An Approach to Location Estimation and Navigation Support Aided by Depth Estimation Map

F. Geilson de L. Xavier * Suane Pires P. da Silva **,**** J. Jerovane da C. Nascimento ***,**** Pedro Pedrosa R. Filho *,**,****

* Programa de Pós-Graduação em Engenharia Elétrica (PPGEE), Universidade Federal do Ceará (UFC), Fortaleza/CE, (e-mail: geilsonxavier@gmail.com)
** Programa de Pós-Graduação em Engenharia de Teleinformática (PPGETI), Universidade Federal do Ceará (UFC), Fortaleza/CE, (e-mail: suanepires@lapisco.ifce.edu.br)
*** Programa de Pós-Graduação em Ciência da Computação (PPGCC), Instituto Federal de Educação, Ciência e Tecnologia do Ceará (IFCE), Fortaleza/CE, (e-mail: jerovane.nascimento@lapisco.ifce.edu.br)
**** Laboratório de Processamento de Imagens e Simulação Computacional (LAPISCO), Instituto Federal de Educação, Ciência e Tecnologia do Ceará (IFCE), Fortaleza/CE, (e-mail: pedrosarf@ifce.edu.br)

Abstract: Depth sensing is essential to many robotic tasks, with mapping, localization and obstacle avoidance. In small robotic platforms, weight, volume and energy consumption limitations motivate the use of depth estimation using a monocular camera instead of depth sensors. This paper propose an approach for localization of autonomous mobile robots in an indoor environment using monocular vision aided by depth estimation maps from a single RGB input image applied to the concept of Transfer Learning linked to Convolutional Neural Networks (CNNs). The performance of classifiers in estimate the location was observed and compared using of a unique configuration of RGB-D images transformed into a mosaic image. The images were combined with the descriptive power of CNNs in the following scenarios: depth captured by the Kinect sensor and depth estimation generated by the AdaBins block. With the results, the performances of the classifiers were analyzed to evaluate the proposed approach.

Keywords: Robotic Systems, Deep Transfer Learning, Convolutional Neural Network, RGB-D Machine Learning, Topological Maps, Indoor Environment, Computer Vision.

1. INTRODUCTION

Mobile Robotics applications can be found in agricultural, industrial, military, domestic environments, among others. Because of the wide variety of uses of this technology, the localization task is one of the most searched topics regarding mobile robots (Li and Shi, 2018), since this is the means to an end, i.e. search and rescue, mining, delivery of people and cargo, all these activities depend on it.

But the localization task is not just the definition of absolute position in space (Elaraby et al., 2018). It is also extremely important that robotic platforms have the ability to explore depth cues of the environment.

The localization task must be performed by an appropriate system according to the operating environment. According to Zhang et al. (2016) and Wang et al. (2020) Image Recognition based on a computer vision system is one of the most recent methods to locate mobile robots in indoor environments. Its use is advantageous, as it requires less installation space, is robust to environmental conditions, captures RGB images, is a widespread technology, has efficient energy consumption and low cost (Ma and Karaman, 2018).

This work proposes the development and analysis of to location estimation and navigation support system for mobile robots by computer vision aided by depth estimation, using Convolutional Neural Networks (CNNs) allied to the concept of Transfer Learning, which allows this method to be applied as a feature extractor. The classifiers tested were: the Bayesian Classifier, k-Nearest Neighbor (kNN), Random Forest, Multi-layer Perceptron (MLP) and Support Vector Machine (SVM).

For this work, an indoor environment was mapped using the topological approach. The images were acquired by the Microsoft Kinect RGB-D sensor and the following data sets were built: RGB images; depth images (D); RGB-D mosaic images; depth estimation images (De) and RGB-De mosaic images.

The strategy of this solution is based on location estimation by computer vision using the mosaic images from the combination of the RGB and depth estimation images with practical applications directly linked to mobile robots using the a monocular vision, as an alternative to the more robust sensors such as Light Detection and Ranging (LiDAR) and depth sensors.

The works proposed by da Silva et al. (2020), Islam and Park (2021) and Akai (2022) are similar to this work. In da Silva et al. (2020) the Kinect sensor is used to obtain the location of the mobile robot through RGB and depth mosaic images. The authors in Islam and Park (2021) propose a fine-tuned generative adversarial network to estimate the depth map effectively for a given single RGB image. Meanwhile in Akai (2022) it is presented a mobile robot localization method that uses CNNs to regress the depth from the camera images and performs comparison experiments using a manually created dataset using only a visual inertial odometry sensor, and the KITTI odometry dataset.

In Guo (2022) a turtlebot robot, equipped with odometer, RGB-D camera and laser, and odometer was used to test a cooperative positioning method based on deep laser and vision fusion aiming at the problem of robot positioning. However, in our approach, we use the Kinect sensor as a monocular vision device to obtain the location of the mobile robot through RGB images and depth estimation mosaic, eliminating the use of other sensors.

