based on time windows. The main goal is to
directly use fragility curves models for the time until failure
and the time to repair in a real-life DS. We consider
the impact of extreme weather events by using different
curves based on weather intensity. Furthermore, the effect
of load demand and feeder power capacity variation in
extreme weather scenarios is done by simulating node
removal failures. Lastly, reliability metrics, such as the
Customer Average Interruption Frequency Index (CAIFI),
are calculated for each iteration of the MCS while varying
redundancy - in the form of normally open switches - and
weather intensity.

The main gaps to be filled by this work are:

• A MCS model for extreme weather events in DS
that can take into consideration the extreme weather
variables (such as precipitation level) directly into the
fragility curve;

• The calculation of reliability metrics related to the
frequency and duration of failures, which can be used
to determine the impact of extreme weather events
on the continuity of energy supply to the customer;

• The variation of redundancy, load demand and feeder
power capacity, and how these variations can affect
the failure response in extreme weather scenarios.

The paper is organized as follows: The proposed failure
response model is presented in Section 2, encompassing
the Reliability Metrics, the Monte Carlo Simulation, and
the time window model. We present and discuss the results
in Section 3. Lastly, conclusions are stated in Section 4.

2. MATERIALS AND METHODS

The real Brazilian DS represented in Figure 1 was used for
all simulation in this work, to properly show the scalability
of the model. Additionally, the work done in (Fogliatto
et al., 2020) took failure data from the mentioned DS and
used it to create distribution curves regarding both the
time until failure and the repair time.

Figure 1. Real DS of a Brazilian city used in all simula-
tions. The system has over 40000 bars, 3800 switches
and 36000 switches. The subfigure zooms in a sub-
section of the system, for an enhanced view of its
topology. Each color represents a different substation.
Source: Fogliatto et al. (2022).

Regarding the time until failure, the Weibull model devel-
oped in (Fogliatto et al., 2020) was used, where the final
distribution curve take into consideration the following
weather variables:

• daily number of atmospheric discharge,
• wind speed (km/h)
• maximum daily temperature (in Cº)
• minimum temperature (in Cº)
• precipitation level (mm/h)
• air relative humidity (%)

With that in mind, in order to bring the influence of ex-
treme weather events to the proposed methodology, three
scenarios were sampled for the time until failure, as shown
in Fig. 2. Each failure mode represents the distribution
curve when the minimum, average or maximum values of
each weather variables is used, to properly model different
failure intensities. With this method, it was possible to
develop three scenarios for the time until failure curve,
each one representing a different level of weather intensity.

On the other hand, the distribution curve related to the
time to repair was also developed in (Fogliatto et al., 2020),
for different causes of failures. Since this work aims to
analyse the impact of extreme weathers into DSs, only the
atmospheric curve was used, as shown in Fig. 3.

Sociedade Brasileira de Automática (SBA) 
XXIV Congresso Brasileiro de Automática - CBA 2022, 16 a 19 de outubro de 2022 

ISSN: 2525-8311 3583 DOI: 10.20906/CBA2022/3662



Figure 2. Cumulative distribution function for the time
until failure (or lifetime), in hours, representing the
time period between two consecutive failures for a
given node in the network. Failure mode depends on
weather variables, and affects network resilience. The
failure modes represents the weather intensity, from
least intense (minimum) to most intense (maximum).

Figure 3. Distribution function for the time to repair
of the SD used, representing the time to address
the process of failure detection, isolation and system
restoration. In this case, only atmospheric failures
were considered, to directly assess the impact of
extreme weathers into the simulations.

Another aspect to be considered is the system redundancy.
In this work, the redundancy indicates the percentage
of connections (lines or switches) that are used in the
network, in comparison to all possible combinations. For
a given value of redundancy r (between 0 and 1), (1 − r)
lines are randomly removed, an approach already used in
previous works (Quattrociocchi et al., 2014). The analysis
of the redundancy is crucial to correctly assess the DS fail-
ure response, since the addition of new lines on the system
can be economically costly, and must be carefully done
(Heydt, 2010). In this work, three values of redundancy
were used: 80%, 90% and 100%, representing typical values
of redundancy in real life DSs (Rodrigues Mendes Ribeiro
et al., 2019).

