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Abstract:

Within the Digital Twins context, efforts are being made to minimize costs, increase safety,
and speed up tests within a specific application, based on computer graphics tools for three-
dimensional simulations. Thus, as a way to mitigate mainly the risks with the safety issue
involving activities with autonomous vehicles, the present work proposes the modeling and
structuring of an electric golf cart in a 3D virtual environment, so that it can serve for studies
in the areas of perception, navigation, and control. Therefore, taking as a reference the proper
vehicle existing at the university, Blender software was used together with the Gazebo simulator
to perform the validation of this simulation environment. Different open source Environment
Mapping (SLAM), Pattern Recognition (YOLO), and Autonomous Navigation algorithms were
integrated to minimize possible errors regarding their integration in the actual vehicle. Finally,
validation tests were performed on the Yolo algorithm, resulting in an accuracy of 98.9% with
a margin of error of 1.1% in the identification of objects.
Resumo:
Dentro do contexto de Digital Twins, esforços estão sendo realizados para minimizar os custos,
aumentar a segurança e agilizar ensaios dentro de uma aplicação espećıfica, fundamentados em
ferramentas de computação gráfica para simulações tridimensionais. Sendo assim, como forma
de mitigar principalmente riscos com a questão da segurança envolvendo atividades com véıculos
autônomos, o presente trabalho propõe a realização da modelagem e estruturação de um carro de
golfe elétrico em ambiente virtual 3D, de maneira que este possa servir de estudos nas áreas de
percepção, navegação e controle. Portanto, tomando como referência o véıculo real existente na
universidade, foi utilizado o software Blender juntamente com o simulador GAZEBO para que,
não somente o véıculo, mais também os principais pontos do ambiente por onde o véıculo irá ser
ensaiados no cenário real fossem inclúıdos e representados no ambiente de simulação 3D. Para
validação deste ambiente de simulação, diferentes algoritmos de código aberto para Mapeamento
de Ambiente (SLAM), Reconhecimento de Padrões (YOLO) e Navegação Autônoma foram
integrados afim de minimizar posśıveis erros quanto sua integração no véıculo real. Por fim, foi
realizado testes de validação no algoritmo Yolo, obtendo como resultado uma precisão de 98,9%
com uma margem de erro de 1,1% na identificação de objetos.
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1. INTRODUCTION

The implementation of low-cost technologies in software
and hardware has given rise to many new automation
and autonomy solutions. Since, their application in the
industry increases productivity and improves different
processes, for example, IoT, AI, Industry 4.0, or Big
Data (Redeker et al. (2021); Faz-Mendoza et al. (2020));
demonstrates additional benefits in the use of resources
and improved productivity.

Given this, when undertaking a project, it is necessary to
carry out a series of tests, not only to start it up but also

to periodically reevaluate it. Consequently, there are sim-
ulation tools such as the software CoppeliaSim, Webots,
Gazebo, OpenRave, and RodoDK, among others (Jakubiec
(2018)), which provide a realistic representation of the
physical environment of the virtual environment. Given
this, there are great challenges today, regarding the final
design, since, if you know how to implement these tools,
can reduce time, and costs, optimize the manufacture of
the product and even allow the identification of problems
and errors that could occur in real life.

These simulation tools are currently being used for the
realization of autonomous vehicles. However, this is a topic
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that requires a lot of research, since the implementation
of a well-designed simulator will allow us to quickly test
algorithms, design collisions, and even perform tests of
different real-world scenarios.

Gazebo is a simulator that provides realistic sensor in-
formation and interactions between potentially plausi-
ble objects, including an accurate simulation of rigid
body physics. This simulator can be integrated with ROS
(Robot Operating System), which provides necessary in-
terfaces to develop robots, environments, and development
of intelligent algorithms for planning, navigation, and test-
ing of the environment with specific applications in various
areas: hospital, industrial, business, etc (Xu et al. (2021);
Sai Sahith Velamala (2017); Hussein et al. (2018); Mar-
ian et al. (2020); Mario Gluhaković (2020); Rivera et al.
(2019); Quang et al. (2019)).

