# Um Novo Tomógrafo por Micro-Ondas para Imageamento da Mama Utilizando Braços Robóticos

Lucas G. Costa \* Thiago Campos \*\* Everaldo J. Maciel \*\*\* Hugo A. Mendes \*\*\*\* Maryam Liaqat  $^{\ddagger}$  Emery Lins  $^{\ddagger}$ 

\* Universidade Federal de Pernambuco, PE, (e-mail: lucas.gallindo.costa@gmail.com).
\*\* Universidade Federal de Pernambuco, PE (e-mail: tcampos@gmail.com)
\*\*\* Universidade Federal de Pernambuco, PE (e-mail: jeveraldo3.14@gmail.com)
\*\*\*\* Fundação para Inovações Tecnológicas, PE, (e-mail: hamendes@fitec.org.br).
† University of okara, Pakistan , (e-mail: drmaryam.liaqat@uo.edu.pk).
‡ Universidade Federal de Pernambuco, PE, (e-mail: emerylins@qmail.com).

**Abstract:** This work presents a new microwave imaging system for breast imaging that consist of a pair of antennas being automatically positioned around the breast by robotic arms, providing better flexibility to different breast sizes and allowing a bigger number of measuraments when compared to other systems in the literature. The systems retrieves the outer shape of the breast utilizing a depth camera and uses it to position the antennas. The system was capable of autonomously decide the position of the antennas for two breast phantoms with minimum input from operator.

**Resumo**: Este trabalho apresenta um novo sistema para imageamento da mama por micro-ondas que consiste de um par de antenas sendo automaticamente posicionadas ao redor da mama por braços robóticos, o que proporciona um maior conforto e flexibilidade a pacientes com mamas de tamanhos diferentes, além de possibilitar um numero maior de medições. O sistema utiliza uma câmera de profundidade para obter o formato externo da mama e o utiliza para o posicionamento das antenas. O protótipo foi capaz de decidir o posicionamento das antenas para dois fantomas de forma semi-autônoma, com miníma intervenção de um operador.

Keywords: microwave imaging; breast cancer detection; medical robotics; multi-robot system; computer vision.

*Palavras-chaves:* imageamento por micro-ondas; detecção câncer de mama; robótica medica; sistemas multi robô; visão computacional;

#### 1. INTRODUÇÃO

Há alguns anos o imageamento por micro-ondas (sigla em inglês MWI) dos tecidos mamários vem sendo estudado como uma técnica complementar ao diagnóstico do câncer (Aldhaeebi et al., 2020) devido a possibilidade de diagnostico dado o contraste entre as propriedades dielétricas do tecido saudável e canceroso da mama (Lazebnik et al., 2007). O MWI tem como objetivo reconstruir um mapa de permissividades de uma região sob investigação, aferindo o campo elétrico na sua vizinhança (Pastorino, 2010).

Atualmente mamografia por raios-X é considerada o padrão-ouro para o diagnostico por imagens do câncer de mama, porém ela apresenta algumas limitações e pontos negativos, como desconforto para a paciente, a taxa de falsos diagnósticos, assim como os riscos da exposição a radiação ionizante. MWI se destaca por sua sensibilidade e especificidade em discriminar tecidos saudáveis e cancerosos além de utilizar radiação não ionizante de baixa intensidade.

Técnicas de imageamento por micro-ondas se dividem em duas categorias: as técnicas baseadas em radar e as técnicas tomográficas. As técnicas baseadas em radar tratam a reconstrução da imagem como um problema inverso linear e o resultado são imagens que indicam a origem da reflexão dos sinais incidentes. Já as técnicas tomográficas para imageamento por micro-ondas, consistem em obter um mapa da distribuição das propriedades dielétricas obtendo a solução da equação do espalhamento inverso:

$$E(r) = E_{inc}(r) + j\omega\mu_b \int_{V_0} \tau(r') E(r') .\bar{G}(\frac{r}{r'}) dr' \qquad (1)$$

onde  $\tau(r) = j\omega[\epsilon(r) - \epsilon_b]$  é a função do objeto ou potencial de espalhamento,  $E_{inc}$  é o campo incidente na ausência de um alvo, r é a coordenada espacial das antenas, e r' é uma

coordenada na região a ser investigada  $V_0$ . O objetivo é a solução do problema inverso mal posto do espalhamento encontrando a distribuição da função do objeto  $\tau$  que contém a distribuição da permissividade (Pastorino, 2010; Tikhonov et al., 2013).

