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Abstract: Depth sensing is essential to many robotic tasks, with mapping, localization and
obstacle avoidance. In small robotic platforms, weight, volume and energy consumption
limitations motivate the use of depth estimation using a monocular camera instead of depth
sensors. This paper propose an approach for localization of autonomous mobile robots in an
indoor environment using monocular vision aided by depth estimation maps from a single RGB
input image applied to the concept of Transfer Learning linked to Convolutional Neural Networks
(CNNs). The performance of classifiers in estimate the location was observed and compared using
of a unique configuration of RGB-D images transformed into a mosaic image. The images were
combined with the descriptive power of CNNs in the following scenarios: depth captured by
the Kinect sensor and depth estimation generated by the AdaBins block. With the results, the
performances of the classifiers were analyzed to evaluate the proposed approach.

Keywords: Robotic Systems, Deep Transfer Learning, Convolutional Neural Network, RGB-D
Machine Learning, Topological Maps, Indoor Environment, Computer Vision.

1. INTRODUCTION

Mobile Robotics applications can be found in agricultural,
industrial, military, domestic environments, among others.
Because of the wide variety of uses of this technology,
the localization task is one of the most searched topics
regarding mobile robots (Li and Shi, 2018), since this is the
means to an end, i.e. search and rescue, mining, delivery
of people and cargo, all these activities depend on it.

But the localization task is not just the definition of
absolute position in space (Elaraby et al., 2018). It is
also extremely important that robotic platforms have the
ability to explore depth cues of the environment.

The localization task must be performed by an appropriate
system according to the operating environment. According
to Zhang et al. (2016) and Wang et al. (2020) Image
Recognition based on a computer vision system is one of
the most recent methods to locate mobile robots in indoor

environments. Its use is advantageous, as it requires less
installation space, is robust to environmental conditions,
captures RGB images, is a widespread technology, has effi-
cient energy consumption and low cost (Ma and Karaman,
2018).

This work proposes the development and analysis of to
location estimation and navigation support system for mo-
bile robots by computer vision aided by depth estimation,
using Convolutional Neural Networks (CNNs) allied to the
concept of Transfer Learning, which allows this method to
be applied as a feature extractor. The classifiers tested
were: the Bayesian Classifier, k-Nearest Neighbor (kNN),
Random Forest, Multi-layer Perceptron (MLP) and Sup-
port Vector Machine (SVM).

For this work, an indoor environment was mapped using
the topological approach. The images were acquired by the
Microsoft Kinect RGB-D sensor and the following data
sets were built: RGB images; depth images (D); RGB-D
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mosaic images; depth estimation images (De) and RGB-De
mosaic images.

The strategy of this solution is based on location esti-
mation by computer vision using the mosaic images from
the combination of the RGB and depth estimation images
with practical applications directly linked to mobile robots
using the a monocular vision, as an alternative to the
more robust sensors such as Light Detection and Ranging
(LiDAR) and depth sensors.

The works proposed by da Silva et al. (2020), Islam and
Park (2021) and Akai (2022) are similar to this work. In
da Silva et al. (2020) the Kinect sensor is used to obtain
the location of the mobile robot through RGB and depth
mosaic images. The authors in Islam and Park (2021)
propose a fine-tuned generative adversarial network to
estimate the depth map effectively for a given single RGB
image. Meanwhile in Akai (2022) it is presented a mobile
robot localization method that uses CNNs to regress the
depth from the camera images and performs comparison
experiments using a manually created dataset using only a
visual inertial odometry sensor, and the KITTI odometry
dataset.

In Guo (2022) a turtlebot robot, equipped with odometer,
RGB-D camera and laser, and odometer was used to test
a cooperative positioning method based on deep laser and
vision fusion aiming at the problem of robot positioning.
However, in our approach, we use the Kinect sensor as
a monocular vision device to obtain the location of the
mobile robot through RGB images and depth estimation
mosaic, eliminating the use of other sensors.

The focus of the proposed work is to use Transfer Learning
to create depth maps from pre-trained models on popular
indoor and outdoor Datasets. To evaluate the use of a
monocular vision image map and depth estimation image
map with mosaic image configuration to estimate robot
location in an indoor environment using CNNs as a feature
extractor, as also evaluated different machine learning
methods.

The results showed that approach obtained 100% in Ac-
curacy and F1-Score with depth estimation images from
pre-trained model with outdoor Dataset, and 99.8% with
indoor Dataset, thus confirming its efficiency and reliabil-
ity.

The main contributions of this paper are:

• Efficient use of an RGB-De mosaic image;
• Use and evaluation of CNNs as feature extractors
combined with classic machine learning methods;

• Indoor location estimation based on computer vision;
• Outstanding results with the Transfer Learning tech-
nique.

The rest of this article is structured as follows: Section
2 gives a brief description of the Transfer Learning tech-
nique, the machine learning methods and the method of
monocular depth estimation used. Section 3 explains the
methodology adopted, detailing the development of the
proposed approach. Section 4 gives the results, and high-
lights the best performances. Finally, Section 5 presents
the conclusion and future works.