The focus of the proposed work is to use Transfer Learning to create depth maps from pre-trained models on popular indoor and outdoor Datasets. To evaluate the use of a monocular vision image map and depth estimation image map with mosaic image configuration to estimate robot location in an indoor environment using CNNs as a feature extractor, as also evaluated different machine learning methods.

The results showed that approach obtained 100% in Accuracy and F1-Score with depth estimation images from pre-trained model with outdoor Dataset, and 99.8% with indoor Dataset, thus confirming its efficiency and reliability.

The main contributions of this paper are:

- Efficient use of an RGB-De mosaic image;
- Use and evaluation of CNNs as feature extractors combined with classic machine learning methods;
- Indoor location estimation based on computer vision;
- Outstanding results with the Transfer Learning technique.

The rest of this article is structured as follows: Section 2 gives a brief description of the Transfer Learning technique, the machine learning methods and the method of monocular depth estimation used. Section 3 explains the methodology adopted, detailing the development of the proposed approach. Section 4 gives the results, and highlights the best performances. Finally, Section 5 presents the conclusion and future works.

2. OVERVIEW OF CNNS, MACHINE LEARNING METHODS AND DEPTH ESTIMATION METHOD

Originally started from LeCun et al. (1989), CNNs became known when Krizhevsky et al. (2012) used the algorithm in the ImageNet 2012 Large Scale Visual Recognition Challenge (ILSVRC-2012) achieving good results. The goal in ILSVRX-2012 was to solve classification tasks that consisted of 1000 classes and over 1 million samples (Krizhevsky et al., 2012; Deng et al., 2009).

From the results obtained by Krizhevsky et al. (2012), other CNNs architectures were developed in order to improve the results achieved. Among the architectures that emerged are VGG (Simonyan and Zisserman, 2015), MobileNet (Howard et al., 2017), Inception (Szegedy et al., 2015), Xception (Chollet, 2017), NasNet (Zoph and Le, 2017), ResNet (He et al., 2016), DenseNet (Huang et al., 2017) and Inception-Resnet (Szegedy et al., 2016).

2.1 CNNs as a Feature Extractor

Choosing a database to train a Convolutional Neural Network (CNN) satisfactorily can become a very problematic task depending on the desired application (Karpathy et al., 2014; Molchanov et al., 2016). However, this impasse can be resolved using the concept of Transfer Learning (Karpathy et al., 2014; Molchanov et al., 2016; Alexandre, 2014). It ensures that knowledge gained during a problem solving task can be reused to solve a similar problem (Pan and Yang, 2010; Weiss et al., 2016). Using Tansfer Learning does not require large scale training data (Pan and Yang, 2010) and the training time to achieve equivalent accuracy can be reduced (Tang et al., 2019).

To take advantage of the power of a pre-trained CNN one must follow two steps: i) one must eliminate the last fully connected layer of the model and then ii) one must resize the input of the discarded layer to a onedimensional vector (Karpathy et al., 2014; Molchanov et al., 2016; Alexandre, 2014). In this way, the pre-trained model is used as a feature extractor and is no longer considered a classifier, in accordance with what was used in our proposal. The transfer learning concept is detailed in da Nobrega et al. (2018), who used the technique to perform the classification of pulmonary nodules.

2.2 Machine Learning Methods

The classification task can be performed on the deep features returned by the CNNs. This section summarizes the five techniques of machine learning used in this paper.

The Bayesian Classifier is a probabilistic and supervised technique. It is used to categorize samples by the proportion of each sample that belongs to a given class (Theodoridis and Koutroumbas, 2008). For this, it marks the samples based on the a posteriori probability value that is calculated from conditional densities and a priori probability (Theodoridis and Koutroumbas, 2008).

K-Nearest Neighbor (kNN) is a supervised machine learning technique. It describes the category to which a sample belongs according to the characteristics of the k nearest neighbors from the training set. The variable k is the number of nearest neighbors used to find out which category the proposed sample belongs to.

The Random Forest algorithm is based on the Decision Tree Method. It introduces supervised learning and aims to create decision trees from a collection of characteristics chosen arbitrarily from the original set. Learning is done with bagging, a meta-algorithm that improves model selection and regression according to the model's stabilization and accuracy (Breiman, 2004).

Multilayer Perceptron (MLP) is a multilayer neural network structure. It is a perceptron composition for dealing with nonlinearly separable questions (Haykin, 2010). The impulses propagate to subsequent layers from the input layer, that initially receives the feature vector. Adjusted by weights, the pulses can be transmitted through the neuronal links (Haykin, 2010).

Based on the Theory of Statistical Learning developed by Vapnik (2000), the Support Vector Machine (SVM) has as main objective to identify surface categories that boost the length between them. To do so, he must demarcate the space models and their entries proportionally to a large feature vector.