In the literature, different authors have used such tools.
Banjanovic-Mehmedovic et al. (2021b) used ROS, Gazebo,
and Rviz in an application where the robot navigates in
an environment that is responsible for solving problems
related to disinfection in a Covid-19 contaminated environ-
ment. On the other hand, Ahmed et al. (2019) performed
an application in which they perform activities related to
industrial maintenance considered high risk and difficult
to access, subject to chemicals, hazardous substances, or
biological substances, used in an unmanned aerial vehi-
cle. Also, Arango et al. (2020) presents the development
process of the ROS-based Drive-By-Wire system, designed
for an open-source autonomous electric vehicle prototype,
which implements a manual/automatic interchange sys-
tem, allowing the driver to activate autonomous driving
and safely take control of the vehicle at any time. This and
other authors (Villa et al. (2020); Tian et al. (2021); Yang
and Chi (2021)) have implemented these new technologies
utilizing simulations to ensure better control of the project.
In addition, allows tasks to be carried out in efficient ways
in terms of latency such as energy consumption, among
others.

However, when working with autonomous vehicles, this
type of driving without human intervention requires con-
tinuous processing of the images captured by the vehicle
during its journey, to accurately determine the path to
follow, as well as the possible presence of obstacles along
the way. Given the large amount of data to be processed
and the essential response of the vehicle in real-time, it
is essential to explore new architectures to perform these
tasks efficiently both in terms of latency and energy con-
sumption. For this reason, this work proposes to imple-
ment an initial phase that allows simulations describing
the interaction of an autonomous vehicle with the study
environment, whose models are focused on scenarios of
the Federal University of Itabira (UNIFEI), where the
autonomous vehicle is being designed and where real ex-
periments will be reproduced. Based on the above, this
research contributes to the following results:

• Blender modeling of an environment that includes the
structure of the Unifei campus and the vehicle (golf
cart) of which it is in the process of integrating sensors
that will be used in simulations in a real environment.

• They carried validation of the Yolo algorithm out
through the calculation of a confusion matrix, which

allows demonstrating the performance of the algo-
rithm with its respective margin of error. Likewise,
the integration with the RQT application was per-
formed, which evidences the open-source object de-
tection method and the Ros integration.

• It generated a map from the integration of the SLAM
cartographer that provides simultaneous real-time lo-
cation and mapping on the 2D plane of the University.
In addition, they carried integration out“Nav2”pack-
age (Stack (2020)) which results in the desired route
in the virtual environment, integrating a particle fil-
ter and the localization algorithm (AMCL, adaptive
localization Monte Carlo).

This article is divided into the construction of the robotic
system and the simulation environment, application im-
plementation, results, and conclusions. The system ar-
chitecture, modeling and environment configuration are
shown as a ROS-based solution that can be transferred to
different simulation platforms from which they implement
autonomous navigation, perception, and 2D mapping.

2. 3D MODELLING AND STRUCTURING OF THE
ROBOTIC PLATFORM

2.1 Context of development

The figure 1 presents the background of the development
of this work, divided into two stages. The first stage
includes the design of the Unifei University and the golf
cart, which were designed in Blender software, allowing the
modeling, rendering, and creation of simulations, which
in this case allows the integration with Gazebo, which
allows the second stage. The second stage includes the
integration of the model to Gazebo, which allows the
transfer of information about the interaction of the vehicle
to the physical environment, it also allows the integration
of different applications, in this case, three applications
are implemented, which serve to validate the design of
the car and the environment. From these two stages, they
expected to obtain results of the mapping, navigation,
visualization, and pattern recognition, which are intended
to be implemented in the real golf cart.

Figure 1. Phases for the implementation of a simulated
autonomous vehicle.