2. OVERVIEW OF CNNS, MACHINE LEARNING
METHODS AND DEPTH ESTIMATION METHOD

Originally started from LeCun et al. (1989), CNNs became
known when Krizhevsky et al. (2012) used the algorithm
in the ImageNet 2012 Large Scale Visual Recognition
Challenge (ILSVRC-2012) achieving good results. The
goal in ILSVRX-2012 was to solve classification tasks
that consisted of 1000 classes and over 1 million samples
(Krizhevsky et al., 2012; Deng et al., 2009).

From the results obtained by Krizhevsky et al. (2012),
other CNNs architectures were developed in order to
improve the results achieved. Among the architectures
that emerged are VGG (Simonyan and Zisserman, 2015),
MobileNet (Howard et al., 2017), Inception (Szegedy et al.,
2015), Xception (Chollet, 2017), NasNet (Zoph and Le,
2017), ResNet (He et al., 2016), DenseNet (Huang et al.,
2017) and Inception-Resnet (Szegedy et al., 2016).

2.1 CNNs as a Feature Extractor

Choosing a database to train a Convolutional Neural Net-
work (CNN) satisfactorily can become a very problematic
task depending on the desired application (Karpathy et al.,
2014; Molchanov et al., 2016). However, this impasse can
be resolved using the concept of Transfer Learning (Karpa-
thy et al., 2014; Molchanov et al., 2016; Alexandre, 2014).
It ensures that knowledge gained during a problem solving
task can be reused to solve a similar problem (Pan and
Yang, 2010; Weiss et al., 2016). Using Tansfer Learning
does not require large scale training data (Pan and Yang,
2010) and the training time to achieve equivalent accuracy
can be reduced (Tang et al., 2019).

To take advantage of the power of a pre-trained CNN
one must follow two steps: i) one must eliminate the
last fully connected layer of the model and then ii) one
must resize the input of the discarded layer to a one-
dimensional vector (Karpathy et al., 2014; Molchanov
et al., 2016; Alexandre, 2014). In this way, the pre-trained
model is used as a feature extractor and is no longer
considered a classifier, in accordance with what was used
in our proposal. The transfer learning concept is detailed
in da Nobrega et al. (2018), who used the technique to
perform the classification of pulmonary nodules.

2.2 Machine Learning Methods

The classification task can be performed on the deep
features returned by the CNNs. This section summarizes
the five techniques of machine learning used in this paper.

The Bayesian Classifier is a probabilistic and supervised
technique. It is used to categorize samples by the pro-
portion of each sample that belongs to a given class
(Theodoridis and Koutroumbas, 2008). For this, it marks
the samples based on the a posteriori probability value
that is calculated from conditional densities and a priori
probability (Theodoridis and Koutroumbas, 2008).

K-Nearest Neighbor (kNN) is a supervised machine learn-
ing technique. It describes the category to which a sample
belongs according to the characteristics of the k nearest
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neighbors from the training set. The variable k is the num-
ber of nearest neighbors used to find out which category
the proposed sample belongs to.

The Random Forest algorithm is based on the Decision
Tree Method. It introduces supervised learning and aims
to create decision trees from a collection of characteristics
chosen arbitrarily from the original set. Learning is done
with bagging, a meta-algorithm that improves model selec-
tion and regression according to the model’s stabilization
and accuracy (Breiman, 2004).

Multilayer Perceptron (MLP) is a multilayer neural net-
work structure. It is a perceptron composition for dealing
with nonlinearly separable questions (Haykin, 2010). The
impulses propagate to subsequent layers from the input
layer, that initially receives the feature vector. Adjusted
by weights, the pulses can be transmitted through the
neuronal links (Haykin, 2010).

Based on the Theory of Statistical Learning developed by
Vapnik (2000), the Support Vector Machine (SVM) has
as main objective to identify surface categories that boost
the length between them. To do so, he must demarcate the
space models and their entries proportionally to a large
feature vector.

2.3 Monocular Depth Estimation Method

Monocular depth estimation has been considered by many
CNN methods as a regression of a dense depth map from a
single RGB image (Alhashim and Wonka, 2018; Fu et al.,
2018; Hao et al., 2018; Hu et al., 2019; Huynh et al., 2020;
Lee et al., 2019; Xu et al., 2018).

The current architectures do not perform enough global
analysis of the output values. A drawback of convolutional
layers is that they only process global information once the
tensors reach a very low spatial resolution at or near the
bottleneck. For this reason, this paper uses a transformer
based architecture block call AdaBins whose architecture
is detailed in Bhat et al. (2021). This Block divides the
depth range into bins whose center value is estimated
adaptively per image. The final depth values are estimated
as linear combinations of the bin centers (Bhat et al.,
2021).

3. METHODOLOGY

Figure 1 shows the steps of the methodology of our
approach. The first step is Image Acquisition, in which the
Kinect sensor using the open-source libfreenect software
available in the OpenKinect community captures the RGB
and depth-of-environment images (Sarbolandi et al., 2015).

