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Abstract: Applications involving unmanned aerial vehicles (UAVs) have grown over the past
decade. With the advent of technology, especially in sensors, batteries, and actuators, using this
type of aircraft has proven cheaper than other solutions. However, it is necessary to guarantee
safety and robustness in autonomous flight. In this sense, this paper implements a disturbance
observer-based control (DOBC) architecture by combining a robust recursive linear-quadratic
regulator with two distinct disturbance estimators. In addition, we tested three other controllers
widely used in the literature inside the architecture. We perform practical experiments with
a commercial quadrotor and analyze the effects of the parametric variations during flight. We
compare the flight performance among the implemented controllers and analyze the performance
of each of them with each disturbance estimator. The experimental results show the performance
improvement of using a robust controller and a DOBC architecture in a system with parametric
variations.
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1. INTRODUCTION

Techniques related to controlling autonomous unmanned
aerial vehicles (UAVs) have grown over the past decade.
One of the main reasons is to increase the safety of using
this type of aircraft in several applications, such as pre-
cision agriculture (Duggal et al., 2016), disaster manage-
ment (Mohd Daud et al., 2022), and geographic mapping
(Sivakumar and Naga Malleswari, 2021). Inside the UAVs
category are the quadrotors, known for their maneuver-
ability and the ability to take off and land in tight spaces.
However, controlling this type of aircraft when subject to
disturbances and uncertainties is challenging (Rodŕıguez-
Mata et al., 2018). Since the system is underactuated, the
mathematical model of aircraft is subject to uncertainties
due to the impossibility of considering all the quadrotor
dynamics in the modeling. Besides that, external distur-
bance needs an extra observer algorithm to estimate it.

In this sense, several control techniques have emerged
to improve the performance of a quadrotor subject to
parametric uncertainties. In Zou and Zhu (2017), a control
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architecture for a quadrotor subject to parametric uncer-
tainties due to, mainly, mass variations was proposed. In
this case, a hierarchical control strategy was applied to
reduce the tracking error, and the simulated results showed
that the architecture is robust to internal and external
disturbances. In the work of Li et al. (2019), the authors
propose an adaptive non-singular terminal sliding mode
controller to stabilize the quadrotor subject to parametric
uncertainties, like inertial moments and dynamic damping
factors. The proposed architecture presented satisfactory
results, although it considered only attitude control.

Another way to reduce the influence of disturbance and
uncertainties in a system is to use disturbance and uncer-
tainties estimation and attenuation techniques (DUEA).
One of the most used is disturbance observer-based control
(DOBC), where a master controller and a disturbance esti-
mator are required. Thus, it is possible to design a compen-
sator based on the system dynamics to attenuate or elimi-
nate uncertainties. This architecture has the characteristic
that the internal block responsible for disturbance estima-
tion and compensation is not activated in the absence of
external disturbances (Li et al., 2014). This is important
because the central controller can be designed based on
the performance and stability requirements of the system
without considering external disturbances. The internal
block, on the other hand, is intended only to estimate
and reject the external disturbances that affect system
performance (Chen et al., 2016). According to Yang et al.

Sociedade Brasileira de Automática (SBA) 
XXIV Congresso Brasileiro de Automática - CBA 2022, 16 a 19 de outubro de 2022 

ISSN: 2525-8311 3448 DOI: 10.20906/CBA2022/3643



(2017), several methods and algorithms that have emerged
to address disturbances in control systems have failed to
provide robust and adaptive control action. However, the
DOBC technique performs at a level of operation between
robust and adaptive control and can be used to address the
shortcomings that the design of these types of controllers
presents. With DOBC architecture, the system can adapt
to the uncertainties rather than directly estimating the
uncertain parameters (Li et al., 2014).