Additionally, two parameters related to power flow were
used in the full simulation model. The feeder capacity
tolerance α is shown in Eq. 1, where P0,f is the nominal

distribution capacity, in terms of active power, of feeder
f and Pf is the actual demand of feeder. In this sense,
an increase in the α parameter represents an elevation of
the active power of a feeder, which can be used to restore
additional customers in the case of power transfer between
feeders.

Pf = (1 + α) · P0,f (1)

The other parameter used in the power flow was the load
multiplicative factor β, represented in Eq. 2. In this case,
L0,c is the expected active power demand of customer
c, and Lc is the actual active power, based on the β
parameter. A higher β value represents the increase of
power demand in the DS.

Lc = (1 + β) · L0,c (2)

Lastly, for all simulations, the DC Power Flow model (Pur-
chala et al., 2005) was used to properly assess topological
and electrical constraints, such as maximum line current,
maximum bus voltage and maximum load active power
into the full failure response model.

2.1 Reliability Metrics

In the context of DSs, the continuity of power delivery to
the final customers is one of the most important fact to be
considered. In this regard, this aspect is usually measured
through standard reliability metrics (Heydt, 2010). In this
work, four reliability metrics were used:

• System Average Interruption Frequency Index
(SAIFI), related to the expected number of failures a
given customer suffers in a given time window (inter-
ruptions/(customers*time)), calculated as shown in
Eq. 3, where Ni is the number of customers affected
by a single failure (i), and NT is the total number of
customers in the system.

SAIFI =

∑
i Ni

NT
(3)

• System Average Interruption Duration Index
(SAIDI), which shows the expected duration of fail-
ures for a given customer in the DS, calculated by Eq.
4, where ri is the repair time of failure i. In this work,
the values sampled from the curves shown in Figs. 2
and 3, as detailed later on.

SAIDI =

∑
i Niri
NT

(4)

• Customer Average Interruption Frequency Index
(CAIFI), that is concerned with the average frequency
of failures for customers that are being affected by
failures. This metric is calculated in Eq. 5, where Nc

is the number of customers that suffered from any
failure during the time window.

CAIFI =

∑
i Ni

Nc
(5)

• Customer Average Interruption Duration Index
(CAIDI), representing the expected duration of a fail-
ure that affected a given customer (minutes/failure),
as shown in Eq. 6
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CAIDI =

∑
i Niri∑
i Ni

=
SAIDI

SAIFI
(6)

And the last metric used in this work, that takes into
consideration the power flor particularities of the DS, is the
Energy Not Supplied (ENS), as shown in Eq. 7, where the
active power of each customer in failure, Lc is multiplied
by the repair time, ri, to give the total energy not supplied
in the considered time window.

ENS =
∑
i

∑
Ni

Lcri (7)

2.2 Monte Carlo Simulation (MCS)

The full flowchart of the Monte Carlo Simulation method
used in this work is presented in Fig. 4. The initial step
is to set the failure scenario, by choosing a curve between
the ones presented in Fig. 2. After the scenario is fixed, the
next step is to run N iterations, where N = 100 was used
in this work. For each iteration, the time until failure and
time to repair are sampled from Figs. 2 and 3, respectively,
and are used to define the status of each customer during
the time window. For example, if node i has tf = 3 (in
hours) and tr = 5 (in hours), then all customers affected
by the failure will be disconnected from the DS for the
time interval between t=3 and t=8. Since the time window
is T = 24 hours, any node with tf > 24 will not be
affected. Lastly, after a iteration is finished, the status of
each customer over time is used to calculate each reliability
metric showed in Subsection 2.1

The possibility of node removal was also considered in this
work, where the Monte Carlo method was repeated, but
this time, different values for the power flow parameters
(α and β) have been chosen, and the nodes were gradually
removed from the network, while calculating the ratio of
Energy Not Supplied (in comparison to the total demand
of the system) after each removal.