The community makes this library available for Kinect ver-
sions v1 and v2 (github.com/OpenKinect/libfreenect).
In this paper, we used version 1 of this library. The next
step is the preprocessing step. Here, initialy, are estimate
two high quality dense depth map from a each RGB input
image via the AdaBins block (Bhat et al., 2020). The
depths maps are genereted using AdaBins block pretreined
with two popular indoor and outdoor datasets, NYU (Sil-
berman et al., 2012) and KITTI (Geiger et al., 2013)
respectively. Then all images are scaled to the size of 320 x
240 pixels and concatenated to give the mosaic RGB-D and

RGB-De image dataset, where the tiled images have a size
of 640 x 480 pixels. Copies of the full-sized depth original
and estimated images are made for the composition of
the depth image dataset. The following step is Feature
Extraction, which returns the feature vectors that will
serve as input to the Machine Learning techniques, which
perform the classification task; thus, completing the last
step of the process.

All datasets genereted (Depth, RGB-D, Depth estimated
and RGB-De) have 50 samples per class, totaling 1500
samples for each dataset. Figure 2 shows examples of
samples from each class and which physical room they
are in. Figure 3 show a example of sample for the depth
estimation genereted by AdaBins Block.

The environment for the navigation of the robot was
the second floor of a university campus building. The
indoor environment, which is a controlled environment,
has characteristics that assist in the localization and
navigation of the robot.

Figure 4 shows the topological map of the environment,
which is made by six rooms, which are referred to as R1 to
R6. Each room is divided into one or two nodes, totaling
in nine nodes, labeled with letters A through I; each node
represents the position of the robot in the room. The nodes
are divided into classes, which are the possible directions
performed by the robot, and are labeled from C1 to C30.
These classes consist of the classes of our approach. If
the robot identifies the class, it can define the direction
it should go, and node and room in which it is.

Table 1 illustrates some of the routes that the mobile robot
can follow in the environment. Five distinct commands for
the locomotion task were given for the C20 to C9 route.
The robot begins at C20 (node F). First a command to
turn 90° to the right is sent to it, sequentially, two ”go
forward” commands are given. Then, another command
is sent to the robot to turn 90° to the left, and another
command to go forward is received by the robot, and thus
it reaches its destination, which corresponds to C9 (node
C).

Table 1. Example of routes that can be per-
formed by the mobile robot based on the topo-
logical map and using the available commands.
Commands: GF - Go Forward; TR90 - Turn
Right 90°; TL90 - Turn Left 90°; TR180 - Turn

Right 180°; TL180 - Turn Left 180°.

Route Commands

C1 to C7 GF, TL90
C7 to C16 TL90, GF, GF, TR90, GF, TR90, GF, TL180
C16 to C20 TR180, GF, TL90
C20 to C9 TR90, GF, GF, TL90, GF
C9 to C25 GF, GF
C25 to C30 TR180, GF, TL90, GF, TR90
C30 to C6 TR90, GF, TL90, GF, TR90, GF, GF, TL180
C6 to C1 GF, TR180

The following CNN architectures were considered for
the feature extraction step: VGG16, VGG19, MobileNet,
ResNet50, InceptionV3, Xception, InceptionResNetV2,
DenseNet121, DenseNet169, DenseNet201, and NASNet-
Mobile. Table 6 presents the number of attributes ex-
tracted by each architecture.
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Figure 1. Flowchart of the adopted methodology in 5 steps: (1) Image Acquisition using the Kinect Sensor; (2)
Preprocessing images to create the datasets: RGB-D and RGB-De; (3) Feature extraction with eleven CNN
architectures; (4) Classification with five methods of machine learning; (5) Evaluation of the results in all datasets.

Figure 2. Examples of samples of the dataset for each class.

Figure 3. Example of sample of depth estimation for a
dataset class.

Figure 4. Topological map of the environment.

In the classification processes, the Bayesian classifier op-
erated with the Gaussian probability density function.
The hyperparameter k from the kNN classifier was chosen
through a grid search, testing the odd values from 1 to
11. The MLP carried out its training using the Levenberg-
Marquardt method with neurons ranging from 2 to 1000 in

the hidden layer. SVM used linear and RBF kernels, and
the hyperparameters C and γ with 2−5, 2−4, 2−3, ..., 215

and 2−15, 2−14, ..., 25 values, respectively. The MLP and
SVM hyperparameters were determined through cross-
validation with 10-folds. The random search for Random
Forest was used to find: the number of features for the
best split (1,2,3,...,or 10); the maximum tree depth to be
used (6 or none); the minimum number of samples required
to split an internal node (1,2,3,...,or 10); the minimum
number of samples per leaf to be used (1,2,3,...,or 10);
whether bootstrap samples should be used when building
trees or not, and which function should be used to measure
the quality of a split (gini or entropy). Furthermore, the
Random Forest training process used 3000 estimators.

The following measures were used to evaluate the per-
formance of the classifiers: the micro averaged Accuracy
and F1-Score. F1-Score was used because both metrics
Precision and Recall are essential for the system since false
positives and false negatives are not desirable.

4. RESULTS AND DISCUSSION

In this section, we discuss the results obtained by com-
bining the extraction of features using CNNs and the
machine learning methods of both datasets. The images
were randomly divided into 10 groups, 20% for testing and
the rest for training, in each of the 10 iterations.