Considering this scenario, in order to improve the robust-
ness of a quadrotor in the trajectory tracking task, a robust
tracking control architecture was proposed by combining
a H∞ controller with a DOBC in Cheng et al. (2018). In
this regard, Ahmed et al. (2020) use a DOBC architec-
ture to combine a standard sliding mode control and a
disturbance estimation in order to consider both matched
and mismatched disturbances. Simulation results show the
performance improvement from the combination of DOBC
with a robust controller in the trajectory tracking task.

Nevertheless, few works in the literature address the com-
bination of robust control that handles parametric un-
certainties with a DOBC architecture in practical exper-
iments. With this motivation, a combination of a robust
recursive regulator and a DOBC architecture was proposed
in our previous work (see Benevides et al. (2022)). How-
ever, the preliminary results in the cited paper do not ana-
lyze the parametric uncertainties in the dynamical model,
only the effects of wind disturbances. The reason for this
is that we minimize the parametric variations in the model
by setting a fixed parameter for the yaw angle to reduce
the nonliterary effects in the aircraft. Here, we perform
experiments with parametric variations and analyze the
nonliterary effects of the model in practical experiments
with the proposed architecture.

The rest of this paper is organized as follows. In Section 2,
we present the adopted dynamical model of the quadrotor
and explain how the variation of yaw angle affects the
system. In Section 3, we describe the control architecture
implemented with a focus on the robust controller and the
disturbance estimators. Section 4 details the platform used
and the experimental setup for experiments. In Section
5, we present the practical results with the respective
discussions. Section 6 concludes the paper and brings some
guidelines for future works.

2. QUADROTOR DYNAMICAL MODEL

A simplified dynamical model of a ParrotTM quadrotor
was presented in Santana et al. (2014) and was used
for the development of several control systems using the
Parrot Bebop 2.0 (see, e.g., Benevides et al. (2019b)
and Simpĺıcio et al. (2021)). In this case, to control the
quadrotor, we need to send elementary velocity commands
ν(t) = [uνx uνy uνz uνψ ], which correspond to the linear
velocities in the x, y, and z axes, in addition to the angular
velocity around the z-axis, respectively. Considering para-
metric uncertainties and external disturbances, we have
that the dynamic model is described by

q̈ = −(A+ δA)RTt q̇ + (B + δB)ν +Bdd, (1)

where q = [x y z ψ]T is composed by positions and yaw
orientation, RTt is a rotation matrix with respect to the z-
axis, Bd is the matrix that maps the external disturbance
(d), and the model matrices are given by

A =

γ2 cos(ψ) −γ4 sin(ψ) 0 0
γ2 sin(ψ) γ4 cos(ψ) 0 0

0 0 γ6 0
0 0 0 γ8

,

B =

γ1 cos(ψ) −γ3 sin(ψ) 0 0
γ1 sin(ψ) γ3 cos(ψ) 0 0

0 0 γ5 0
0 0 0 γ7

,
in which γi, i ∈ 1, ..., 8 are model parameters identified
using the least-squares method, as proposed in Benevides
et al. (2019a), and δA and δB are parametric uncertain-
ties matrices. The model parameters used in this paper
are presented in Section 4. Note that, varying the yaw
angle (ψ), we have nonlinearity effects in the model. This
parametric variation will be analyzed and discussed for all
the implemented controllers in Section 5.

2.1 Error State-Space Model

For the quadrotor to follow a given trajectory, we
can rewrite the model in terms of the error between
state and reference. Disregarding the uncertainties ma-
trices and defining a new state as s = [q̇T qT ]T =

[ẋ ẏ ż ψ̇ x y z ψ]T with tracking error as s̃ = s− sd,
we can write[

q̈ − q̈d

q̇ − q̇d

]
︸ ︷︷ ︸

˙̃s

=

[
−ARTt 0
I 0

] [
q̇ − q̇d

q − qd

]
︸ ︷︷ ︸

s̃

+

[
B
0

]
ν. (2)

We can add and subtract the term −ARTt q̇d in (2) to
obtain

˙̃s(t) = Λs̃(t) + Φu(t), (3)

where

Λ =

[
−ARTt 0
I 0

]
, Φ =

[
I
0

]
,

and u = −ARTt q̇d − q̈d + Bν is the control law from the
controller used to calculate the input vector to be sent to
the quadrotor as ν = B−1(u+ q̈d +ARTt q̇

d).