3. RESULTS AND DISCUSSION

Figs. 5 and 6 show the simulation results, where the
Monte Carlo method was applied, with N=100 iterations,
and a box plot was generated to show the range and
the overall distribution of reliability metrics values along
each iteration. All possible values of failure mode and
redundancy (r) were taken into consideration, summing
up 9 possible scenarios. For all simulations, the value
of the power flow variables, α and β, were fixed at 0,
meaning that the initial DS was used without any further
modifications. This was done to properly analyse the
impact of extreme weather scenarios in typical situations
regarding both load demand and feeder capacity.

At Fig. 5, it is possible to analyse the expected duration of
failures, both at system (global) as well as customer (local)
levels. In this regard, for minimum and average failure
modes, the mean value of SAIDI and CAIFI decreases
with the increase of redundancy, showing a better failure
response with the increase of alternative connections at the
network. This result is expected in the literature, since the
increase of system redundancy is usually done to enhance
its failure response, especially in electrical power systems,

Figure 4. Full Monte Carlo Simulation (MCS) flowchart.
After a extreme weather event scenario is set, N MCS
iterations are simulated, with a given time window
T (in hours). Fragility curves are used to set the
time until failure and time to repair of each element
in the network, and different reliability metrics are
calculated at the end of each MCS iteration.

as shown in (Rodrigues Mendes Ribeiro et al., 2019) and
(Quattrociocchi et al., 2014), for example.

For the maximum failure mode, however, the mean value
of SAIDI and CAIDI do not change abruptly with changes
in redundancy, and the confidence intervals intersect, thus
not being possible to distinguish considerable improve-
ments in system response to failures with the increase in
redundancy. This result show that an increase in redun-
dancy may not improve system failure response, at least
when considering an extreme weather event scenario (since
the maximum failure mode represents the most extreme
weather variables).

In Fig. 6, the boxplot of SAIFI shows the same pattern
describe above, meaning that the addition of redundancy
can enhance the DS failure response for minimum and
average failure mode, but not for the maximum failure
mode scenario. Lastly, CAIDI remained constant, since its
calculation, done by Eq. 6, is done using only the time
to repair, which is sampled from the distribution curve of
Fig. 3, and consequently is independent of failure mode,
and doesn’t have abrupt changes related to redundancy
variation.

It is important to notice that the addition of redundancy
in a DS (through line and switch allocation) usually
requires economical and technological investments by the
DS utility (Shahbazian et al., 2020). In this sense, a
return of such investment, in the form of failure response
enhancement, is expected. The results presented here show
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Figure 5. Boxplot for the Average Interruption Duration
Index, both for the system (SAIDI) and for the Cus-
tomer (CAIDI), varying failure mode and redundancy
(r). In all cases, α = 0 and β = 0

Figure 6. Boxplot for the Average Interruption Frequency
Index, both for the system (SAIFI) and for the Cus-
tomer (CAIFI), varying failure mode (related to ex-
treme weather intensity) and redundancy (r). In all
cases, α = 0 and β = 0

that this may not be the case, especially when considering
extreme weather scenarios. In this sense, in any investment
study of a DS, there must be done an extensive analysis
regarding the influence of external factors (such as weather
variables), to properly understand their influence in the DS
failure response.

The results related to gradually node removal are shown
in Figs. 7 and 8. Each horizontal line shows the minimum
ratio of removed nodes (between all 5 curves, in each
Figure) in the DS necessary to achieve 25%, 50% and
75% of energy not supplied (ENS).As it can be seen in
Figure 7, the distinction between each curve is stronger
for the first removed nodes, particularly before 25% ENS
is achieved. After that, all curves tend to converge to
the same behavior. This result is expected, since the only
difference between each curve is the load demand (as set by
the β parameter in Eq. 2), and thus, since no topological
distinctions are made, when multiple nodes are removed,
the system is unable to transfer loads between feeders, and
collapses regardless of the power flow parameters.