The hardware infrastructure used in the solution was an
Intel Core i7 7th Gen with 16Gb of memory and NVIDIA
GeForce GTX 1050 Ti 4Gb with GPU, running Windows
10 Professional 64-bit operating system. The part of the
system that actually performs the image processing was
developed in Python language and uses the TensorFlow,
Keras libraries, and SciKit Learning with the use of feature
extractors and classification with neural networks and
CNNs.

Tables 2 and 3 present the mean values and standard
deviations of Accuracy and F1-Score, respectively, for
image datasets obtained from Kinect sensor. The Tables
4 and 5, for the AdaBins block pre-trained weights with
the NYU dataset (indoor Dataset) and the Tables 7 and 8,
for the AdaBins block pre-trained weights with the KITTI
dataset (outdoor Dataset), respectively. The best values
are highlighted in green in the all Tables.

Sociedade Brasileira de Automática (SBA) 
XXIV Congresso Brasileiro de Automática - CBA 2022, 16 a 19 de outubro de 2022 

ISSN: 2525-8311 3157 DOI: 10.20906/CBA2022/3604



Table 2. Accuracy reached by CNN and Classifiers with RGB-D images obtained from Kinect
sensor

RGB-D
hhhhhhhhhhhhArchitecture

Classifier
Bayes kNN RF MLP SVM (Linear) SVM (Poly.) SVM (RBF)

VGG16 90.943±0.951 99.358±0.561 98.784±0.538 97.441±1.865 99.629±0.486 4.597±1.191 99.629±0.486
VGG19 92.069±1.639 99.211±0.635 98.782±0.803 98.634±0.957 99.324±0.712 15.505±3.476 99.324±0.712

MobileNet 96.789±0.508 99.873±0.253 98.431±0.854 99.193±0.768 99.746±0.506 99.746±0.506 99.873±0.253
InceptionV3 96.207±1.205 97.726±0.795 98.487±0.878 99.041±0.608 98.899±0.981 9.569±5.327 98.899±0.981
Xception 95.942±1.438 99.352±0.588 98.270±1.007 98.623±0.933 99.316±0.630 17.474±8.369 99.316±0.630
ResNet50 83.280±1.943 92.362±2.005 96.098±2.067 85.882±19.318 96.661±1.481 8.385±4.033 96.779±1.583

InceptionResNetV2 93.400±2.494 97.996±0.449 97.684±1.413 98.484±1.213 98.635±0.893 12.566±2.087 98.635±0.893
NASNetMobile 90.628±0.886 96.283±1.325 96.030±0.944 94.456±2.283 97.973±0.531 96.620±1.230 97.973±0.531
DenseNet121 87.624±1.673 99.463±0.270 99.327±0.608 99.183±0.828 99.437±0.848 14.330±7.396 99.437±0.848
DenseNet169 95.574±0.738 99.594±0.332 99.581±0.572 99.449±0.535 99.722±0.340 6.967±3.109 99.722±0.340
DenseNet201 93.721±1.490 99.456±0.517 99.580±0.557 99.061±0.529 99.470±0.513 8.321±7.803 99.737±0.322

Table 3. F1-Score reached by CNN and Classifiers with RGB-D images obtained from Kinect
sensor

RGB-D
hhhhhhhhhhhhArchitecture

Classifier
Bayes kNN RF MLP SVM (Linear) SVM (Poly.) SVM (RBF)

VGG16 88.137±0.916 99.275±0.644 98.726±0.584 97.165±2.004 99.579±0.568 0.807±0.552 99.579±0.568
VGG19 90.894±1.725 99.190±0.659 98.818±0.793 98.675±0.953 99.306±0.737 8.866±2.863 99.306±0.737

MobileNet 96.984±0.473 99.888±0.223 98.496±0.771 99.154±0.812 99.771±0.457 99.771±0.457 99.888±0.223
InceptionV3 96.058±1.340 97.590±0.781 98.352±0.943 98.936±0.624 98.788±0.978 3.963±3.251 98.788±0.978
Xception 95.458±1.759 99.314±0.601 98.154±1.105 98.533±1.119 99.246±0.685 9.524±7.171 99.246±0.685
ResNet50 81.546±2.297 91.985±2.173 95.841±2.206 85.215±20.573 96.528±1.570 2.386±2.276 96.658±1.649

InceptionResNetV2 92.842±2.711 97.912±0.445 97.479±1.605 98.337±1.386 98.501±0.960 10.386±1.784 98.501±0.960
NASNetMobile 89.585±1.361 95.914±1.528 95.666±1.101 94.023±2.538 97.857±0.534 96.160±1.495 97.834±0.574
DenseNet121 84.637±1.725 99.479±0.264 99.268±0.651 99.123±0.922 99.355±0.987 8.362±6.364 99.355±0.987
DenseNet169 94.123±0.881 99.582±0.341 99.584±0.558 99.392±0.599 99.682±0.390 2.197±2.264 99.682±0.390
DenseNet201 92.227±2.189 99.461±0.503 99.605±0.522 99.093±0.500 99.497±0.496 3.040±4.841 99.766±0.285

Tables 2 and 3 shows that the highest accuracy and F1-
score were achieved by combining the MobileNet archi-
tecture with the kNN and SVM (RBF) Classifiers, with
99.873% and 99.888% respectively for RGB-D mosaic im-
ages. The worst result was obtained by the combination
of the VGG16 architecture with the SVM Polynomial
Classifier obtained only an accuracy of 4.597% and F1-
score of 0.807%.

