
Robust Output Regulation for a Planar Two-Link

Robotic Manipulator ⋆

Eduardo S. Saraiva ∗ Aurélio T. Salton ∗ Jeferson V. Flores ∗

Rafael S. Castro ∗∗

∗ Faculdade de Engenharia Elétrica, Universidade Federal do Rio
Grande do Sul, RS.
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Abstract: This paper deals with the problem of robust output regulation of planar two degrees
of freedom robotic manipulators. An internal model controller is synthesized by a systematic
framework that considers polynomial mappings of the steady-state trajectory. The closed-
loop stabilization is guaranteed by using a descriptor differential-algebraic representation of
the system. This methodology allows the controller design problem to be cast as a convex
optimization problem subject to linear matrix inequalities.

Resumo: Este artigo trata do problema de regulação robusta de sáıda de manipuladores robóticos
planares de dois graus de liberdade. Ummodelo interno é sintetizado através de um procedimento
sistemático que considera mapeamentos polinomiais das trajetórias de regime permanente. A
estabilização em malha fechada é garantida pelo uso de uma representação algébrica-diferencial
descriptora do sistema. Esta metodologia permite a representação do problema de projeto do
controlador por um problema de otimização convexa sujeito a desigualdades matriciais lineares.
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1. INTRODUCTION

The robotic manipulator control problem is a classic sub-
ject in the field of control engineering. The interest in this
system comes from the fact that the control design can
be a challenging task due to the nonlinear multivariable
characteristics intrinsic to the model, as well as the uncer-
tainties of parameters. Moreover, the applications where
robotic manipulators are present grow every day to aid
the industrial sector and substitute human collaborators
in risky tasks.

One can find a diversity of control techniques for robotic
manipulator systems. For example, Yi and Zhai (2019)
presents a sliding mode controller for trajectory tracking
even in the presence of external disturbances and uncertain
parameters. In Chen et al. (2018) a model-assisted ex-
tended state observer combined with the computed torque
technique is presented to guarantee robustly tracking con-
trol. Fractional order fuzzy PID controllers are studied in
Kumar et al. (2020), Kumar et al. (2018) and Muñoz-
Vázquez et al. (2019).

To contribute to the above-mentioned literature, this pa-
per proposes a systematic framework to track reference
signals focused on robotic manipulator applications with
⋆ This study was financed in part by the Coordenação de Aperfeiçoa-
mento de Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance Code
001 and by the Conselho Nacional de Desenvolvimento Cient́ıfico e
Tecnológico (CNPq), grants PQ-Aurélio and PQ-305031/2021-0.

uncertain parameters. Assuming the reference signal de-
scribed by an autonomous exosystem, the robust output
regulation theory can be applied to obtain a dynamic
controller (internal model) capable to provide the nec-
essary signals to achieve null tracking error in steady-
state (Isidori et al., 2003). To the systems where an
exact steady-state solution can not be achieved a prac-
tical output regulation framework can be accomplished
as presented in Castro et al. (2022). Once the steady-
state conditions are established this paper has targeted
the design of a stabilizing controller that will lead the
system states to the steady-state manifold (Castro, 2019).
To achieve this goal, the controller design can be cast
as a convex optimization problem through the descriptor
differential-algebraic representation (Saraiva et al., 2020).
The main advantages of this approach are 1. robustness
of the solution employing a small-gain smooth controller,
2. the possibility to accommodate nonlinearities instead of
canceling them, 3. theoretical guarantees for the practical
output regulation, and 4. a systematic stabilization design
based on the solution of linear matrix inequalities.

2. PRELIMINARS

2.1 Problem Formulation

A planar two-link manipulator can be seen as a rigid body
where each link influences the entire manipulator motion.
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This chain of motion can be described by a model as
follows:

M(θ) ω̇ + v(θ,ω) = u (1)

where θ ∈ R2 is the angle joints vector, ω = θ̇ ∈ R2 is the
angular velocity vector, u ∈ R2 is the input torque for the
respective joint. Moreover, v(θ,ω) ∈ R2 is the vector of
Coriolis and centrifugal effects, that can be described by:

v(θ,ω) = a1 sin(θ2)

[
−ω2

2 − 2ω1ω2

ω2
1

]
, (2)

M(θ) ∈ R2×2 is the system inertia matrix given by:

M(θ) =

[
a2 + 2a1 cos(θ2) + a3 a2 + a1 cos(θ2)

a2 + a1 cos(θ2) a2

]
, (3)

the variables a1, a2 and a3 are related to the link mass mi

and lenght li, i = 1, 2, as follows:

a1 = ℓ1ℓ2m2; a2 = ℓ22m2; a3 = ℓ21(m1 +m2). (4)

Furthermore, the system has an uncertain parameter re-
lated to the mass in the manipulator end-effector, given
by:

m2 = m̄2 + δm (5)

where m̄2 represents the nominal mass of the link 2 and
δm represents the unknown but bounded mass carried by
the manipulator end-effector. Figure 1 presents the two-
link planar manipulator schematic. The problem to be

y

x
ℓ2

θ1

m1

m2

ℓ1

θ2

Figure 1. Schematic of two-link planar robotic manipula-
tor.

addressed in this paper is the design of a robust controller
such that the system (1) can track the dynamic reference
given by:

r1 = ϱ1 sin(ωf t+ ρ1),

r2 = ϱ2 sin(ωf t+ ρ2),
(6)

where ωf ∈ R is the frequency of the reference signal,
ϱ1,2 ∈ R is the signal amplitude, and ρ1,2 ∈ R is the signal
phase.

2.2 Robust Output Regulation

To illustrate the foundations of the Robust Output Regula-
tion theory presented in (Isidori et al., 2003) let us consider
a nonlinear system given by:{

ẋ = f(x,w,u)
y = g(x,w)
e = h(x,w)

(7)

where x ∈ Rnx is the control input, y ∈ Rny denote
the plant measurements, e ∈ Rne is the output error and

w ∈ Rnu is a vector of exogenous states generated by an
autonomous exosystem of the form:

ẇ = s(w) . (8)

Finally, assume the following nonlinear output feedback
controller: {

η̇ = ϕ(η, y)

u = θ(η, y)
(9)

where η ∈ Rnη is the controller state vector.

The closed-loop system (7),(8) and (9) for all initial
conditions (x(0),η(0),w(0)) ∈ X ⊆ R is said to:

• be bounded if ∃ ϵ1, ϵ2, ϵ3 > 0 such that:

||x(t)|| < ϵ1, ||η(t)|| < ϵ2, ||w(t)|| < ϵ3,∀t > 0; (10)

• achieves asymptotic output regulation if the trajecto-
ries are bounded and:

lim
t→∞

||e(t)|| = 0; (11)

• achieves ε-practical output regulation, for some ul-
timate error bound ε ≥ 0 if the trajectories are
bounded and also:

lim
t→∞

||e(t)|| ≤ ε. (12)

Given the conditions presented above, the aim
is to design controller functions ϕ(η, y) and θ(η, y)
such that the closed-loop system achieves output
regulation under the following assumption:

Assumption 1. There exists a compact invariant set
W0 ∈ Rnw such that:

w(0) ∈ W0 → w(t) ∈ W0,∀t ̸= 0 (13)

To design these controller functions let us suppose
the existence of steady-state mappings π(w) : W0 →
Rnx , σ(w) : W0 → Rnη , u(w) : W0 → Rnu and
y(w) : W0 → Rny satisfying: π(0) = 0, σ(0) = 0,
y(0) = 0, u(0) = 0 such that{Ls(w)π(w) = f(π(w),w,u(w)))

y(w) = g(π(w),w)
e(w) = h(π(w),w)

(14)

{
Ls(w)σ(w) = ϕ(σ(w),d(w))

u(w) = θ(σ(w),d(w))
(15)

Given the above mappings, it is the task of controller (9)
to achieve,

(x(0),η(0),w(0)) ∈ X →

{
lim
t→∞

||x(t)− π(w(t))|| = 0

lim
t→∞

||η(t)− σ(w(t))|| = 0
(16)

such that the closed loop system may achieve asymptotic
output regulation or where e(w) ̸= 0 it verifies that

lim
t→∞

||e(t)|| ≤ ε = sup||e(w)|| (17)

thus, the system trajectories achieve ε-practical output
regulation for all initial conditions in X .