3. CONTROL DESIGN WITH DOBC
ARCHITECTURE

The DOBC architecture is one of the most used for
disturbance attenuation in several systems and processes.
According to Chen et al. (2016), this technique is used
to estimate not only external disturbances that affect
a system but also uncertainties present in the control
system, such as parameter perturbations and unmodeled
dynamics. In order to develop the DOBC architecture, it is
necessary to design the central controller and a disturbance
estimator. In addition, we need to develop a compensator
to attenuate or eliminate the uncertainties that affect
the system. In our approach, we use an RLQR controller
proposed by Terra et al. (2014) and combine it first with
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a standard disturbance observer (DOB) and then with a
standard Kalman filter (KF) as a disturbance observer.
In addition, to analyze the proposed architecture results,
recall that we tested the LQR, FL, and PID controller
inside the architecture.

3.1 Robust Linear-Quadratic Regulator (RLQR)

The robust linear-quadratic regulator developed in Terra
et al. (2014) is useful for discrete-time linear systems sub-
ject to parametric uncertainties in real-time applications.
Consider the following system with uncertainties

xk+1 = (Fk + δFk)xk + (Gk + δGk)uk; k = 0, ..., N, (4)

where xk ∈ Rn is the state vector, uk ∈ Rm is the control
input, Fk ∈ Rn×n and Gk ∈ Rn×m are nominal parameter
matrices of the system, and N defining the number of
interactions. x0 is the initial state, constant and known,
and the matrices δFk ∈ Rn×n and δGk ∈ Rn×m are
uncertainty matrices, modeled as

[δFk δGk] = Hk∆k[EFk EGk ]; k = 0, ..., N, (5)

being Hk ∈ Rnxk, EFk ∈ Rn×n, EGk ∈ Rn×n known
matrices. ∆k ∈ Rk×l is an arbitrary matrix ∥∆k∥ ≤ 1.
Given this, we can obtain the RLQR controller solving the
optimization problem:

min
xk+1,uk

max
δFk,δGk

{
J̃µk (xk+1, uk, δFk, δGk)

}
, (6)

where Jui is the regularized quadratic cost function, defined
as

J̃µk (xk+1, uk, δFk, δGk) =[
xk+1

uk

]T [
Pk+1 0
0 Rk

] [
xk+1

uk

]
+ ΞT

[
Qk 0
0 µI

]
Ξ, (7)

where PN+1 ≻ 0, Q ≻ 0, and R ≻ 0 are known matrices
and µ > 0 is a fixed penalty parameter, responsible for
ensuring that the equality of Eq. 4 holds, and

Ξ =

{[
0 0
I −Gk − δGk

] [
xk+1

uk

]
−
[

−I
Fk + δFk

]
xk

}
.

From the solution (xTk+1(µ), u
∗
k(µ)) of the min − max

optimization problem, we can find the optimal solution
recursively, and when the penalty parameter µ → ∞, the
robustness of the controller is achieved.

In addition to the RLQR controller, we performed practi-
cal experiments with LQR, FL, and PID controllers. When
the parametric uncertainties are not considered, the RLQR
falls into the standard recursive LQR. In other words,
they have the same structure. Regarding the PID and FL
controller, considering that they are strongly consolidated
in the literature and we use them only for comparison
purposes, we are not giving details about these controllers.
More details about PID and FL controllers can be found
in Atrom (1995) and Sastry (2013), respectively.