Sociedade Brasileira de Automática (SBA) 
XXIV Congresso Brasileiro de Automática - CBA 2022, 16 a 19 de outubro de 2022 

ISSN: 2525-8311 3422 DOI: 10.20906/CBA2022/3639



The integration through Gazebo uses the URDF and SDF
files. These formats are files are formats established to
describe the robot structure in the RViz visualization soft-
ware and the Gazebo physical simulation software. Both
files satisfy the simulation needs in a Gazebo environment,
resulting in the implementation of SLAM (navigation)
and Yolo (sensing). In this way, these applications can
be implemented in a real environment from which the
simulations generated in the software will be validated,
they describe each stage below:

2.2 Environment

To create the simulation environment, we started with
two steps. First, modeling the Unifei Itabira campus (Fig-
ure 2). Second, modeling the golf cart, mentioned earlier.
Both models were modeled in Blender, the university was
modeled using real images of the environment. Similarly,
the golf cart (model EZGO RXV) was modeled using the
images and measurements of the actual vehicle present at
the university.

The modeling of the environment and vehicle through
the Blender software allows these designs to be saved in
different extensions such as .obj, .stl, .fbx, among others.
Such files allow the integration of the models (environment
and vehicle) in the Gazebo platform that will be used as
visualization and collision components.

Figure 2. Real environment and physical environment. A)
golf cart, B) golf cart modeling, C) Unifei University
where the project is being carried out, and D) mod-
eling of the university environment.

2.3 Modeling

The construction of the physical model of a robot starts
from the SDF and URDF files. Both files contain infor-
mation about the fixed and moving parts that make up
the robot, as well as the connections between them and
the sensing that is defined through the concepts of links,
joints, and plugins that correspond to the robot members,
joints, and sensor integration, respectively.

The URDF (Unified Robot Description Format) file is
obtained from the transformation frames of each member
of the vehicle, ie, the position of the base of the vehicle
about lasers, camera, IMU, etc. Figure 3 shows the golf

cart in the Gazebo environment, where the integration of
different sensors was carried out and contains the visual
representation of the concepts of the physical model of
the vehicle and the transformations between the frames
generated in the RViz software.

In addition, once the SDF and URDF files are generated,
both are executed in the Gazebo and Rviz environments.
In Figure 3, the vehicle is in the Gazebo environment
with all the sensing specifications that were defined in the
real vehicle. As shown the vehicle has two 1-layer lasers
(located in the front region of the vehicle) and two 4-layer
lasers (located in the front region near the headlight and
the rear region under the body of the vehicle), the two
1-layer lasers perform a scanning whose angle involves an
aperture from 0 to 270°. And the other two 4-layer lasers
scan from an angle of 50° to -60°. The other sensors are for
orientation (IMU and GPS), stereo camera, and encoders.

Figure 3. Integration of sensors and visual part of the
physical model of the vehicle.

Another way to represent and analyze the transformation
frame and the relationship between the vehicle members is
through the transformation tree link 1 which has a graphi-
cal representation whose aspect is a tree of nodes (frames)
that obeys a hierarchy of which establishes the relation-
ship between each part of the vehicle, for example, the
relationship between the base of the vehicle (base link),
camera (camera-link) and sensors (imu link, camera link).

2.4 Simulation (environment configuration)

The simulations involve applications focused on mapping,
navigation, and pattern recognition. The simultaneous lo-
calization and mapping (SLAM) in the simulation envi-
ronment is done using the vehicle’s lasers and odometry
sensors. As the vehicle moves through the environment
and detects its surroundings, the region detected in its
surroundings is recorded and this information contributes
to the navigation of the vehicle in the environment. The
same is true for pattern recognition (YOLO) via the stereo
camera.

3. DEPLOYED APPLICATIONS

When obtaining the simulation model, different applica-
tions that can be implemented in this system were found,
which are the following:

1 https://drive.google.com/file/d/1pjIkLkda203lOi2utAYFF5zzxFxg
QPQo/view
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3.1 Simultaneous localization and mapping (SLAM)

To create the map of the environment, a package called
SLAM cartographer developed by Google was used. The
generation of the 2D map is based on the data generated
by lidar sensors, odometry, and IMU, whose sensors are
necessary for the implementation of this package, therefore
first the vehicle was modeled and then this algorithm was
used. SLAM refers to the problem of constructing a map of
an unknown environment by a mobile robot, while allowing
the use of the map for localization and navigation in the
environment (Banjanovic-Mehmedovic et al. (2021a)). The
main function of SLAM is to analyze the input data to
determine the position of the vehicle and build a map of
the environment where it can move autonomously.