2.3 Monocular Depth Estimation Method

Monocular depth estimation has been considered by many CNN methods as a regression of a dense depth map from a single RGB image (Alhashim and Wonka, 2018; Fu et al., 2018; Hao et al., 2018; Hu et al., 2019; Huynh et al., 2020; Lee et al., 2019; Xu et al., 2018).

The current architectures do not perform enough global analysis of the output values. A drawback of convolutional layers is that they only process global information once the tensors reach a very low spatial resolution at or near the bottleneck. For this reason, this paper uses a transformer based architecture block call AdaBins whose architecture is detailed in Bhat et al. (2021). This Block divides the depth range into bins whose center value is estimated adaptively per image. The final depth values are estimated as linear combinations of the bin centers (Bhat et al., 2021).

3. METHODOLOGY

Figure 1 shows the steps of the methodology of our approach. The first step is Image Acquisition, in which the Kinect sensor using the open-source libfreenect software available in the OpenKinect community captures the RGB and depth-of-environment images (Sarbolandi et al., 2015).

The community makes this library available for Kinect versions v1 and v2 (github.com/OpenKinect/libfreenect). In this paper, we used version 1 of this library. The next step is the preprocessing step. Here, initialy, are estimate two high quality dense depth map from a each RGB input image via the AdaBins block (Bhat et al., 2020). The depths maps are genereted using AdaBins block pretreined with two popular indoor and outdoor datasets, NYU (Silberman et al., 2012) and KITTI (Geiger et al., 2013) respectively. Then all images are scaled to the size of 320 x 240 pixels and concatenated to give the mosaic RGB-D and RGB-De image dataset, where the tiled images have a size of 640 x 480 pixels. Copies of the full-sized depth original and estimated images are made for the composition of the depth image dataset. The following step is Feature Extraction, which returns the feature vectors that will serve as input to the Machine Learning techniques, which perform the classification task; thus, completing the last step of the process.

All datasets genereted (Depth, RGB-D, Depth estimated and RGB-De) have 50 samples per class, totaling 1500 samples for each dataset. Figure 2 shows examples of samples from each class and which physical room they are in. Figure 3 show a example of sample for the depth estimation genereted by AdaBins Block.

The environment for the navigation of the robot was the second floor of a university campus building. The indoor environment, which is a controlled environment, has characteristics that assist in the localization and navigation of the robot.

Figure 4 shows the topological map of the environment, which is made by six rooms, which are referred to as R1 to R6. Each room is divided into one or two nodes, totaling in nine nodes, labeled with letters A through I; each node represents the position of the robot in the room. The nodes are divided into classes, which are the possible directions performed by the robot, and are labeled from C1 to C30. These classes consist of the classes of our approach. If the robot identifies the class, it can define the direction it should go, and node and room in which it is.

Table 1 illustrates some of the routes that the mobile robot can follow in the environment. Five distinct commands for the locomotion task were given for the C20 to C9 route. The robot begins at C20 (node F). First a command to turn 90° to the right is sent to it, sequentially, two "go forward" commands are given. Then, another command is sent to the robot to turn 90° to the left, and another command to go forward is received by the robot, and thus it reaches its destination, which corresponds to C9 (node C).

Table 1. Example of routes that can be performed by the mobile robot based on the topological map and using the available commands. Commands: GF - Go Forward; TR90 - Turn Right 90°; TL90 - Turn Left 90°; TR180 - Turn Right 180°; TL180 - Turn Left 180°.

Route	Commands
C1 to $C7$	GF, TL90
C7 to $C16$	TL90, GF, GF, TR90, GF, TR90, GF, TL180
C16 to $C20$	TR180, GF, TL90
C20 to $C9$	TR90, GF, GF, TL90, GF
C9 to $C25$	GF, GF
C25 to $C30$	TR180, GF, TL90, GF, TR90
C30 to $C6$	TR90, GF, TL90, GF, TR90, GF, GF, TL180
C6 to $C1$	GF, TR180

The following CNN architectures were considered for the feature extraction step: VGG16, VGG19, MobileNet, ResNet50, InceptionV3, Xception, InceptionResNetV2, DenseNet121, DenseNet169, DenseNet201, and NASNet-Mobile. Table 6 presents the number of attributes extracted by each architecture.

Figure 1. Flowchart of the adopted methodology in 5 steps: (1) Image Acquisition using the Kinect Sensor; (2) Preprocessing images to create the datasets: RGB-D and RGB-De; (3) Feature extraction with eleven CNN architectures; (4) Classification with five methods of machine learning; (5) Evaluation of the results in all datasets.

Figure 2. Examples of samples of the dataset for each class.

Figure 3. Example of sample of depth estimation for a dataset class.

Figure 4. Topological map of the environment.