To achieve this goal the powerful technique of the internal
model principle can be used (Isidori et al., 2003). This
methodology relies on the actual controller dynamics to re-
construct the steady-state control input. A proper internal
model controller is achieved when the controller functions
are satisfying the regulator equations (14) and (15).
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Before designing an internal model function, the following
steps must be followed in order to construct the steady
state mappings π(w) and σ(w). First, it is necessary to
establish the system steady-state for the ideal case where
e(w) = 0, this can be done by the following procedure:

e = f0(w) + b0(w)x1

ẋ1 = f1(x1,w) + b1(x1,w) x2
...

ẋn = fn(x1, . . . ,xn,w) + bn(x1, . . . ,xn,w)u

(18)

In this scenario, π(w) and u(w) can be recursively ob-
tained for any exosystem function s(w) according to

π1(w)=−b−1
0 (w) f0(w)

π2(w)=−b−1
1 (π1(w),w)

(
f1(π1(w),w)− Ls(w)π1(w)

)
...

u(w)=−b−1
n (π(w),w)

(
fn(π(w),w)− Ls(w)πn(w)

) (19)

assuming that b−1
i (w), i = 0 · · ·n are non-singular ∀w ∈

W.

Once the the steady-states mappings π(w) and u(w) are
obtained the so-called generalized immersion approach can
be used to robustly generate the steady-state control input
u(w). This approach assumes the existence of a function
ζ(·) that satisfies the following relation for some natural
number N (Chen and Huang, 2015):

LN
s(w)u(w) = ζ(u(w),Ls(w)u(w), . . . ,LN−1

s(w)u(w))

(20)

The function ζ(·) is capable of reconstructing an internal
model controller signal considering a harmonic exogenous
system with a linear internal model which satisfies the
second condition for the regulator equations (15) through
the following:

u = η1 + κ(y)

η̇1 = η2 + γ1(y)

η̇2 = η3 + γ2(y)
...

η̇N = ζ(η1,η2, . . . ,ηN ) + γN (y)

(21)

where κ, γ1, . . . , γN are free functions used to guarantee
closed-loop stabilization, provided they evaluate as zero in
steady-state. The steady-state trajectory of the controller
is given by: 

η1(w) = u(w)

η2(w) = Ls(w)u(w)

η3(w) = L2
s(w)u(w)

...

ηN (w) = LN−1
s(w)u(w)

(22)

The objective is recast as that of determining a function
ζ(·) that satisfies relation (20), and the free terms in (21)
that satisfy (16).

Note that if the exosystem is linear with imaginary eigen-
values and the steady-state control input u(w) is a poly-
nomal function of finite degree, then the function ζ(·) can
be described as

ζ(η1, ..., ηN ) = −a0η1 − a1η2 − · · · − aN−1ηN (23)

To obtain coefficients a0, ..., aN−1 it is possible to rewrite
the steady-state control input via a complex Fourier series,
such as

u(w(t)) =
N∑
i=1

ci(w(0))eλit (24)

for some coefficients c1, ..., cN and harmonics λi. So, it
follows that a0, ..., aN−1 can be designed in a way such that
the polynomial function λN+aN−1λ

N−1+· · ·+a1λ+a0 has
roots equal to the harmonics {λ1, ..., λN} (Castro et al.,
2022).

3. MAIN RESULTS

This section is intended to adapt the theory revisited in the
previous section to the 2 DOF planar manipulator problem
and provide a framework that is capable to achieve output
regulation for this class of nonlinear systems. To do so,
this section is divided into two subsections. The first one
is focused on obtaining the system’s closed-loop practical
stability and designing the internal model controller. The
second one addresses the problem of designing the stabi-
lizing components that will lead the system trajectories
towards the target steady-state manifold.

3.1 Internal Model Controller

First of all, it is necessary to establish the steady-state
control signal that will be reconstructed by the internal
model approach. Notice that system (1) can be described

as (7) with x =
[
θT ωT

]T
. Moreover, let us rewrite the

reference signal and the uncertainty present in system (1)
as the exogenous system present in (8):

s(w) =


ẇθ = ωfwω

ẇω = −ωfwθ

ẇm = 0

(25)

where r = wθ ∈ R2 and wω ∈ R2 are the exogenous
system reference signals and δm = wm ∈ R represents
the uncertain mass m2 (1).

The output signal given by

y = e = θ − r, (26)

along with system (1) can be described as presented in
(18) by the following variables:

f0 = −wθ b0 = I2
f1 = 02 b1 = I2
f2 = −M(x1)

−1v(x1,x2) b2 = M(x1)
−1.