3.2 Disturbance observer (DOB)

In order to estimate disturbances and model discrepancies,
we use a standard disturbance observer for discrete-time
linear systems. By discretizing (1) and ignoring the para-
metric uncertainties of the system, which will be consid-
ered in the robust control step, the DOB can be described
by:{

zk+1 = −LGd (zk + Lqk+1)− L (Θk + Γkνk) ,

d̂k = zk + Lqk+1,
(8)

where z is an internal auxiliary vector, d̂ is the disturbance
estimation, L is the observer gain, and Θk = I + TA(t),
Γk = TB and Gd = TBd are the discrete form of (1)
obtained using the Euler’s method.

3.3 Kalman filter as a disturbance observer

As shown in Benevides et al. (2022), the KF can be used to
estimate external disturbances and uncertainties. In this
sense, we can consider da ≡ d, db = ḋa and ḋb = 0 to
create an augmented state space as ζk = [qTk+1 dTak dTbk ]

T ,
obtaining the system:

ζk+1 =

[
Θk Gd,k 0
0 I TI
0 0 I

]
ζk +

[
Γk
0
0

]
uk +

[
wak
wbk

]
, (9)

with the output equation as yk = Hζk + vk. Where
H = [1 0 0], and w and v are the process and observation
noise, respectively. With this augmented system, the KF
is applied to provide disturbance estimation.

3.4 Disturbance Compensation

In Benevides et al. (2022), a compensator is proposed to
deal with unmodeled uncertainties. In this case, the control
law becomes:

ucom,k = urlqr,k + updff,k, (10)

where urlqr,k = −Krlqr,kxk is the RLQR control law,

updff,k = φKcom,kd̂k + ϱd̂k+1 is the disturbance law with
φ and ϱ treated as project parameters, and Kcom,k =

−
[
CΛ−1

k Gk
]−1

CΛ−1
k Gd,k is the disturbance gain obtained

based on the system dynamics.

4. EXPERIMENTAL SETUP

This section describes the materials, platform, and meth-
ods used to develop the project. The quadrotor used in
the experiments was the Parrot Bebop 2.0, communicated
through the Robot Operating System (ROS) via Wi-Fi
connection. We used a Vicon motion capture system to
provide the pose of the quadrotor with high accuracy. In
addition, we implemented a standard Kalman filter for
velocity estimation. The hardware used to develop the
control system and perform the experiments is an Intel
Core i5 8250U with four cores of 1.6GHz and 8 GB of
RAM. Fig. 1 shows the experimental setup diagram used
in the experiments.
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Figure 1. Block diagram of experimental Setup.

4.1 Parrot Bebop 2.0

The Parrot Bebop 2.0 quadrotor has many features that
make it attractive in scientific research. It has a Software
Development Kit (SDK) available and the integration
facility with ROS through the bebop_autonomy package,
which reduces the time during software development. In
addition, it is an affordable quadrotor with a range of
sensors, making it feasible for trajectory tracking tasks.

4.2 ROS Platform

ROS, as presented in Quigley et al. (2009), is an open-
source platform with a series of tools that ease the pro-
gramming of robots. The ROS works by integrating differ-
ent nodes corresponding to sensors or actuators that carry
information about the system. Nodes can communicate as
easily by posting and subscribing to topics. In this work,
we use the ROS system to implement the complete control
architecture and the trajectory generator using the C++
language.

4.3 Desired Trajectory

In order to analyze the performance of the control archi-
tecture with parametric variations, we send a setpoint for
position and orientation to the quadrotor. Considering the
vector qd = [qdx q

d
y q

d
z q

d
ψ]
T , we have:

qd = [1 0 0 0]
T
,

where, ψ0 ≥ 0.6 rad, and x0, y0, z0 initialize with 0.
From the model presented (1), we see that variation of
ψ during flight highlights the nonlinear feature of the
dynamic model. Note that, we send the desired trajectory
concerning the local (body) coordinate frame (qb0 =
[0 0 0 0.6]T ), so even starting z at the height of one
meter with respect to the global coordinate system (qg0 =
[0 0 1 0.6]T ), it is zero for the local coordinate system of
the quadrotor. So in this sense, to keep this altitude, the
desired trajectory is zero concerning the z-axis.