In the classification processes, the Bayesian classifier operated with the Gaussian probability density function. The hyperparameter k from the kNN classifier was chosen through a grid search, testing the odd values from 1 to 11. The MLP carried out its training using the Levenberg-Marquardt method with neurons ranging from 2 to 1000 in

the hidden layer. SVM used linear and RBF kernels, and the hyperparameters C and γ with $2^{-5}, 2^{-4}, 2^{-3}, ..., 2^{15}$ and $2^{-15}, 2^{-14}, ..., 2^5$ values, respectively. The MLP and SVM hyperparameters were determined through crossvalidation with 10-folds. The random search for Random Forest was used to find: the number of features for the best split (1,2,3,...,or 10); the maximum tree depth to be used (6 or none); the minimum number of samples required to split an internal node (1,2,3,...,or 10); the minimum number of samples per leaf to be used (1,2,3,...,or 10); whether bootstrap samples should be used when building trees or not, and which function should be used to measure the quality of a split (gini or entropy). Furthermore, the Random Forest training process used 3000 estimators.

The following measures were used to evaluate the performance of the classifiers: the micro averaged Accuracy and F1-Score. F1-Score was used because both metrics Precision and Recall are essential for the system since false positives and false negatives are not desirable.

4. RESULTS AND DISCUSSION

In this section, we discuss the results obtained by combining the extraction of features using CNNs and the machine learning methods of both datasets. The images were randomly divided into 10 groups, 20% for testing and the rest for training, in each of the 10 iterations.

The hardware infrastructure used in the solution was an Intel Core i7 7th Gen with 16Gb of memory and NVIDIA GeForce GTX 1050 Ti 4Gb with GPU, running Windows 10 Professional 64-bit operating system. The part of the system that actually performs the image processing was developed in Python language and uses the TensorFlow, Keras libraries, and SciKit Learning with the use of feature extractors and classification with neural networks and CNNs.

Tables 2 and 3 present the mean values and standard deviations of Accuracy and F1-Score, respectively, for image datasets obtained from Kinect sensor. The Tables 4 and 5, for the AdaBins block pre-trained weights with the NYU dataset (indoor Dataset) and the Tables 7 and 8, for the AdaBins block pre-trained weights with the KITTI dataset (outdoor Dataset), respectively. The best values are highlighted in green in the all Tables.

Table 2. Accuracy reached by CNN and Classifiers with RGB-D images obtained from Kinect sensor

RGB-D									
Classifier	Bayes	kNN	RF	MLP	SVM (Linear)	SVM (Poly.)	SVM (RBF)		
VGG16	90.943 ± 0.951	99.358 ± 0.561	98.784 ± 0.538	97.441 ± 1.865	99.629 ± 0.486	4.597 ± 1.191	99.629 ± 0.486		
VGG19	92.069 ± 1.639	99.211 ± 0.635	98.782 ± 0.803	98.634 ± 0.957	99.324 ± 0.712	15.505 ± 3.476	99.324 ± 0.712		
MobileNet	96.789 ± 0.508	99.873 ± 0.253	98.431 ± 0.854	99.193 ± 0.768	99.746 ± 0.506	99.746 ± 0.506	99.873 ± 0.253		
InceptionV3	96.207 ± 1.205	97.726 ± 0.795	98.487 ± 0.878	99.041 ± 0.608	98.899 ± 0.981	9.569 ± 5.327	98.899 ± 0.981		
Xception	95.942 ± 1.438	99.352 ± 0.588	98.270 ± 1.007	98.623 ± 0.933	99.316 ± 0.630	17.474 ± 8.369	99.316 ± 0.630		
ResNet50	83.280 ± 1.943	92.362 ± 2.005	96.098 ± 2.067	85.882 ± 19.318	96.661 ± 1.481	8.385 ± 4.033	96.779 ± 1.583		
InceptionResNetV2	93.400 ± 2.494	97.996 ± 0.449	97.684 ± 1.413	98.484 ± 1.213	98.635 ± 0.893	12.566 ± 2.087	98.635 ± 0.893		
NASNetMobile	90.628 ± 0.886	96.283 ± 1.325	96.030 ± 0.944	94.456 ± 2.283	97.973 ± 0.531	96.620 ± 1.230	97.973 ± 0.531		
DenseNet121	87.624 ± 1.673	99.463 ± 0.270	99.327 ± 0.608	99.183 ± 0.828	99.437 ± 0.848	14.330 ± 7.396	99.437 ± 0.848		
DenseNet169	95.574 ± 0.738	99.594 ± 0.332	99.581 ± 0.572	99.449 ± 0.535	99.722 ± 0.340	6.967 ± 3.109	99.722 ± 0.340		
DenseNet201	93.721 ± 1.490	$99.456 {\pm} 0.517$	$99.580 {\pm} 0.557$	99.061 ± 0.529	99.470 ± 0.513	8.321 ± 7.803	99.737 ± 0.322		