(27)

Once the variables have been defined the steady-state map-
ping can be promptly obtained by the relation presented
in (19):

π1(w) = wθ

π2(w) = ωfwω.
(28)

Through this methodology the steady-state control signal
u(w) can be obtained as:

u(w) = −M(π1)ω
2
fπ1 + v(π1,π2). (29)

Notice that the signal u(w) can not be described by a
polynomial function of finite degree due to the trigonomet-
ric terms present in matrix M(π1) and vector v(π1,π2).
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To obtain a function ζ(·) able to reconstruct the internal
model it is necessary to rewrite the trigonometric term
using a Taylor series expansion. To do so, the following
relation are used

sin(θ) =

p∑
h=0

(−1)h
θ2h+1

(2h+ 1)!
(30)

cos(θ) =

p∑
h=0

(−1)h
θ2h

(2h)!
. (31)

Where h ∈ N is the approximation order. This way, a
approximation of the steady-state control input u(w) can
be described as

û(w) = −M̂(π1)ω
2
fπ1 + v̂(π1,π2). (32)

where M̂(π1) and v̂(π1,π2) are respectively the Inertia
matrix and the Coriolis vector approximation for an arbi-
trary 0 ≤ p < ∞, with p ∈ N.

In order to deal with the approximation presented in (32),
lets consider the following relaxed form of the regulator
equations (14) and (15) according to the following:

{Ls(w)π̂(w) = f(π̂(w),w, û(w))−∆f (w)
ŷ(w) = g(π̂(w),w)
ê(w) = h(π̂(w),w)

(33)

{
Ls(w)σ̂(w) = ϕ(σ̂(w), ŷ(w))−∆ϕ(w)

û(w) = θ(σ̂(w), ŷ(w))
(34)

where ∆f (w) and ∆ϕ(w) represents relaxations in the reg-
ulator constraints. Due to this relaxation, the previously
presented steady-state maps will be treated as approxima-
tions.

By expanding the steady-state control input (32) it is
possible to notice that the signal has only odd harmonics,
wich means that the internal model can be designed such
that the harmonics {±(2h+1), h = 1, 2, ..., p} are roots of
the polynomial function λN + aN−1λ

N−1 + · · ·+ a1λ+ a0
with N = 2(p+ 1).

The internal model can now be designed as (23) to cancel
the harmonics presented in signal (32), for example

(p = 0)
(4)

û (w) = −9ω4
f û(w)− 10ω2

f
¨̂u(w) (35)

(p = 1)
(6)

û (w) = −225ω6
f û(w)− 259ω4

f
¨̂u(w)− 35ω2

f

(4)

û (w). (36)

In order to satisfy condition (15) it is possible to rewrite
the controller presented in (9) as a dynamic error and
state-feedback controller (Castro et al., 2022):{

η̇ = Φη + Γ e
u = Θη +Kx

, (37)

where Φ ∈ Rnη×nη , Γ ∈ Rnη×ny and K ∈ Rnu×nx are free
design matrices. Note that the relaxed conditions (34) can
be re-expressed as

{
Ls(w)σ̂(w) = Φσ̂(w) + Γê(w)−∆ϕ(w)

û(w) = Θσ̂(w) +Kπ̂(w)
(38)

Through this methodology, the control mapping û(w) can
be robustly generated by the controller. To the examples
previously presented the design of the internal model terms
Φ and Γ can be achieved as follows:

(p = 0)

Φ =

 0 I2 0 0
0 0 I2 0
0 0 0 I2

−9ω4
fI2 0 −10ω2

fI2 0

 ,Γ =

 0
0
0
I2

 (39)

(p = 1)

Φ =


0 I2 0 0 0 0
0 0 I2 0 0 0
0 0 0 I2 0 0
0 0 0 0 I2 0
0 0 0 0 0 I2

−225ω6
fI2 0 −259ω4

fI2 0 −35ω2
fI2 0

 ,Γ =


0
0
0
0
0
I2


(40)

Our next step is to design the stabilizing conditions that
will lead to the steady-state manifold. We will show how
this is achievable by designing both K and Θ.