For the RGB-De mosaic images (depth estimation pre-
trained with NYU Dataset), the highest accuracy was
achieved by combining the VGG16 architecture with the
kNN Classifier, with 99.872% as show in Table 4. The
combination of the kNN Classifier with the MobileNet and
DenseNet201 Architectures also stands out in the Table 4.
They present an accuracy greater than 99.8%. Already, in
Table 5 the highest F1-Score were achieved by combining
the VGG16 and DenseNet201 Architectures with the kNN
Classifier, with 99.874%. But, the combination with Mo-
bileNet Architecture also stands out with F1-score greater
than 99.8%. The worst results of accuracy and F1-Score
were obtained by the DenseNet121 Architecture combining
with SVM Polynomial classifier, with 4.243% and 0.993%
in Tables 4 and 5 respectively.

For the RGB-De mosaic images (depth estimation pre-
trained with NYU Dataset), the highest accuracy and F1-
Score were achieved in 4 different combinations in the
Tables 7 and 8, all with a value of 100%. The worst
results of accuracy and F1-Score were obtained by the
combination of the VGG16 architecture with the SVM
Polynomial Classifier obtained only an accuracy of 6.729%
and 3.794%, respectively.

These results show that the RGB-De mosaic images per-
formed well using the depth estimation approach when
compared to the RGB-D mosaic images approach (depth
sensor). For this approach, we can highlight the perfor-
mance of the kNN Classifier combined with the VGG16
and MobileNet Architectures. These combinations present
results superior to 99.8% for the RGB-De images generated
from the obtained depth estimates. In general, the use of
pre-trained weights indoors or outdoors to generate depth
estimation showed no loss of performance in the classifiers.

However, the depth estimation generated when the model
was pre-trained with an outdoor Dataset bring less detail
to objects closer to the camera, making the classification
more general. This can be seen by the 100% accuracy in
some combinations of classifiers and architectures.

Table 6 shows the extraction times of each CNN architec-
ture used. For the mosaic images RGB-D, RGB-De (NYU)
and RGB-De (KITTI), the MobileNet architecture had the
shortest extraction time of 8.895 ms, 8.710 ms and 11.871
ms while in contrast, the InceptionResNetV2 architecture
had the longest time of 80.095 ms, 81.290 ms and 91.352
ms.

In order to compare other classification methods with
the kNN the function call time was calculated because
this distance-based classification method does not require
mathematical training and only needs memory to store the
data.

Tables 9, 10 and 11 presents the training times of each
classifier, considering all databases. The classifier that
achieved the shortest training time for the RGB-D and
RGB-De (NYU and KITTI) mosaic images was the kNN,
with values of 0.024s, 0.024s and 0.028s respectively, with
the attributes returned by the VGG19 and VGG16 archi-
tectures.

5. CONCLUSION

In this article, is presented a approach for location esti-
mation and consequently support for mobile robot nav-
igation. The work consists of a computer vision system
using Deep Transfer Learning, by combining the concept
of Transfer Learning with CNN, and monocular vision for
depth estimate as from image acquisition. The results of
the proposed approach are compared with results gen-
erated from depth images obtained by a Kinect sensor.
The localization of the robot was performed in an indoor
environment and the images acquired from the sensor are
organized to give rise to new images, creating an RGB-D
mosaic image database.

The depth estimation applied in the proposed Deep Trans-
fer Learning approach using the RGB-De mosaic images
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Table 4. Accuracy reached by CNN and Classifiers with estimated RGB-De images taken from
the AdaBins block pre-trained weights with the NYU dataset.

RGB-De
hhhhhhhhhhhhArchitecture

Classifier
Bayes kNN RF MLP SVM (Linear) SVM (Poly.) SVM (RBF)

VGG16 93.079±0.791 99.872±0.254 99.081±0.781 99.621±0.507 99.609±0.320 9.834±2.580 99.749±0.307
VGG19 84.194±1.348 99.356±0.698 99.365±0.559 98.689±1.121 99.488±0.477 7.047±3.511 99.488±0.477

MobileNet 97.460±1.288 99.870±0.258 99.744±0.313 99.326±0.434 99.473±0.480 99.617±0.507 99.744±0.313
InceptionV3 97.312±0.666 98.790±0.293 98.501±0.785 97.138±2.547 98.905±0.549 33.881±3.253 98.905±0.549
Xception 97.085±0.553 99.174±1.046 99.328±0.449 99.052±1.020 99.315±0.777 89.977±1.706 99.174±1.046
ResNet50 78.396±1.072 97.789±1.228 98.160±0.925 96.224±2.091 98.817±0.452 4.701±3.216 98.817±0.452