Table 3. F1-Score reached by CNN and Classifiers with RGB-D images obtained from Kinect sensor

	RGB-D									
Classifier	Bayes	kNN	RF	MLP	SVM (Linear)	SVM (Poly.)	SVM (RBF)			
VGG16	88.137 ± 0.916	99.275 ± 0.644	98.726 ± 0.584	97.165 ± 2.004	99.579 ± 0.568	0.807 ± 0.552	99.579 ± 0.568			
VGG19	90.894 ± 1.725	99.190 ± 0.659	98.818 ± 0.793	98.675 ± 0.953	99.306 ± 0.737	8.866 ± 2.863	99.306 ± 0.737			
MobileNet	96.984 ± 0.473	99.888 ± 0.223	98.496 ± 0.771	99.154 ± 0.812	99.771 ± 0.457	99.771 ± 0.457	99.888 ± 0.223			
InceptionV3	96.058 ± 1.340	97.590 ± 0.781	98.352 ± 0.943	98.936 ± 0.624	98.788 ± 0.978	3.963 ± 3.251	98.788 ± 0.978			
Xception	95.458 ± 1.759	99.314 ± 0.601	98.154 ± 1.105	98.533 ± 1.119	99.246 ± 0.685	9.524 ± 7.171	99.246 ± 0.685			
ResNet50	81.546 ± 2.297	91.985 ± 2.173	95.841 ± 2.206	85.215 ± 20.573	96.528 ± 1.570	2.386 ± 2.276	96.658 ± 1.649			
InceptionResNetV2	92.842 ± 2.711	97.912 ± 0.445	97.479 ± 1.605	98.337 ± 1.386	98.501 ± 0.960	10.386 ± 1.784	98.501 ± 0.960			
NASNetMobile	89.585 ± 1.361	95.914 ± 1.528	95.666 ± 1.101	94.023 ± 2.538	97.857 ± 0.534	96.160 ± 1.495	97.834 ± 0.574			
DenseNet121	84.637 ± 1.725	99.479 ± 0.264	99.268 ± 0.651	99.123 ± 0.922	99.355 ± 0.987	8.362 ± 6.364	99.355 ± 0.987			
DenseNet169	94.123 ± 0.881	99.582 ± 0.341	$99.584 {\pm} 0.558$	99.392 ± 0.599	99.682 ± 0.390	2.197 ± 2.264	99.682 ± 0.390			
DenseNet201	92.227 ± 2.189	99.461 ± 0.503	99.605 ± 0.522	99.093 ± 0.500	99.497 ± 0.496	3.040 ± 4.841	99.766 ± 0.285			

Tables 2 and 3 shows that the highest accuracy and F1score were achieved by combining the MobileNet architecture with the kNN and SVM (RBF) Classifiers, with 99.873% and 99.888% respectively for RGB-D mosaic images. The worst result was obtained by the combination of the VGG16 architecture with the SVM Polynomial Classifier obtained only an accuracy of 4.597% and F1score of 0.807%.

For the RGB-De mosaic images (depth estimation pretrained with NYU Dataset), the highest accuracy was achieved by combining the VGG16 architecture with the kNN Classifier, with 99.872% as show in Table 4. The combination of the kNN Classifier with the MobileNet and DenseNet201 Architectures also stands out in the Table 4. They present an accuracy greater than 99.8%. Already, in Table 5 the highest F1-Score were achieved by combining the VGG16 and DenseNet201 Architectures with the kNN Classifier, with 99.874%. But, the combination with MobileNet Architecture also stands out with F1-score greater than 99.8%. The worst results of accuracy and F1-Score were obtained by the DenseNet121 Architecture combining with SVM Polynomial classifier, with 4.243% and 0.993% in Tables 4 and 5 respectively.

For the RGB-De mosaic images (depth estimation pretrained with NYU Dataset), the highest accuracy and F1-Score were achieved in 4 different combinations in the Tables 7 and 8, all with a value of 100%. The worst results of accuracy and F1-Score were obtained by the combination of the VGG16 architecture with the SVM Polynomial Classifier obtained only an accuracy of 6.729% and 3.794%, respectively.

These results show that the RGB-De mosaic images performed well using the depth estimation approach when compared to the RGB-D mosaic images approach (depth sensor). For this approach, we can highlight the performance of the kNN Classifier combined with the VGG16 and MobileNet Architectures. These combinations present results superior to 99.8% for the RGB-De images generated from the obtained depth estimates. In general, the use of pre-trained weights indoors or outdoors to generate depth estimation showed no loss of performance in the classifiers. However, the depth estimation generated when the model was pre-trained with an outdoor Dataset bring less detail to objects closer to the camera, making the classification more general. This can be seen by the 100% accuracy in some combinations of classifiers and architectures.