3.2 Design of Stabilizing Components

Now, let us introduce an error vector between the plant
and controller states and the respective steady-state map-
pings as follows:

z =

[
zp
zc

]
≜

[
x− π̂(w)
η − σ̂(w)

]
. (41)

Note that ∆ϕ(w) = Γê(w) and the dynamics of the
controller deviation can be expressed as follows:

żc = Φη+Γe−Φσ̂(w)−Γê(w)+∆ϕ(w) = Φzc+Γe (42)

Also, the control input can be rearranged as:

u = Θ(zc + σ̂(w)) +K(zp + π̂(w)) = Θzc +Kzp + û(w)
(43)

Observe that the control input u is composed of two parts,
the steady-state term û(w) and the stabilizing components
v ∈ Rm which can be defined as:

v ≜ Θzc +Kzp = Kz. (44)

with K = [K Θ].

The plant error dynamics can then be expressed as:[
I 0
0 M(x1)

] [
żp1

żp2

]
=

[
zp2

u− v(x1,x2) +M(x1)ω
2
f π̂1

]
(45)

By introducing the input signal (43) with (32) into the
dynamics (45) results in[

I 0
0 M(x1)

] [
żp1

żp2

]
=[

zp2

v + (M(x1)− M̂(π̂1))ω
2
f π̂1 + v̂(π̂1, π̂2)− v(x1,x2)

]
(46)

Now let us consider a vector of time-varying parameters δ
defined as:
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δ =

[
sin(θ2)
cos(θ2)

]
∈ R2 , (47)

Notice that the Coriolis vector v(x1,x2) can be writen as
a function of the error z and the reference w as follows:

v(z,w) =a1δ1

[
−(π̂4)

2 − 2(π̂3)(π̂4)
(π̂3)

]
+

a1δ1

[
(z24 + 2π̂4z4) + 2(z3z4 + π̂4z3 + π̂3z4)

−(z23 + 2π̂3z3)

]
.

(48)
The steady-state approximation Coriolis vector is given
by:

v̂(π̂1, π̂2) = a1

p∑
h=0

(−1)h
π̂2h+1
2

(2h+ 1)!

[
−(π̂4)

2 − 2(π̂3)(π̂4)
(π̂3)

]
.

(49)

This way, the difference between both Coriolis vector can
be written as:

v̂(π̂1, π̂2)− v(x1,x2) = vd + dv (50)

where

vd(z, π̂, δ) = −a1δ1

[
(z24 + 2π̂4z4) + 2(z3z4 + π̂4z3 + π̂3z4)

−(z23 + 2π̂3z3)

]
(51)

and

dv(π̂, δ) = a1

(∑p
h=0(−1)h

π̂2h+1
2

(2h+1)! − δ1

)[
−(π̂4)

2 − 2(π̂3)(π̂4)
(π̂3)

]
(52)

Notice that vector (52) has no dependences of the error
z, this way, it can be treated as a residual dynamics
associated to the Taylor series approximation.

Vector vd(z, π̂, δ) can now be described as a function of
the reference signal w as follows:

vd(z,w, δ) = −a1δ1

[
(z24 + 2ωfw4z4) + 2(z3z4 + ωfw4z3 + ωfw3z4)

−(z23 + 2ωw3z3)

]
,

(53)
Furthermore, the trigonometric terms presented in the
inertia matrix are described by δ as well. For this reason,
there is also a residual dynamics associated to the inertia
matrix difference in (46) that can be described as

dM (π̂, δ) = (M(δ)− M̂(π̂1))ω
2
f π̂1 (54)

This way, the error dynamics can be fully described by the
following equation:[

I2 0 0
0 M(δ) 0
0 0 Iη

][
żp1

żp2

żc

]
=

[
zp2

v + d+ vd(z,w, δ)
Φzc + Γzp1

]
(55)

where d = dM + dv. To design matrices Θ and K such
that the (55) is practical stable, the differential-algebraic
representation (DAR) with descriptor components will be
considered as follows (Saraiva et al., 2020):{

A0ż = A1z+A2(z,w)ξ +A3(δ)ż+Bv +Bdd

0 = Ω1(δ)z+Ω2ξ
(56)

The term ξ ∈ Rnξ is a rational function, terms A1 ∈
Rnz×nz , A2(z,w) ∈ Rnz×nξ , B ∈ Rnz×nu , Bd ∈ Rnz×nd ,
Ω1(δ) ∈ Rnξ×nz and Ω2 ∈ Rnξ×nξ are affine matrix
functions in (z, δ), also A0 ∈ Rnz×nz and A3(δ) ∈ Rnz×nz

contains the constant terms and the nonlinear terms that
are multiplying ż respectively. The advantage of this

framework is the capacity to design control problems by
convex optimizations subject to linear matrix inequalities
(LMIs) (Trofino and Dezuo, 2014).