SLAM, on the other hand, allows the marking of trajec-
tories, which can be developed from different filtering or
smoothing methods, such as Kalman filters (EKF, UKF)
and particle filters (Xuexi et al. (2019); Valencia et al.
(2011a,b); Burger et al. (2019)). In this case, they divided
the implementation of the mapping package into two types:
local SLAM and global SLAM. The local SLAM consists
of the construction of a time-varying sequence of local sub-
maps, and the global SLAM allows for finding closed-loop
constraints, which are demonstrated when a car has to
pass a traffic circle, generating a map containing informa-
tion about the surrounding environment and its obstacles
(Figure 5).

3.2 Detection Yolo (You Only Look Once)

For autonomous vehicles, perception is necessary since it
is responsible for analyzing the environment surrounding
the vehicle, detecting, and recognizing the objects in it,
for the acquisition of information, this is usually imple-
mented through various types of sensors, such as cameras,
LIDAR, radar, ultrasonic devices, etc. The camera is a
sensor that can provide more detailed information about
the vehicle environment in terms of high resolution and
texture information. Given this, algorithms were created
that allow the detection of obstacles and objects in the
environment, allowing to perform better control of the
environment information.

Similarly, object detection is an advanced form of image
classification in which a neural network predicts objects in
an image and points to them in the form of bounding boxes
(Bjelonic (2016–2018)), i.e., it can perform generalized de-
tection, recognition, or localization tasks in real-world sce-
narios. There is an algorithm called Yolo (You Only Look
Once) that uses classifiers to perform detection using end-
to-end neural networks that make bounding box predic-
tions and class probabilities at the same time, it achieves
state-of-the-art results outperforming other real-time ob-
jects detection algorithms by a wide margin (Corović et al.
(2018); Bjelonic (2016–2018)). From this, the integration
of this algorithm with Ros allows performing a simulation
of the vehicle, to detect obstacles encountered on the road.

This project uses YoloV5 which is previously trained with
the COCO dataset, which will identify objects such as
cars, people, and trucks, among others. In addition, a
ZED stereoscopic camera is simulated which generates the
real-time position of the camera and allows to perform

environment detection. Figure 4 shows the process followed
for the implementation of this algorithm, which is divided
into three parts, which are part of the image processing.
In the capture stage, the visual image of the environment
is obtained to perform a preprocessing that includes noise
reduction techniques and detail enhancement. In this case,
the segmentation that divides the image according to the
objects to be detected, people and cars, is also imple-
mented. After this, comes the description and detection
part, which is the process where the characteristics of the
image such as size and shape are obtained to determine
the recognition and implement it in the graphic part of
Gazebo.

Figure 4. Algorithm implemented for object detection
using the Yolo implementation.

4. RESULTS

As a result of the implementation of the simulation, they
carried out two validation tests, where the environment
model is static, and they generate the robot model in this
environment to navigate. They explain these tests below.

4.1 Map and trajectory creation

By navigating the environment, the map shown in Figure 5
was generated. The contour includes the 2D profile of
the environment. The white region is the occupancy of
the modeled environment (university) in space and the
black contours indicate the boundaries of the environment.
As the vehicle moves through the university, the map
measurements become more accurate through optimiza-
tion algorithms that assemble sub-maps and cluster into a
global map. In addition, during vehicle navigation it was
necessary to choose a trajectory (blue curve in Figure 7),
speed (from 0 to 5 m/s) and laser data publication rate
(30Hz) that could provide a global map with the best
assembly of all submaps. Xuexi et al. (2019) demonstrated
in practical experiments that map generation is influenced
by the velocity of the robot in the environment, the laser
data publication rate and the trajectory. The proper choice
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of the trajectory that provides the best loop is also respon-
sible for the quality and clustering of the submap maps
that make up the overall map generation.