A literatura científica reporta vários protótipos de sistemas para imageamento da mama, em geral os sistemas propostos podem ser divididos em duas configurações: um conjunto de antenas posicionadas em volta da mama em um arranjo circular, variando a altura das antenas (Meaney et al., 2020; Grzegorczyk et al., 2012; Gilmore et al., 2009; Zhurbenko et al., 2010); um conjunto de antenas posicionadas em formato de concha sobre um setor da mama (Preece et al., 2016; Klemm et al., 2008).

Neste trabalho são apresentados resultados preliminares no desenvolvimento de um novo sistema para o imageamento da mama, contendo um conjunto de dois braços robóticos que posicionam as antenas ao redor da mama com o auxilio de uma câmera de profundidade. O intuito da utilização de braços robóticos é: possibilitar um maior conforto à paciente quando comparado a mamografia por raios-X onde há a necessidade de compressão da mama; maior flexibilidade em relação pacientes com mamas de tamanhos diferentes; flexibilizar o posicionamento das antenas, possivelmente aumentando o número de medições quando comparado à outros sistemas de MWI propostos na literatura; obter a superfície externa da mama para posteriormente ser utilizada como informação a priori pelo software de reconstrução. O protótipo construído foi capaz de obter o formato externo de dois fantomas da mama com mínima intervenção de um operador e então decidir automaticamente o posicionamento das antenas.

#### 2. MATERIAIS E MÉTODOS

#### 2.1 O Tomógrafo

O tomógrafo proposto é constituído de um conjunto de dois braços robóticos que posicionam as antenas de forma semi-autônoma ao redor de um fantoma da mama. O tomógrafo possui uma câmera de profundidade Intel RealSense utilizada para detectar a superfície da mama. A figura 1 apresenta o aparato experimental com o protótipo construído: 1-Braços robóticos; 2-Fantoma da mama; 3-Câmera de profundidade; 4-Analisador de redes e switches de mico-ondas.

Na imagem 2 observa-se o esquemático para o sistema de controle do tomógrafo em um arranjo que comporta um maior numero de braços robóticos que o utilizado neste trabalho. O tomógrafo utiliza microcontroladores para controle dos braços robóticos, e para controlar dois switches de RF do tipo SP8T que possibilitam a conexão de várias antenas simultaneamente. A comunicação entre o computador central e os microcontroladores é feita por rede Ethernet, possibilitando a conexão de vários dispositivos simultaneamente.

No inicio da operação os braços se encontram em posição de descanso, de forma que não obstruem o campo de visão entre da câmera de profundidade e o fantoma da mama. É necessário então que o operador determine os limites da região sob investigação, uma região que contem



Figura 1. Protótipo do Tomógrafo

a mama por completo, permitindo assim a detecção da superfície da mama. Esta região de interesse é determinada pelo operador selecionando os limites laterais e inferior da superfície de interesse. Tais informações são armazenadas pelo software de controle para posteriormente serem utilizadas pelo software de reconstrução da imagem como informação a priori.

O software do tomógrafo então determina o posicionamento das antenas da seguinte forma: é calculado o ponto central do volume determinado pela superfície do fantoma da mama obtida pela câmera de profundidade e os limites da região sob investigação determinada pelo operador. Então é calculada a maior distância entre o ponto central do volume e a superfície, é adicionado um centímetro a distancia encontrada, e por fim é determinado o posicionamento das antenas em um arranjo circular ao redor da mama. A depender do volume da mama, as antenas também podem ser posicionadas num arranjo semiesférico. Os conjuntos de posicionamento dos braços são determinados fazendo uma combinação dois a dois de todas as possíveis posições das antenas.

O controle dos braços robóticos é feito utilizando o Robot Oparanting System(ROS)(Stanford Artificial Intelligence Laboratory et al.), uma framework open source para desenvolvimento de robôs. Após o software de controle do tomógrafo determinar todas as possíveis posições das antenas, essas posições são selecionadas duas a cada vez e são repassadas as posições para o ROS. Então é utilizada a ferramenta MoveIt (Coleman et al., 2014) para efetuar o planejamento do movimento dos braços robóticos, evitando a colisão entre as antenas, os braços robóticos e a mama. Após o fim do posicionamento das antenas, o software de controle efetua a leitura do analisador de redes e armazena o resultado. Por fim, o processo é repetido até serem percorridas todas as possíveis combinações de posições determinadas pelo software. Abaixo observa-se um pseudo algorítimo contendo as etapas feitas pelo software:

Algorithm 1. Etapas do software de controle do tomógrafo

- 1: Leitura do point cloud pela câmera
- 2: Conversão de point cloud para superfície
- 3: Corte da região de interesse
- 4: Calculo de posições das antenas
- 5: para Possíveis combinações de posições  $\leftarrow$  até faça
- 6: Mover braços robóticos
- 7: Realizar leitura dos coeficientes de espalhamento8: fim para



Figura 2. Esquemático do sistema de controle

Para teste do sistema foram utilizados fantomas da mama fabricados com o auxilio de uma impressora 3D, disponibilizados por Reimer et al. (2020). Tais fantomas foram gerados a partir de imagens de ressonância magnética. Foram utilizados dois fantomas de tamanhos diferentes para analisar o posicionamento automático das antenas para diferentes mamas.