Due to the nonlinearities present in vector (53) it is
necessary to group the nonlinear terms in a new vector
so the DAR representation can be achieved:

ξ = [∆1z4 ∆1z3]
T

(57)

where ∆1 = a1δ1.

Due to the uncertainty present in m2 let us consider the
auxiliary variable as follows:

a1 = ā1 + ã1; a2 = ā1 + ã1; a3 = ā1 + ã1. (58)

where āj with j = 1, 2, 3, denotes the nominal components
described as:

ā1 = ℓ1ℓ2m̄2; ā2 = ℓ22m̄2; ā3 = ℓ21(m1 + m̄2). (59)

Followed by the uncertain parameters ãj given by:

ã1 = ℓ1ℓ2wm; ã2 = ℓ22wm; ã3 = ℓ21wm. (60)

Now, to obtain matrices A0 and A3(δ) it is necessary to
rewrite the inertia matrix as:

M(δ) = M̄ + M̃(δ) (61)

with

M̄ =

[
ā2 + ā3 ā2

ā2 ā2

]
, M̃(δ) =

[
ã2 + ã3 + 2a1δ2 ã2 + a1δ2

ã2 + a1δ2 ã2

]
(62)

Given these definitions for z, δ and ξ, the system (55) can
be expressed in the descriptor DAR (56) with the following
matrices:

A0 =

I2 0 0
0 M̄ 0
0 0 Iη

 , A3(δ) =

0 0 0

0 M̃(δ) 0
0 0 0

 ż, B =

[
02
I2
0η

]

A1 =

[
0 I2 0
0 0 0
Γ 0 Φ

]
, Bd =

[
02
I2
0η

]

A2(z,w) =


0 0
0 0

(z4 + 2ωfw4 + 2z3 + 2ωfw3) 2ωfw4

0 −2z3 − 2ωfw3

0(η,1) 0(η,1)


Ω1(δ) =

[
0 ∆1

∆1 0

]
,Ω2 =

[
−1 0
0 −1

]
(63)

By now using an augmented vector ξa = [ξT żT ]T ∈
Rnξa that combines ξ with ż, we can show that the
descriptor DAR from (56) can be re-arranged to appear as
a traditional DAR introduced in Trofino and Dezuo (2014).
In this case, it is necessary to include an extra constraint
as follows:

0 = A1 z+A2(z,w) ξ+ (A3(δ)−A0) ż+B v+Bdd. (64)

Moreover, since all of the descriptor nonlinearities were
grouped into A3(δ) ż, it is possible to invert A0 which
is clearly non-singular from (63). This process allows the
following representation:{

ż = A1z+A2(z,w, δ)ξa +Bv +Bdd

0 = Ω1(δ)z+Ω2(z,w, δ)ξa +Ω3v +Ω4d
, (65)
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where the augmented matrices shown in here are con-
structed in the following manner:

A1 = A−1
0 A1 , A2(z,w, δ) = A−1

0 [A2(z,w) A3(δ)] ,

Ω1(δ) =

[
Ω1(δ)
A1

]
, Ω2(z,w, δ) =

[
Ω2 0

A2(z,w) A3(δ)−A0

]
,

B = A−1
0 B ,Bd = A−1

0 Bd ,Ω3 =

[
0
B

]
, Ω4 =

[
0
Bd

]
(66)

It follows that closed-loop system can be written as{
ż = (A1 +BK)z+A2(z,w, δ)ξa +Bdd

0 = (Ω1(δ) +Ω3K)z+Ω2(z,w, δ)ξa +Ω4d
, (67)

A control law designed to the DAR representation (65)
will only be valid within X . By using level curves in a
Lyapunov function V (z) it is possible to find an estimate
of the region of attraction of the closed loop system R that
satisfyR ⊂ X . By choosing a quadratic Lyapunov function
candidate V (z) = zPz, it follows that an estimate for the
region of attraction is given by

R := {z : zPz ≤ 1} . (68)

Also, due to the residual dynamics d, we cannot always
drive the trajectories z(t) to zero, however it is possible to
ensure they converge to a bounding terminal set Rd ⊂ R.
Hence, Rd is a bounding set for the trajectories of the
closed-loop system when subject to the residual dynamics
d ∈ D.