InceptionResNetV2 94.571±0.944 98.586±1.050 97.619±1.008 96.530±4.396 98.696±0.765 9.767±5.754 98.696±0.765
NASNetMobile 94.099±0.814 97.343±0.772 97.733±0.288 97.440±1.140 98.306±0.707 96.823±1.211 98.574±0.743
DenseNet121 96.387±1.115 99.716±0.567 99.734±0.326 99.037±1.191 99.577±0.565 4.243±1.138 99.577±0.565
DenseNet169 97.195±0.972 99.611±0.525 98.945±1.156 99.606±0.528 99.482±0.492 8.893±4.378 99.466±0.496
DenseNet201 97.457±1.792 99.859±0.281 99.731±0.329 99.463±0.658 99.736±0.324 5.719±3.119 99.736±0.324

Table 5. F1-Score reached by CNN and Classifiers with estimated RGB-De images taken from
the AdaBins block pre-trained weights with the NYU dataset.

RGB-De
hhhhhhhhhhhhArchitecture

Classifier
Bayes kNN RF MLP SVM (Linear) SVM (Poly.) SVM (RBF)

VGG16 91.304±0.707 99.874±0.250 99.007±0.851 99.552±0.600 99.584±0.340 3.402±2.388 99.718±0.344
VGG19 82.290±1.735 99.331±0.734 99.369±0.542 98.666±1.160 99.489±0.465 1.991±2.600 99.489±0.465

MobileNet 97.482±1.283 99.865±0.269 99.753±0.304 99.314±0.398 99.437±0.502 99.606±0.520 99.730±0.329
InceptionV3 97.267±0.687 98.764±0.346 98.472±0.781 97.160±2.464 98.855±0.594 29.675±2.176 98.855±0.594
Xception 96.953±0.565 99.212±0.988 99.314±0.477 98.946±1.197 99.337±0.752 88.378±1.668 99.212±0.988
ResNet50 76.467±1.291 97.673±1.242 98.112±0.910 96.146±1.886 98.765±0.491 1.583±2.765 98.765±0.491

InceptionResNetV2 94.334±1.032 98.373±1.268 97.393±1.214 96.213±4.736 98.570±0.939 4.817±3.820 98.583±0.949
NASNetMobile 93.866±0.651 97.188±0.852 97.536±0.428 97.387±1.163 98.136±0.781 96.773±1.236 98.441±0.797
DenseNet121 96.133±1.170 99.621±0.756 99.688±0.381 98.924±1.320 99.521±0.672 0.993±0.928 99.521±0.672
DenseNet169 96.698±1.121 99.625±0.503 98.989±1.141 99.595±0.538 99.474±0.501 3.145±2.347 99.474±0.501
DenseNet201 97.557±1.633 99.874±0.250 99.749±0.307 99.479±0.636 99.717±0.347 1.630±2.365 99.717±0.347

Table 6. Number of attributes and extration time returned by each CNN architecture

CNN Architecture Number of attributes
Extraction Time (ms)

RGB-D RGB-De (NYU) RGB-De (KITTI)

VGG16 512 21.256±31.036 21.252±31.732 22.099±48.433
VGG19 512 25.770±11.220 25.817±11.940 26.768±28.478

MobileNet 1024 8.895±34.690 8.710±30.262 11.871±109.150
InceptionV3 2048 36.081±69.628 36.656±74.127 40.619±140.990
Xception 2048 32.868±25.068 32.995±25.965 35.109±58.785
ResNet50 2048 26.233±27.794 25.928±28.885 28.324±57.001

InceptionResNetV2 1536 80.095±106.805 81.290±121.896 91.352±283.922
NASNetMobile 1056 42.908±140.504 45.862±162.584 68.680±308.278
DenseNet121 1024 38.621±139.208 40.873±166.983 48.318±290.044
DenseNet169 1664 56.857±180.714 58.986±201.686 68.588±355.374
DenseNet201 1920 75.657±231.761 76.068±260.249 89.623±461.305

Table 7. Accuracy reached by CNN and Classifiers with RGB-De images taken from the AdaBins
block pre-trained weights with the KITTI dataset.

RGB-De
hhhhhhhhhhhhArchitecture

Classifier
Bayes kNN RF MLP SVM (Linear) SVM (Poly.) SVM (RBF)

VGG16 91.597±1.558 100.000±0.000 99.747±0.309 99.737±0.321 100.000±0.000 6.729±2.430 100.000±0.000
VGG19 89.260±1.431 99.209±0.972 98.815±1.213 98.802±1.003 99.577±0.845 14.633±6.406 99.442±0.820

MobileNet 98.365±0.842 99.876±0.246 99.317±0.434 99.593±0.545 99.863±0.273 99.454±0.274 99.863±0.273
InceptionV3 97.161±0.888 99.029±1.066 98.516±0.706 97.164±2.024 99.181±0.799 59.929±2.953 99.321±0.599
Xception 97.214±0.825 99.349±0.570 99.339±0.411 99.474±0.488 99.604±0.324 98.025±1.141 99.604±0.324
ResNet50 83.686±2.996 97.340±1.315 95.626±1.372 95.432±2.659 97.901±1.054 10.809±8.592 97.896±0.821