Regarding variations in feeder capacity, in Figure 8, it
is possible to observe that once again, all curves tend

Figure 7. Evolution of the Energy Not Supplied (ENS)
values for the DS, when gradually removing one node
at a time. In this case, different values of β were
applied, while maintaining α = 0 fixed. The horizontal
lines represents the minimum ratio of nodes, between
all 5 β values, necessary to achieve each critical ENS
level (25%, 50% and 75%).

Figure 8. Evolution of the Energy Not Supplied (ENS)
values for the DS, when gradually removing one node
at a time. In this case, different values of α were
applied, while maintaining β = 0 fixed. The horizontal
lines represents the minimum ratio of nodes, between
all 5 α values, necessary to achieve each critical ENS
level (25%, 50% and 75%).

to approach each other as the ratio of removed nodes
increases. It is possible to observe, however, a slightly
higher distinction between the curves, for ENS values lower
than 50%, if compared to the curves presented in Fig. 7.
This behavior shows how the possibility of transferring
nodes between feeders - that is only possible with higher
values of α, representing the power tolerance - can enhance
the DS failure response, even when considering a time
window related to extreme weather scenarios.

Additionally, Table 1 shows, for each pair of (α, β), the
ratio of removed nodes in the DS necessary to achieve
25%, 50% and 75% of energy not supplied (ENS), which
are represented by the variables ENS25%, ENS50% and
ENS75%, respectively. the lowest value achieved for each
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critical value is highlighted, showing the optimal pair
of power flow parameters for the DS simulated. The
highlighted values represents the highest ratio of nodes
necessary to achieve all three of the critical energy not
supplied values, which are further shown in Table 2.

It is possible to observe how, for each critical ENS values,
different values of α and β showed the best failure system
response. The tuple (α = 0, β = 1), for example, is the best
result regarding a 25% critical level of ENS. On the other
hand, the same configuration led to a 2.17 ± 0.89 ratio
of removed nodes necessary to achieve the 75% level of
ENS, which is high if compared to the value achieved for
other tuple configurations. In this sense, the power flow
parameters (α and β) must be taken into consideration
when modeling the failure response of DS against extreme
weather events, leading to a better understanding of the
complete system dynamic.

Table 1. Mean and variance values for the ratio
of removed nodes necessary to reach 3 different
critical levels of Energy Not Supplied (ENS)
in the DS simulated: 25%, 50% and 75%, as
shown in ENS25%, ENS50% and ENS75%,
respectively. The failure mode was fixed as
average, and the redundancy was fixed at r =

100%.

α = 0

β ENS25% ENS50% ENS75%

0 1.31±0.49 1.73±0.79 1.93±1.0
0.05 1.32±0.49 1.84±0.83 2.07±1.08
0.1 1.32±0.48 1.81±0.76 2.07±0.99
0.5 1.4±0.44 1.88±0.71 2.25±1.05
1 1.41± 0.40 1.89±0.66 2.17±0.89

α = 0.05

β ENS25% ENS50% ENS75%

0 1.34±0.47 1.76±0.76 2.0±1.01
0.05 1.37±0.41 1.86±0.66 2.09±0.88
0.1 1.43±0.43 1.92±0.71 2.21±0.93
0.5 1.39±0.46 1.92±0.72 2.32± 1.10
1 1.33±0.47 1.85±0.77 2.17±1.1

α = 0.1

β ENS25% ENS50% ENS75%

0 1.31±0.39 1.80±0.73 2.05±1
0.05 1.34±0.41 1.85±0.7 2.15±1.04
0.1 1.30±0.43 1.75±0.43 1.97±0.96
0.5 1.33±0.48 1.79±0.79 2.05±1.03
1 1.28±0.50 1.70± 0.77 1.99±1.07