Let us define D and Rd as

D :=
{
d ∈ Rnd : dTRd ≤ 1

}
Rd :=

{
z ∈ Rnz : zTPz ≤ µ

} (69)

with 0 < µ < 1 such that Rd ⊂ R, and R = RT .

Finally to showing our results it is also convenient to re-
express the domain of interest Z in a standard polyhedral
form such as

Z =
{
z ∈ Rnz : |αkzpk| ≤ 1 , k = 1, 2, ..., nz

}
, (70)

W =
{
w ∈ R5 : |w1,2| ≤ ϱ , |w3,4| ≤ ϱ , |w5| ≤ δm

}
, (71)

and
∆ =

{
δ ∈ R2 : |δi| ≤ 1, i = 1, 2

}
. (72)

Theorem 1. Consider the system (55) and its DAR (65)
subject to the control law (44). Suppose there exist a

symmetric matrix P̂ ∈ Rnz×nz , matrices L̂ ∈ Rnξa
×nξa

and K̂ ∈ Rnu×nz and scalars τ1, τ2 and µ such that:

P̂ > 0, (73)[
1 αkP̂

⋆ P̂

]
> 0 ∀ k = 1, ..., nz, (74)

τ2µ > τ1 > 0, 1 > µ > 0 (75)

He


A1P̂ + τ2P̂ +BK̂ A2(z,w, δ)L̂ Bd

Ω1(δ)P̂ +Ω3K̂ Ω2(z,w, δ)L̂ Ω4

0 0 −τ1R

 < 0,

(76)
∀(z,w, δ) ∈ V(Z)× V(W)× V(∆) . Then, all trajectories

of system (55) with v in (44) and K = K̂P̂−1 for all initial

conditions z(0) starting in the region:

R = {z ∈ Rnz : z
T
P̂−1z ≤ 1}. (77)

enter the set Rd in finite time t0 and remain there for all
t ≥ t0 for d ∈ D.

Proof: Consider a Lyapunov candidate function as:

V (z) = z
T
Pz, (78)

with P = PT > 0 in order to ensure that V (z) > 0∀ z ̸= 0.
The derivative of (78) along the trajectories of (65) is given
by:

V̇ (z) =
[
z
T
ξ
T

a d
T
]
He

{[
P (A1 +BK) PA2(z,w, δ) PBd

0 0 0
0 0 0

]}[
z
ξa
d

]
.

(79)

Now, suppose the following inequality is satisfied for all
(z, δ,w) ∈ Z ×∆×W:

V̇ (z) + 2τ1(1− dRd)− 2τ2(µ− zPz)+

He

{
ξ
T

aL [Ω1(δ) +Ω3K Ω2(z,w, δ) Ω4]

[
z
ξa
d

]}
< 0,

(80)
or equivalently:

He

{[
P (A1 +BK) + τ2P PA2(z,w, δ) PBd

L(Ω1(δ) +Ω3K) LΩ2(z,w, δ) LΩ4

0 0 −τ1R

]}
< 0.

(81)

Given that µ ≥ 0, V (z) > 0 and (Ω1 +Ω3K) z+Ω2 ξa +

Ω4d = 0, it follows that (80) implies that V̇ (x)−2τ1d
TRd+

2τ2µz
TPz < 0 and τ1 − τ2µ < 0∀(z,w, δ) ∈ Z ×W ×∆.

Pre- and post-multiplying (81) by diag{P−1, L−1, I}, (76)
is obtained, considering the change of variables P̂ = P−1

and L̂ = L−1. In the same way, the relation (73) is verified
when pre- and post-multiplying P > 0 by P−1.

To conclude the proof, if the LMI (76) is satisfied for
(z,w, δ) at the cartesian product of vertices V(Z) ×
V(W) × V(∆), by convexity they are also satisfied
∀ (z,w, δ) ∈ Z ×W ×∆. □

From the domain of attraction estimate (77), it is con-

cluded that minimizing the trace of P̂−1 implies the max-
imization of the sum of all semi-axes of the ellipsoidal set
R. Thus, the design of K that maximizes region R can be
solved by the following convex optimization problem based
on Theorem 1:

minimize
N,P̂ ,L̂,K̂

tr(N)

subject to (73), (83), (75), (76),

[
N I

⋆ P̂

]
> 0.