Table 6 shows the extraction times of each CNN architecture used. For the mosaic images RGB-D, RGB-De (NYU) and RGB-De (KITTI), the MobileNet architecture had the shortest extraction time of 8.895 ms, 8.710 ms and 11.871 ms while in contrast, the InceptionResNetV2 architecture had the longest time of 80.095 ms, 81.290 ms and 91.352 ms.

In order to compare other classification methods with the kNN the function call time was calculated because this distance-based classification method does not require mathematical training and only needs memory to store the data.

Tables 9, 10 and 11 presents the training times of each classifier, considering all databases. The classifier that achieved the shortest training time for the RGB-D and RGB-De (NYU and KITTI) mosaic images was the kNN, with values of 0.024s, 0.024s and 0.028s respectively, with the attributes returned by the VGG19 and VGG16 architectures.

5. CONCLUSION

In this article, is presented a approach for location estimation and consequently support for mobile robot navigation. The work consists of a computer vision system using Deep Transfer Learning, by combining the concept of Transfer Learning with CNN, and monocular vision for depth estimate as from image acquisition. The results of the proposed approach are compared with results generated from depth images obtained by a Kinect sensor. The localization of the robot was performed in an indoor environment and the images acquired from the sensor are organized to give rise to new images, creating an RGB-D mosaic image database.

The depth estimation applied in the proposed Deep Transfer Learning approach using the RGB-De mosaic images

Table 4. Accuracy reached by CNN and Classifiers with estimated RGB-De images taken from
the AdaBins block pre-trained weights with the NYU dataset.

RGB-De										
Classifier	Bayes	kNN	RF	MLP	SVM (Linear)	SVM (Poly.)	SVM (RBF)			
VGG16	93.079 ± 0.791	99.872 ± 0.254	99.081 ± 0.781	99.621 ± 0.507	99.609 ± 0.320	9.834 ± 2.580	99.749 ± 0.307			
VGG19	84.194 ± 1.348	99.356 ± 0.698	99.365 ± 0.559	98.689 ± 1.121	99.488 ± 0.477	7.047 ± 3.511	99.488 ± 0.477			
MobileNet	97.460 ± 1.288	99.870 ± 0.258	99.744 ± 0.313	99.326 ± 0.434	99.473 ± 0.480	99.617 ± 0.507	99.744 ± 0.313			
InceptionV3	97.312 ± 0.666	98.790 ± 0.293	98.501 ± 0.785	97.138 ± 2.547	98.905 ± 0.549	33.881 ± 3.253	98.905 ± 0.549			
Xception	97.085 ± 0.553	99.174 ± 1.046	99.328 ± 0.449	99.052 ± 1.020	99.315 ± 0.777	89.977 ± 1.706	99.174 ± 1.046			
ResNet50	78.396 ± 1.072	97.789 ± 1.228	98.160 ± 0.925	96.224 ± 2.091	98.817 ± 0.452	4.701 ± 3.216	98.817 ± 0.452			
InceptionResNetV2	94.571 ± 0.944	98.586 ± 1.050	97.619 ± 1.008	96.530 ± 4.396	98.696 ± 0.765	9.767 ± 5.754	98.696 ± 0.765			
NASNetMobile	94.099 ± 0.814	97.343 ± 0.772	97.733 ± 0.288	97.440 ± 1.140	98.306 ± 0.707	96.823 ± 1.211	98.574 ± 0.743			
DenseNet121	96.387 ± 1.115	99.716 ± 0.567	99.734 ± 0.326	99.037 ± 1.191	99.577 ± 0.565	4.243 ± 1.138	99.577 ± 0.565			
DenseNet169	97.195 ± 0.972	99.611 ± 0.525	98.945 ± 1.156	99.606 ± 0.528	99.482 ± 0.492	8.893 ± 4.378	99.466 ± 0.496			
DenseNet201	97.457 ± 1.792	99.859 ± 0.281	99.731 ± 0.329	99.463 ± 0.658	99.736 ± 0.324	5.719 ± 3.119	99.736 ± 0.324			

Table 5. F1-Score reached by CNN and Classifiers with estimated RGB-De images taken from the AdaBins block pre-trained weights with the NYU dataset.