α = 0.5

β ENS25% ENS50% ENS75%

0 1.35±0.42 1.87±0.71 2.2±1.01
0.05 1.29±0.5 1.76±0.81 1.99±1.05
0.1 1.30±0.50 1.72±0.79 1.91± 1.01
0.5 1.39±0.48 1.95± 0.76 2.31±1.05
1 1.26± 0.49 1.76±0.81 2.12±1.12

α = 1.0

β ENS25% ENS50% ENS75%

0 1.42±0.43 1.93±0.70 2.23±0.97
0.05 1.34±0.47 1.88±0.75 2.27±1.09
0.1 1.35±0.43 1.85±0.74 2.06±0.95
0.5 1.36±0.42 1.87±0.75 2.22±1.06
1 1.38±0.42 1.85±0.69 2.06±0.89

Table 2. Best DS scenario related to 3 critical
Energy Not Supplied (ENS) values. In each
case, the highest ratio of removed nodes neces-
sary to achieve the critical level was computed,
together with the respective combination of α
and β (power flow parameters, as shown in Eq.

1 and 2, respectively).

Critical ENS Level Ratio of removed nodes α β

25% 1.41± 0.4 0 1
50% 1.95± 0.76 0.5 0.5
75% 2.32± 1.1 0.05 0.5

This work aimed to apply fragility curves related to time
until failure and repair time of a DS into a complete
failure response model while also considering extreme
weather variables. Previous works did not consider the
direct impact of extreme weather events on the failure
response of a DS. The results presented in Figs. 5 and 6,
for example, would be compiled into a single Boxplot, thus
neglecting the discrepancy between each weather scenario,
which could lead to misleading results regarding any short
or long term investment analysis of a DS.

Additionally, the variation of power flow restrictions,
which are represented in this work by parameters α and
β, is usually not applied in the face of extreme weather
scenarios in the literature. By doing so in this work, it was
possible to verify how the optimal values of the restrictions
above change in the face of a given extreme weather sce-
nario, as highlighted in Table 2. A DS operator can use this
approach in the face of historical failure data by simulating
each failure scenario using the proposed methodology and
finding the optimal values of α and β in each case, which
can be further applied to the real DS, enhancing its failure
response.

With the application of extreme weather uncertainties,
coupled with the Monte Carlo method, as well as a time
window approach, it was possible to go one step further
into the failure response problem of DS by considering the
stochasticity of the final complete model while also calcu-
lating different reliability metrics related to the frequency
and duration of failures. Additionally, the methodology
presented can be extended to assess any failure model
of a typical Distribution System by adequately adjusting
the distribution curves, depending on the availability of
historical data and expert knowledge.

4. CONCLUSION

This paper presents an Electrical Distribution System
failure response analysis against extreme weather events
using the time until failure and the time to repair each
element in the network as random variables with individual
distribution curves. The Monte Carlo method is applied,
coupled with a time window model, while also calculating
different reliability metrics related to failure frequency and
duration.

It was possible to model both external (weather environ-
ment) and internal (redundancy, load demand and feeder
power capacity) factors while analysing the DS failure
response in each case. It was possible to observe how
the extreme weather intensity can drastically change the
DS behaviour, especially when considering possible vari-
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ations in internal and external factors. Furthermore, the
results emphasise the importance of incorporating extreme
weather variables into the DS failure response model to
enhance further the DS operator’s possible short and long-
term decisions.

Additionally, the complete simulation model presented in
this work can be used to properly assess failure related
to extreme weather events into topological and economic
problems related to Electrical Power systems, such as the
Optimal Allocation of protective and controlling devices.
In this case, the reliability metrics can be used as an ob-
jective function optimised. Future works should introduce
attacks in the response model to compare with random
failures; introduce additional curves related to the failure
and repair model (related to different causes of failures);
and use other metrics, such as centrality and connectivity,
to properly assess the DS failure response.
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