4.4 Pose Estimation

To estimate pose, we use the Vicon motion capture system.
This system is composed of four cameras and uses infrared
sensing technology to estimate the pose of objects. The
Vicon system uses specific software that transmits the
pose information through Wi-Fi to the control system’s
notebook. Using the Vicon Bridge ROS package, the pose
information is available in the topic /Vicon/bebop/bebop.
This topic is accessed by the control node, which uses
accurate information to calculate the trajectory error.

4.5 Kalman Filter for Velocity Estimation

Since the Vicon Motion Capture System does not provide
velocity information, we implemented a standard Kalman
filter for this task as proposed in Kim et al. (2011). We
use the KF instead of simple differentiation methods since
the filter can suppress the large spikes and improve the
control system’s performance. For this purpose, we select
the vector q=[qTp q̇Tp ]

T , where qp=[x y z]T .

4.6 Model and Controller Parameters

This section presents the model parameters and the
gains used for all implemented controllers and esti-
mators. The model parameters were identified using
the least-square method, which gives [γ1 ... γ8]

T =
[4.5752 0.1149 5.2296 0.2364 4.4206 3.1341 5.928
9 − 0.3868]T . For the LQR, we use the Bryson rule as a
base, and for PID, we base it on the Ziegler-Nichols critical
gain method. The gains for FL and RLQR controllers were
heuristically obtained from several experimental flights.
All sets of gains are tuned to the quadrotor to achieve
the best tracking performance.

For LQR, we have: Q = diag(1, 1, 1, 1, 1, 1, 10, 5) and
R = 0.15I4×4. For the compensator with DOB, we use:
ϕdolqr = 0.7 and ϱdolqr = 0.95. Moreover, for the compensator

with KF, we use ϕkflqr = 0.2 and ϱkflqr = 0.0001.

For PID, we have Kp = diag (0.70, 0.70, 2.75, 1.20), Kd =
diag (0.75, 0.75, 0.75, 3.35), and Ki = 0.01I4×4. For the
compensator with DOB, we use: ϕdopid = 0.07 and ϱdopid =

0.2. Moreover, for the compensator with KF, we use ϕkfpid =

0.08 and ϱkfpid = 0.00001.

For FL, we have: K1 = diag (1.33, 1.40, 4.50, 1.75) and
K2 = diag (1.50, 1.50, 2.00, 2.00). For the compensator
with DOB, we use: ϕdofl = ϱdofl = 0.005. For the compen-

sator with KF, we use ϕkffl = 0.001 and ϱkffl = 0.0001.

For RLQR, we have: Q = diag (1, 1, 1, 1, 1, 1, 10, 5), R =
0.15I4×4, and uncertainties matrices Ef1 = 0.295I4×4,
Ef2 = diag (0.285, 0.285, 2.85, 1.425), Eg = 0.01875I4×4.
For the compensator with DOB, we use ϕdorlqr = 0.1 and

ϱdorlqr = 0.7. Moreover, for the compensator with KF, we

use ϕkfrlqr = 0.04 and ϱkfrlqr = 0.0025.

For DOB with RLQR and LQR controllers, we use
the gain Lregulators = diag(0.25I4×4, 04×4) and for
PID and FL controllers, we use Lpid−fl = 0.25I4×4.
For the KF as disturbance estimator, we have: Q =
diag(0.1I4×4, I4×4, 10I4×4) and R = 0.00035I4×4.

4.7 Evaluation Metrics

To analyze the performance of the controllers with and
without the use of the DOBC architecture, we use the
Euclidean norm for the position and orientation errors and
control inputs. We summarise all the equations in Table 1,
where qp corresponds to the controlled position variables
(x, y, z), j to the experiment index for n experiments
performed, k defines each iteration and N is the total
number of iterations in each experiment.
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Table 1. Metrics for system evaluation.