#### 2.2 Braços robóticos

Os braços robóticos foram projetados utilizando um software de CAD e fabricados em PLA utilizando uma impressora 3D. Com exceção da última articulação, todos os eixos possuem sensores Hall para detecção de fim de curso e encoders magnéticos AS5600. Os sensores de fim de curso são utilizados na etapa de calibração dos braços robóticos, e os encoders são utilizados para assegurar o movimento preciso das articulações. Todas as articulações utilizam motores de passo, controlados por um microcontrolador.

Já foi reportado na literatura como reflexões indesejadas na estrutura do tomógrafo podem afetar negativamente o algoritmo de reconstrução da imagem (Meaney et al., 2012), então com o intuito de minimizar reflexões nas partes de metal do tomógrafo, o braço foi projetado com sua última seção alongada e com o motor conectado à última articulação por uma correia de borracha, sendo a última articulação construída com um rolamento de nylon. Desta forma não há partes de metal nas proximidades das antenas, minimizando as reflexões.

## 2.3 Antenas

Neste trabalho foram utilizadas antenas do tipo Bow-Tie, observadas na imagem 3. As antenas foram projetadas para uma frequência de operação de aproximadamente 2.36GHz, uma frequência adequada para o imageamento da mama. Se observa na imagem 4 a perda de retorno medida da antena. Esta antena possui pequenas dimensões, 45mm por 34mm, o que a torna adequada para o uso para imageamento (Rufus et al., 2008).



Figura 3. Antena Bow-Tie



Figura 4. Perda por retorno S11 da antena

## 3. RESULTADOS

Primeiro foi analisado a capacidade do tomógrafo de obter o formato externo da mama. Foi desenvolvido um software para que o operador selecione a região de de interesse. O operador é responsável determinar os limites laterais e de profundidade da região de interesse. Na imagem 5a observa-se a superfície obtida pela câmera de profundidade de um dos fantomas utilizados neste estudo. Observase que a câmera de profundidade foi capaz de obter a superfície do fantoma de forma satisfatória.

Foi então analisado a capacidade do software do tomógrafo de determinar automaticamente o posicionamento das antenas a partir da superfície da mama encontrada. Observa-se na imagem 5a a superfície obtida pela câmera de profundidade e na imagem 5b observa-se os pontos referentes as possíveis posições das antenas sobrepostos à superfície do fantoma obtida pela câmera de profundidade. Neste estudo foram utilizados dois fantomas de tamanhos diferentes para analisar a flexibilidade do sistema em obter o posicionamento das antenas para pacientes com mamas de diferentes tamanhos. Em ambos os casos o software do tomógrafo foi capaz de determinar o posicionamento das antenas.



(a) Superfície do fantoma obtida pela câmera Intel RealSense



(b) Indicação do posicionamento das antenas

Figura 5. Imagens do fantoma

Por fim foi analisada a capacidade do protótipo construído de efetuar o posicionamento das antenas com o auxilio

dos bracos robóticos e efetuar a leitura da reflexão e da transmissão das antenas. Foi utilizada a ferramenta MoveIt para o planejamento do movimento dos braços robóticos, evitando a colisão das antenas com o fantoma da mama. Na imagem 6 observa-se uma sequencia de posicionamentos realizados pelo sistema construído. Na imagem 6a as antenas são posicionadas num primeiro par de posições determinado pelo software de controle. Após o posicionamento das antenas, é efetuada a leitura dos parâmetros de espalhamento pelo analisador de redes. Em seguida, o primeiro braço robótico se move para uma segunda posição enquanto o segundo braço permanece na primeira posição(figura 6b) e novamente é efetuada a leitura pelo analisador de redes. Por fim, o primeiro braço robótico permanece na segunda posição e o segundo braço robótico se move para uma segunda posição(figura 6c).

O protótipo construído foi capaz de posicionar as antenas automaticamente, sem a necessidade do operador determinar o posicionamento das antenas. Na imagem 7 é observado o coeficiente de transmissão aferido para duas diferentes posições das antenas. Observa-se a diferença da magnitude do sinal quando as antenas estão posicionadas em posições diferentes.