InceptionResNetV2 95.861±0.796 98.535±0.475 98.945±0.689 99.201±0.517 99.074±0.687 61.871±2.533 99.074±0.687
NASNetMobile 92.964±3.520 97.981±0.780 98.215±0.990 95.391±4.993 99.039±0.717 98.778±0.912 99.039±0.717
DenseNet121 95.707±0.915 99.585±0.545 99.327±0.740 99.585±0.545 99.720±0.342 13.151±6.568 99.720±0.342
DenseNet169 98.941±0.515 99.708±0.583 99.592±0.334 99.446±0.539 99.738±0.321 13.441±2.801 100.000±0.000
DenseNet201 96.497±0.658 99.595±0.332 99.364±0.569 99.330±0.043 99.722±0.340 11.269±5.554 99.722±0.340

Table 8. F1-Score reached by CNN and Classifiers with RGB-De images taken from the AdaBins
block pre-trained weights with the KITTI dataset.

RGB-De
hhhhhhhhhhhhArchitecture

Classifier
Bayes kNN RF MLP SVM (Linear) SVM (Poly.) SVM (RBF)

VGG16 89.628±1.821 100.000±0.000 99.762±0.291 99.744±0.314 100.000±0.000 3.794±2.374 100.000±0.000
VGG19 87.553±1.681 99.154±1.040 98.718±1.341 98.642±1.162 99.534±0.931 6.717±3.840 99.386±0.903

MobileNet 98.211±0.924 99.878±0.242 99.200±0.530 99.570±0.566 99.830±0.338 99.365±0.320 99.830±0.338
InceptionV3 97.050±0.969 98.974±1.137 98.479±0.800 97.146±2.038 99.173±0.800 58.474±2.888 99.307±0.606
Xception 97.019±0.864 99.385±0.537 99.337±0.416 99.506±0.474 99.628±0.305 98.017±1.143 99.628±0.305
ResNet50 82.218±3.065 97.091±1.445 95.410±1.393 95.019±3.158 97.715±1.149 4.415±5.474 97.712±0.924

InceptionResNetV2 95.667±0.888 98.458±0.485 98.936±0.669 99.112±0.631 99.014±0.789 64.089±2.722 99.014±0.789
NASNetMobile 92.667±3.630 97.965±0.675 98.113±1.025 95.283±5.080 98.986±0.734 98.756±0.877 98.976±0.748
DenseNet121 95.062±1.260 99.547±0.569 99.282±0.798 99.548±0.568 99.694±0.387 6.867±5.338 99.694±0.387
DenseNet169 98.893±0.575 99.712±0.575 99.618±0.314 99.457±0.545 99.753±0.304 6.746±2.665 100.000±0.000
DenseNet201 94.984±1.182 99.515±0.412 99.269±0.626 99.192±0.171 99.718±0.356 6.990±5.994 99.718±0.356

proved to be an efficient method for the task of mobile
robot location estimation and navigation support, achiev-
ing 100% in Accuracy and F1-Score with depth estimation
images from pre-trained model with outdoor Dataset, and
99.8% with indoor Dataset. The processing times per-
formed were also suitable for a computer vision system,
with values of 8.710ms and 0.024s, and 11.871ms and
0.028s, for the extraction and training times for RGB-De
(NYU) and RGB-De (KITTI), respectively.

For future work, outdoor environments and other indoor
environments will be tested with this approach. In addi-
tion, we can evaluate others depth estimation methods
such as M4Depth, present in Fonder et al. (2021), or Fast-
Depth, present in Wofk et al. (2019). We can apply other
machine learning techniques such as the Optimum-Path
Forest (OPF), presented in Nunes et al. (2014), and still
utilize other CNN architectures, such as ResNeXt-50 (Xie
et al., 2016), and CapsNet (Sabour et al., 2017). Another
important aspect involves evaluating simpler classification
methods by applying the raw images directly, and in this
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Table 9. Training time(s) and function call time(s) for kNN of the Classifiers with RGB-D images
obtained from Kinect sensor

RGB-D
hhhhhhhhhhhhArchitecture

Classifier
Bayes kNN RF MLP SVM (Linear) SVM (Poly.) SVM (RBF)

VGG16 0.027±0.006 0.024±0.001 5.919±1.349 42.061±9.755 1.286±0.064 2.372±0.053 1.350±0.053
VGG19 0.051±0.023 0.024±0.000 6.956±1.747 54.409±14.176 1.302±0.074 2.389±0.025 1.447±0.040

MobileNet 0.043±0.013 0.053±0.001 9.063±2.557 110.412±41.555 3.111±0.055 2.939±0.034 3.256±0.066
InceptionV3 0.098±0.018 0.178±0.110 11.953±2.348 67.547±24.147 6.068±0.103 8.909±0.266 6.438±0.112
Xception 0.087±0.011 0.163±0.071 14.665±1.735 126.040±51.244 5.683±0.079 9.223±0.279 5.794±0.101
ResNet50 0.123±0.017 0.121±0.004 51.246±1.704 299.568±83.043 4.326±0.101 8.926±0.240 4.530±0.109