			BCB Da							
RGB-De										
Classifier	Bayes	kNN	RF	MLP	SVM (Linear)	SVM (Poly.)	SVM (RBF)			
VCC16	91 304±0 707	00.874±0.250	00.007±0.851	00 552±0 600	00 584±0 340	3 402±2 388	00.718±0.344			
VGG10	91.304±0.707	00.001110.200	00.000110.001	00.00011100	00.400.10.407	1.001 0.000	00.400±0.405			
VGG19	82.290±1.735	99.331 ± 0.734	99.309 ± 0.042	98.000 ± 1.100	99.489 ± 0.405	1.991 ± 2.000	99.489 ± 0.405			
MobileNet	97.482 ± 1.283	99.865 ± 0.269	99.753 ± 0.304	99.314 ± 0.398	99.437 ± 0.502	99.606 ± 0.520	99.730 ± 0.329			
InceptionV3	97.267 ± 0.687	98.764 ± 0.346	98.472 ± 0.781	97.160 ± 2.464	98.855 ± 0.594	29.675 ± 2.176	98.855 ± 0.594			
Xception	96.953 ± 0.565	99.212 ± 0.988	99.314 ± 0.477	98.946 ± 1.197	99.337 ± 0.752	88.378 ± 1.668	99.212 ± 0.988			
ResNet50	76.467 ± 1.291	97.673 ± 1.242	98.112 ± 0.910	96.146 ± 1.886	98.765 ± 0.491	1.583 ± 2.765	98.765 ± 0.491			
InceptionResNetV2	94.334 ± 1.032	98.373 ± 1.268	97.393 ± 1.214	96.213 ± 4.736	98.570 ± 0.939	4.817 ± 3.820	98.583 ± 0.949			
NASNetMobile	93.866 ± 0.651	97.188 ± 0.852	97.536 ± 0.428	97.387 ± 1.163	98.136 ± 0.781	96.773 ± 1.236	98.441 ± 0.797			
DenseNet121	96.133 ± 1.170	99.621 ± 0.756	99.688 ± 0.381	98.924 ± 1.320	99.521 ± 0.672	0.993 ± 0.928	99.521 ± 0.672			
DenseNet169	96.698 ± 1.121	99.625 ± 0.503	98.989 ± 1.141	99.595 ± 0.538	99.474 ± 0.501	3.145 ± 2.347	99.474 ± 0.501			
DenseNet201	97.557 ± 1.633	$99.874 {\pm} 0.250$	$99.749 {\pm} 0.307$	$99.479 {\pm} 0.636$	$99.717 {\pm} 0.347$	$1.630 {\pm} 2.365$	99.717 ± 0.347			

Table 6. Number of attributes and extration time returned by each CNN architecture

CNN Architecture	Number of attributes	Extraction Time (ms)					
CIVIN Arcintecture	Number of attributes	RGB-D	RGB-De (NYU)	RGB-De (KITTI)			
VGG16	512	21.256 ± 31.036	21.252 ± 31.732	22.099 ± 48.433			
VGG19	512	25.770 ± 11.220	25.817 ± 11.940	26.768 ± 28.478			
MobileNet	1024	8.895 ± 34.690	8.710 ± 30.262	11.871 ± 109.150			
InceptionV3	2048	36.081 ± 69.628	36.656 ± 74.127	40.619 ± 140.990			
Xception	2048	32.868 ± 25.068	32.995 ± 25.965	35.109 ± 58.785			
ResNet50	2048	26.233 ± 27.794	25.928 ± 28.885	28.324 ± 57.001			
InceptionResNetV2	1536	80.095 ± 106.805	81.290 ± 121.896	91.352 ± 283.922			
NASNetMobile	1056	42.908 ± 140.504	45.862 ± 162.584	68.680 ± 308.278			
DenseNet121	1024	38.621 ± 139.208	40.873 ± 166.983	48.318 ± 290.044			
DenseNet169	1664	56.857 ± 180.714	58.986 ± 201.686	68.588 ± 355.374			
DenseNet201	1920	75.657 ± 231.761	$76.068 {\pm} 260.249$	$89.623 {\pm} 461.305$			

 Table 7. Accuracy reached by CNN and Classifiers with RGB-De images taken from the AdaBins

 block pre-trained weights with the KITTI dataset.