#### 4. CONCLUSÃO

Foi apresentado neste trabalho um novo tipo de tomógrafo para imageamento da mama. O tomógrafo foi capaz de obter a superfície externa do fantoma efetuar posicionamento das antenas. Tal sistema possui a vantagem de ser mais flexível para mamas de tamanhos e formatos diferentes e permitir um numero maior de medições quando comparado a outros sistemas da literatura, além de obter o formato exterior da mama para ser utilizado no software de reconstrução como informação a priori.

Em um futuro trabalho, será apresentado uma evolução do sistema proposto, que utilizará um novo modelo de braço robótico, uma nova antena, e serão utilizados 8 braços robóticos submersos em um meio casador de impedância consistindo de uma mistura de 90% glicerina 10% água para minimizar as reflexões na superfície da mama.

#### REFERÊNCIAS

- Aldhaeebi, M.A., Alzoubi, K., Almoneef, T.S., Bamatraf, S.M., Attia, H., and Ramahi, O.M. (2020). Review of microwaves techniques for breast cancer detection. *Sensors*, 20(8), 2390.
- Coleman, D., Sucan, I., Chitta, S., and Correll, N. (2014). Reducing the barrier to entry of complex robotic software: a moveit! case study. arXiv preprint arXiv:1404.3785.
- Gilmore, C., Mojabi, P., Zakaria, A., Ostadrahimi, M., Kaye, C., Noghanian, S., Shafai, L., Pistorius, S., and LoVetri, J. (2009). A wideband microwave tomography system with a novel frequency selection procedure. *IEEE Transactions on Biomedical Engineering*, 57(4), 894–904.
- Grzegorczyk, T.M., Meaney, P.M., Kaufman, P.A., Paulsen, K.D., et al. (2012). Fast 3-d tomographic microwave imaging for breast cancer detection. *IEEE transactions* on medical imaging, 31(8), 1584–1592.

- Klemm, M., Craddock, I., Leendertz, J., Preece, A., and Benjamin, R. (2008). Experimental and clinical results of breast cancer detection using uwb microwave radar. In 2008 IEEE Antennas and Propagation Society International Symposium, 1–4. IEEE.
- Lazebnik, M., Popovic, D., McCartney, L., Watkins, C.B., Lindstrom, M.J., Harter, J., Sewall, S., Ogilvie, T., Magliocco, A., Breslin, T.M., et al. (2007). A largescale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries. *Physics in medicine* & biology, 52(20), 6093.
- Meaney, P., Hartov, A., Raynolds, T., Davis, C., Richter, S., Schoenberger, F., Geimer, S., and Paulsen, K. (2020). Low cost, high performance, 16-channel microwave measurement system for tomographic applications. *Sensors*, 20(18), 5436.
- Meaney, P.M., Shubitidze, F., Fanning, M.W., Kmiec, M., Epstein, N.R., and Paulsen, K.D. (2012). Surface wave multipath signals in near-field microwave imaging. *International Journal of Biomedical Imaging*, 2012.
- Pastorino, M. (2010). *Microwave imaging*. John Wiley & Sons.
- Preece, A.W., Craddock, I., Shere, M., Jones, L., and Winton, H.L. (2016). Maria m4: clinical evaluation of a prototype ultrawideband radar scanner for breast cancer detection. *Journal of Medical Imaging*, 3(3), 033502.
- Reimer, T., Solis-Nepote, M., and Pistorius, S. (2020). The application of an iterative structure to the delayand-sum and the delay-multiply-and-sum beamformers in breast microwave imaging. *Diagnostics*, 10(6), 411.
- Rufus, E., Alex, Z.C., and Chaitanya, P.V. (2008). A modified bow-tie antenna for microwave imaging applications. Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), 7(2), 115–122.
- Stanford Artificial Intelligence Laboratory et al. (????). Robotic operating system. URL https://www.ros.org.
- Tikhonov, A., Goncharsky, A., Stepanov, V., and Yagola, A. (2013). Numerical methods for the solution of illposed problems: Springer science & business media.
- Zhurbenko, V., Rubæk, T., Krozer, V., and Meincke, P. (2010). Design and realisation of a microwave threedimensional imaging system with application to breastcancer detection. *IET microwaves, antennas & propa*gation, 4(12), 2200–2211.



(a) Primeira posição



(b) Segunda posição



(c) Terceira posição

Figura 6. Sequência de leituras feitas pelo tomógrafo



Figura 7. Coeficientes de transmissão medidos pelo VNA para duas posições das antenas