InceptionResNetV2 0.075±0.018 0.090±0.004 42.111±3.417 145.097±54.793 4.329±0.083 6.799±0.207 4.515±0.073
NASNetMobile 0.090±0.024 0.051±0.003 35.841±1.852 137.584±35.169 3.009±0.100 2.871±0.084 4.168±0.094
DenseNet121 0.038±0.000 0.056±0.004 9.864±2.132 124.647±49.385 2.778±0.058 4.566±0.140 3.129±0.049
DenseNet169 0.080±0.027 0.088±0.002 13.492±2.729 147.620±52.917 4.385±0.113 7.171±0.211 4.689±0.098
DenseNet201 0.079±0.014 0.109±0.002 31.235±1.370 186.674±66.198 4.985±0.084 8.323±0.231 5.356±0.080

Table 10. Training time(s) and function call time(s) for kNN of the Classifiers with RGB-De
images taken from the AdaBins block pre-trained weights with the NYU dataset.

RGB-De
hhhhhhhhhhhhArchitecture

Classifier
Bayes kNN RF MLP SVM (Linear) SVM (Poly.) SVM (RBF)

VGG16 0.049±0.017 0.024±0.002 26.114±2.707 62.683±18.757 1.305±0.149 2.627±0.228 2.257±0.045
VGG19 0.113±0.080 0.025±0.001 24.468±9.099 55.731±23.876 1.411±0.038 2.866±0.085 2.421±0.062

MobileNet 0.056±0.008 0.072±0.016 16.663±6.779 70.738±24.376 3.062±0.039 3.070±0.055 4.566±0.066
InceptionV3 0.069±0.011 0.129±0.033 11.424±2.465 290.229±111.480 6.442±0.115 8.956±0.222 6.964±0.138
Xception 0.091±0.020 0.148±0.041 23.374±2.374 131.792±50.627 5.377±0.091 8.426±0.111 7.679±0.137
ResNet50 0.107±0.029 0.145±0.005 16.438±2.878 410.348±107.988 4.817±0.103 9.948±0.269 5.200±0.074

InceptionResNetV2 0.063±0.005 0.082±0.004 6.977±1.744 166.297±58.708 4.007±0.070 6.793±0.225 5.028±0.129
NASNetMobile 0.059±0.014 0.055±0.002 9.965±2.093 116.031±40.760 3.015±0.071 3.278±0.107 4.574±0.123
DenseNet121 0.044±0.006 0.056±0.003 13.339±2.684 103.971±39.986 2.384±0.049 4.429±0.111 2.668±0.050
DenseNet169 0.058±0.005 0.101±0.012 10.693±2.624 80.411±26.885 4.045±0.070 7.116±0.182 5.638±0.084
DenseNet201 0.079±0.011 0.154±0.090 33.409±1.510 97.632±32.946 4.600±0.082 8.478±0.250 5.341±0.153

Table 11. Training time(s) and function call time(s) for kNN of the Classifiers with RGB-De
images taken from the AdaBins block pre-trained weights with the KITTI dataset.

RGB-De
hhhhhhhhhhhhArchitecture

Classifier
Bayes kNN RF MLP SVM (Linear) SVM (Poly.) SVM (RBF)

VGG16 0.047±0.019 0.028±0.002 36.526±1.529 50.299±19.809 1.411±0.086 2.805±0.122 1.565±0.030
VGG19 0.041±0.013 0.031±0.004 27.102±2.609 66.370±20.671 1.377±0.108 2.671±0.056 1.666±0.110

MobileNet 0.048±0.007 0.076±0.037 14.015±3.005 57.264±24.453 3.264±0.074 3.116±0.068 4.017±0.070
InceptionV3 0.113±0.024 0.210±0.083 46.377±2.200 198.043±81.017 6.977±0.124 9.622±0.257 8.813±0.215
Xception 0.099±0.014 0.125±0.005 30.111±2.605 118.055±54.341 5.103±0.159 5.516±0.171 5.523±0.123
ResNet50 0.109±0.009 0.162±0.062 12.591±2.571 355.899±44.826 4.277±0.093 10.137±0.221 5.344±0.101

InceptionResNetV2 0.101±0.047 0.128±0.055 17.968±3.033 185.668±73.678 4.481±0.064 6.972±0.145 4.724±0.058
NASNetMobile 0.067±0.019 0.055±0.001 12.781±2.007 151.102±35.603 2.969±0.062 2.916±0.070 3.323±0.056
DenseNet121 0.045±0.000 0.054±0.002 51.697±1.842 155.797±62.362 2.726±0.072 5.045±0.131 3.718±0.107
DenseNet169 0.081±0.026 0.109±0.021 34.326±2.357 32.265±10.791 4.513±0.128 8.174±0.244 6.965±0.174
DenseNet201 0.069±0.015 0.117±0.013 27.906±2.056 150.570±47.949 5.111±0.084 9.263±0.300 5.373±0.139

context we can mention the Nearest Neighbors (NN),
Minimum Distance Classifier (MDC), and the Linear and
Quadratic Classifier (CQ and LMQ).
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