Figure 5. Result of the map obtained according to UNIFEI

The following Figure 6 generated by gui rqt graph shows
the result given according to the relationship between the
mapping, Gazebo, Rviz, Yolo and teleoperation nodes, as
well as other packages responsible for the operation of the
SLAM cartographer software.

Figure 6. Visualization of the nodes connected to Yolo and
Slam.

4.2 Navigation

Once the global map was generated, it was used to make
the vehicle navigation in the simulation environment. In
this simulation, the Navigation2 software package shows
the delimitations of the blue environment that are con-
sidered obstacles for vehicle navigation. In addition, the
software uses the AMCL (adaptive Monte Carlo) particle
filter which has the location of the vehicle on the map
and helps the robot to move to the desired point. Figure
7 shows the result of vehicle navigation leaving the map
origin and moving to the desired point.

Figure 7. Map showing obstacles and trajectory of the
vehicle.

On the other hand, a graph generated by RQT is also
obtained as a result, which shows the relationship between
the navigation nodes, Gazebo, Rviz, and other packages re-
sponsible for the operation of the nav2 software (Operation
of the Nav2 software through the node map, link 2 ). In the
following link 3 the result of the simulation and integration
is presented.

4.3 Detection

The image recognition algorithm reports the objects
present in the environment, in this case vehicles and peo-
ple. This information is extremely important for making
decisions about vehicle navigation and the safety of the
user and people in the environment. The combination of
this information, with the map created from the envi-
ronment, allows better decisions to be made in the au-
tonomous navigation of the vehicle within the University.
Figure 8 shows the obtained sensing and the generated
map in a teleoperated navigation.

Figure 8. Integration of gazebo and slam for navigation
and object detection.

On the other hand, in order to verify that the Yolo
algorithm worked correctly, an experiment was carried out
consisting of recording a one-minute video, where the car

2 https://drive.google.com/file/d/1N4mIiThGUH9CZVYMBvj15kd
WL4j6PfKj/view?usp=sharing
3 https://youtu.be/aBmsR5X1hQc
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navigates at three different speeds (1, 3 and 6.8 m/s).
These videos were analyzed for each second giving the
possibility of identifying false positives or false negatives,
in order to make a confusion matrix (Khan et al. (2021);
Sommer et al. (2020)) that will allow visualizing the
performance of the algorithm in terms of object detection.

A confusion matrix was used for each of these objects
(cars and people), to obtain precision results that give
the proportion of correctly labeled objects to the whole
sample. Metrics such as Recall, which is responsible for
analyzing how many objects are detected and correctly
detected, and the F-measure that determines the harmonic
mean of precision and recall at the time of detection are
used. The results of the videos are compiled in Figure 9,
according to their corresponding precision, error%, recall
(TPRate), PPV and F-measure.

Figure 9. Results of the confusion matrix according to the
cars and people detected in three times, obtaining as
a result different parameters.

The results of averaging the matrices in Figure 9 show that
the YOLO software works since the measured parameters
do not reflect a great difference from the results obtained
through the average. However, it is clear that, at the
time of detection, it has a greater margin of error in
cars, since this algorithm works through distance and
shape, this means that it identifies cars when it finds
something similar to their contour. On the other hand, it
is analyzed that the higher the speed, the lower the margin
of error. The following link 4 presents an experiment with
navigation and object detection.

5. CONCLUSION

The experiments showed that it is possible to perform a
simulation of a vehicle at the university (Unifei) through
the ROS frameworks and Gazebo software, in addition, it
was possible to add some of the sensors that are being
implemented in the real golf cart.

As well, they implemented a detection algorithm that
allows the use of Yolo, which is capable of detecting objects
in different positions, obtaining an accuracy of 98.9%
with a margin of error of 1.1% when identifying objects

4 https://youtu.be/45qVR0eRwg

according to their shape, these results were validated with
the confusion matrix.

In future work, these applications will be improved and
implemented on the vehicle currently in Unifei’s facilities.
In order to test the simulation, works in the proper
environment, which allows you to reduce costs and time.
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Rodŕıguez, C.E., Casas-Valadez, M.A., Castorena-
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