Metrics Equations

Position Errors
Eqp (k) =

1
n

∑n

j=1
||q(j)pk − qdpk ||

Ēqp =
∑N

k
Eqp (k)

Orientation Errors
Eqψ (k) =

1
n

∑n

j=1
||q(j)
ψk

−qdψk
||

Ēqψ =
∑N

k
Eqψ (k)

Control Input
V (k) = 1

n

∑n

j=1
||ν(j)
k

||

V̄ =
∑N

k
1
n

∑n

j=1
∥ν(j)
k

∥1

5. EXPERIMENTAL RESULTS

In this section, we analyze the performance of the con-
trollers under nonlinear effects by the displacement of the
controlled variable ψ, that produces the nonlinear effects in
the aircraft. For the tests, we started the flight with ψ ̸= 0
rad and then activated the trajectory tracking control,
which was maintained at a fixed point in space. In other
words, we used a setpoint for position and orientation
(Subsection 4.3). Next, we analyze the flight performance
of all controllers in three different cases: the standalone
controllers and the controllers with the DOBC architecture
using DOB and the KF as disturbance observers.

Fig. 2 presents the norms of tracking errors and control
efforts using the standalone controllers, i.e., without the
DOBC architecture. By evaluating the curves presented
in Fig. 2(a) for the position errors and the numerical
indices shown in Table 2, we notice that the best tracking
performance is achieved with the RLQR controller. Al-

though this regulator is not designed explicitly for nonlin-
ear systems, it shows a fast response time and low position
error (Ēqp). The FL controller, widely used in nonlinear
systems, presented a good performance. Concerning orien-
tation tracking (Fig. 2(b) and index Ēqψ ), we also observe
a significantly better performance of the RLQR controller
over the standard LQR, FL, and PID controllers. By an-
alyzing the control effort indices (Fig. 2(c) and index V̄ ),
we observe the best performances (lowest power consump-
tion) in the standard LQR and the FL, respectively. We
highlight the significant-high consumption and saturation
of the control inputs with the PID, which explains the
oscillations observed in the controlled variables (Fig. 5(a)).

Table 2. Performance indices for the stan-
dalone controllers.

Index RLQR LQR FL PID

Ēqp (mm) 6.9560 15.5832 9.1287 9.4519

Ēqψ (rad) 3.1612 6.7025 6.8466 8.6626

V̄ 224.3950 119.8454 121.6101 868.8810

Fig. 3 shows the norms of tracking errors and control
efforts using the DOBC architecture along with the DOB.
By evaluating the curves presented in Fig. 3(a) for the
position error and the numerical performance indices pre-
sented in Table 3, we notice that the RLQR outperforms
the implemented standard controllers. The FL presented
a low position error and the PID an initial fast response.
Regarding the Ēqp index, the PID controller presented the
second-best performance due to its fast response time.

Regarding the orientation tracking errors through Ēqψ
index and Fig. 3(b), the RLQR controller again presents
a significantly superior performance, especially at the

Figure 2. Flight performed with the implemented controllers. (a) Position tracking errors. (b) Orientation tracking
errors. (c) Control efforts.

Figure 3. Flight performed using the DOBC architecture along with the DOB. (a) Position tracking errors. (b)
Orientation tracking errors. (c) Control efforts.

Sociedade Brasileira de Automática (SBA) 
XXIV Congresso Brasileiro de Automática - CBA 2022, 16 a 19 de outubro de 2022 

ISSN: 2525-8311 3452 DOI: 10.20906/CBA2022/3643



Figure 4. Flight performed using the DOBC architecture along with the KF as a observer. (a) Position tracking errors.
(b) Orientation tracking errors. (c) Control efforts.

Table 3. Performance indices using DOB.