(82)

Remark 1. It is possible to calculate the error ultimate
bound ε after running the optimization problem (82). This
calculation can be accomplished by the following matrix
inequality: [

γ CP̂

⋆ P̂

]
> 0 (83)

where ε =
√
γ and C = [I2 0].
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Remark 2. It is important to note that no constraint has
been imposed on the gain K, this may lead to extremely
high gains when synthesizing the controller by numerical
optimization. In order to circumvent this issue, it is sug-
gested to consider the following design constraint:[

ũ2
i K̂

⋆ P̂

]
> 0∀ i = 1, 2. (84)

where ũi denotes the peek control value of the i-th control
input signal for every trajectory inside the domain of
attraction R.

Hence, one must simply include the LMI (84) into the
optimization problem (82) in order restrict the peek value
of each control input.

4. NUMERICAL EXAMPLE

This section presents a numerical simulation of two degrees
of freedom manipulator control systems to illustrate the
contribution presented in this paper. The numerical results
were obtained in the MATLAB R2012b software and its
native LMILAB toolbox was employed to solve the pro-
posed convex optimization problem with LMI constraints.

An ideal two-link manipulator as shown in figure 1 is
here considered with dynamics governed by (1), where
the constructive parameters are m1 = 2kg, m2 = 1kg,
ℓ1 = 1m, ℓ2 = 1m. The system has a reference signal

[sin(ωf t) − sin(ωf t)]
T

with ωf = 1 rad/s. Also the resid-
ual dynamics d were calculated by using a appropriated
Taylor series approximation for the cases p = 0 and p = 1.
Finally variable τ2 = 0.5 was selected in advance.

To illustrate the effect of the internal model on the steady-
state error, the control design task has been done for the
cases previously presented. Figure 2 presents the transient
response, steady-state response, and the input signal to the
different scenarios. It can be observed that the high order
internal model leads to smaller error in the steady-state
response due to the cancellation of the selected harmonics.

The robustness of the controller can be observed by the
introduction of a additional load to the system, considering
δm = 2 when t ≥ 70s for the case where p = 0 as show in
Figure (3).

Given these setup parameters, the proposed convex opti-
mization problem yielded the feedback matrix:

K = [K Θ] , (85)

with K and Θ as presented in Table 1.

5. CONCLUSION

This paper proposed a systematic framework to achieve
output regulation for a robotic manipulator system with
two degrees of freedom. The steady-state conditions for the
input were obtained by the so-called internal model ap-
proach which guarantees robustness to the system uncer-
tain load mass. Furthermore, the stabilizing components
that lead the system states to the steady-state manifold
were synthesized through a convex optimization problem
subject to LMI constraints.

Table 1. Controllers Gains

(p=0) (p=1)

KT
104 ×

[−0.2142 −0.0019
0.0214 −0.2062

−0.0735 0.0041
0.0121 −0.0717

]
105 ×

[−0.0299 −0.0003
0.0020 −0.0288

−0.0075 0.0003
0.0009 −0.0073

]

ΘT
104 ×


1.3285 −0.0092

−0.1492 1.2670
−0.9235 −0.0558
0.0535 −0.9192
0.6630 −0.0069

−0.0726 0.6183
−0.2750 −0.0104
0.0227 −0.2758

 105 ×



5.2046 0.0127
−0.3789 4.9630
−2.4535 −0.1197
0.0930 −2.4719
3.7261 0.0126

−0.2536 3.4817
−1.0150 −0.0243
0.0671 −1.0389
0.2264 0.0020

−0.0131 0.2060
−0.0599 −0.0006
0.0048 −0.0613


Since this paper was mainly focused on the model of a
planar two-link robotic manipulator, future work might
explore the framework presented to higher-order dynamics.
Beyond that, the study of other exogenous disturbances
such as gravity could be a possibility.
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Figure 2. Comparison of the transient response, steady-state error and input signals between the different scenarios.
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Figure 3. Comparison of the error signal and input signal when subjected to the uncertainty δm for p = 0.
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