Index RLQR LQR FL PID

Ēqp (mm) 7.0372 13.0426 8.0957 7.7159

Ēqψ (rad) 2.4166 3.8065 3.8626 8.3151

V̄ 255.0979 236.1085 124.9680 799.1364

beginning of the flight. However, after 3s we notice a
performance increase on the standard LQR followed by the
FL. Furthermore, analyzing the control efforts (Fig. 3(c)
and V̄ index), the lowest consumption is given by the FL
controller. We observe that the control signals with more
significant noise were presented by the RLQR and LQR
controllers, with similar performance indices. Finally, the
PID controller again presented a higher consumption and
saturation, which explains the oscillations presented in the
controlled variables (see Fig. 5(b)).

In Fig. 4, we show the norms of tracking errors and control
efforts using the DOBC architecture along with the KF as
a disturbance observer. By evaluating the curves presented
in Fig. 4(a) for the position error and the numerical per-
formance indices presented in Table 4, we observe that the
RLQR gives the best performance during the beginning of
the flight. The FL and standard LQR controllers present
similar and even better performance than RLQR after 5s.
The PID controller presents a lower position error (Ēqp)
than the standard LQR due to the fast response time in
the first few seconds. Regarding the orientation tracking
errors (Fig. 4(b) and Ēqψ index), we again highlight the
performance of the RLQR. Furthermore, by analyzing the

control efforts on Fig. 4(c) and indices V̄ , we notice that
the standard LQR and FL controllers gave the best perfor-
mance results. The PID controller, like the previous case,
presented a high consumption and saturation, resulting in
large oscillations in the controlled variables along the time
(see Fig. 5(c)).

Table 4. Performance indices using the KF.

Index RLQR LQR FL PID

Ēqp (mm) 6.2342 12.3377 8.8183 10.2801

Ēqψ (rad) 1.5833 6.4998 5.7694 7.4507

V̄ 193.8364 106.0667 118.0160 992.3958

Regarding the use of the DOBC architecture, by ana-
lyzing Table 5, we observe a significant improvement in
the trajectory tracking performance (Ēqp) on most of the
controllers. Only the RLQR had a slightly inferior per-
formance regarding the position tracking on the x-axis
when the DOB is used. The PID controller also presented
a relatively low performance on the x-axis when using
the KF. Regarding the control efforts (V̄ ), there was a
performance increase in three out of the four controllers
when using the KF, where only the PID had an inferior
performance. The opposite behavior was observed when
using the DOB.

6. CONCLUSIONS

We implemented and analyzed a DOBC architecture with
a robust recursive regulator and disturbance estimators for

Figure 5. Controlled variables with parametric variations. (a) Standalone controllers. (b) DOBC architecture with DOB.
(c) DOBC architecture with KF.
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Table 5. Percentage Improvement using the DOBC architecture over standalone controllers.

Controller

Percentage Improvement

DOBC (With DOB) DOBC (With Kalman filter)

Ēqp (mm) Ēqψ (rad) V̄ Ēqp (mm) Ēqψ (rad) V̄

RLQR -1.17% 23.55% -13.68% 10.36% 49.91% 13.62%

LQR 16.30% 43.21% -97.99% 20.30% 3.02% 11.50%

FL 11.32% 43.58% -2.76% 3.40% 15.73% 2.95%

PID 18.37% 4.01% 8.03% -8.76% 13.99% -14.22%

trajectory tracking of a quadrotor subject to parametric
uncertainties. We used a ROS platform to integrate the
algorithms and communicate with the quadrotor and an
optical motion capture system. We performed practical
experiments and a comparative study with three other
standard controllers widely used in the literature. We
analyzed the flight performance inside the DOBC archi-
tecture for each implemented controller with two distinct
disturbance observers. The experimental results showed
the effectiveness of combining controllers, robust or not,
with a DOBC architecture to reduce the effects of the
parametric variations during the flight. Future works aim
to test and analyze the quadrotor flight performance with
the proposed architecture in outdoor scenarios.
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