RGB-De									
Classifier	Bayes	kNN	RF	MLP	SVM (Linear)	SVM (Poly.)	SVM (RBF)		
VGG16	91.597 ± 1.558	100.000 ± 0.000	99.747 ± 0.309	99.737 ± 0.321	100.000 ± 0.000	6.729 ± 2.430	100.000 ± 0.000		
VGG19	89.260 ± 1.431	99.209 ± 0.972	98.815 ± 1.213	98.802 ± 1.003	99.577 ± 0.845	14.633 ± 6.406	99.442 ± 0.820		
MobileNet	98.365 ± 0.842	99.876 ± 0.246	99.317 ± 0.434	99.593 ± 0.545	99.863 ± 0.273	99.454 ± 0.274	99.863 ± 0.273		
InceptionV3	97.161 ± 0.888	99.029 ± 1.066	98.516 ± 0.706	97.164 ± 2.024	99.181 ± 0.799	59.929 ± 2.953	99.321 ± 0.599		
Xception	97.214 ± 0.825	99.349 ± 0.570	99.339 ± 0.411	99.474 ± 0.488	99.604 ± 0.324	98.025 ± 1.141	99.604 ± 0.324		
ResNet50	83.686 ± 2.996	97.340 ± 1.315	95.626 ± 1.372	95.432 ± 2.659	97.901 ± 1.054	10.809 ± 8.592	97.896 ± 0.821		
InceptionResNetV2	95.861 ± 0.796	98.535 ± 0.475	98.945 ± 0.689	99.201 ± 0.517	99.074 ± 0.687	61.871 ± 2.533	99.074 ± 0.687		
NASNetMobile	92.964 ± 3.520	97.981 ± 0.780	98.215 ± 0.990	95.391 ± 4.993	99.039 ± 0.717	98.778 ± 0.912	99.039 ± 0.717		
DenseNet121	95.707 ± 0.915	99.585 ± 0.545	99.327 ± 0.740	99.585 ± 0.545	99.720 ± 0.342	13.151 ± 6.568	99.720 ± 0.342		
DenseNet169	98.941 ± 0.515	99.708 ± 0.583	99.592 ± 0.334	99.446 ± 0.539	99.738 ± 0.321	13.441 ± 2.801	100.000 ± 0.000		
DenseNet201	96.497 ± 0.658	99.595 ± 0.332	99.364 ± 0.569	$99.330 {\pm} 0.043$	99.722 ± 0.340	11.269 ± 5.554	99.722 ± 0.340		

Table 8. F1-Score reached by CNN and Classifiers with RGB-De images taken from the AdaBinsblock pre-trained weights with the KITTI dataset.

	RGB-De										
Classifier	Bayes	kNN	RF	MLP	SVM (Linear)	SVM (Poly.)	SVM (RBF)				
VGG16	89.628 ± 1.821	100.000 ± 0.000	99.762 ± 0.291	99.744 ± 0.314	100.000 ± 0.000	3.794 ± 2.374	100.000 ± 0.000				
VGG19	87.553 ± 1.681	99.154 ± 1.040	98.718 ± 1.341	98.642 ± 1.162	99.534 ± 0.931	6.717 ± 3.840	99.386 ± 0.903				
MobileNet	98.211 ± 0.924	99.878 ± 0.242	99.200 ± 0.530	99.570 ± 0.566	99.830 ± 0.338	99.365 ± 0.320	99.830 ± 0.338				
InceptionV3	97.050 ± 0.969	98.974 ± 1.137	98.479 ± 0.800	97.146 ± 2.038	99.173 ± 0.800	58.474 ± 2.888	99.307 ± 0.606				
Xception	97.019 ± 0.864	99.385 ± 0.537	99.337 ± 0.416	99.506 ± 0.474	99.628 ± 0.305	98.017 ± 1.143	99.628 ± 0.305				
ResNet50	82.218 ± 3.065	97.091 ± 1.445	95.410 ± 1.393	95.019 ± 3.158	97.715 ± 1.149	4.415 ± 5.474	97.712 ± 0.924				
InceptionResNetV2	95.667 ± 0.888	98.458 ± 0.485	98.936 ± 0.669	99.112 ± 0.631	99.014 ± 0.789	64.089 ± 2.722	99.014 ± 0.789				
NASNetMobile	92.667 ± 3.630	97.965 ± 0.675	98.113 ± 1.025	95.283 ± 5.080	98.986 ± 0.734	98.756 ± 0.877	98.976 ± 0.748				
DenseNet121	95.062 ± 1.260	99.547 ± 0.569	99.282 ± 0.798	99.548 ± 0.568	99.694 ± 0.387	6.867 ± 5.338	99.694 ± 0.387				
DenseNet169	98.893 ± 0.575	99.712 ± 0.575	99.618 ± 0.314	99.457 ± 0.545	99.753 ± 0.304	6.746 ± 2.665	100.000 ± 0.000				
DenseNet201	$94.984{\pm}1.182$	$99.515 {\pm} 0.412$	$99.269 {\pm} 0.626$	$99.192 {\pm} 0.171$	$99.718 {\pm} 0.356$	$6.990 {\pm} 5.994$	$99.718 {\pm} 0.356$				

proved to be an efficient method for the task of mobile robot location estimation and navigation support, achieving 100% in Accuracy and F1-Score with depth estimation images from pre-trained model with outdoor Dataset, and 99.8% with indoor Dataset. The processing times performed were also suitable for a computer vision system, with values of 8.710ms and 0.024s, and 11.871ms and 0.028s, for the extraction and training times for RGB-De (NYU) and RGB-De (KITTI), respectively. For future work, outdoor environments and other indoor environments will be tested with this approach. In addition, we can evaluate others depth estimation methods such as M4Depth, present in Fonder et al. (2021), or Fast-Depth, present in Wofk et al. (2019). We can apply other machine learning techniques such as the Optimum-Path Forest (OPF), presented in Nunes et al. (2014), and still utilize other CNN architectures, such as ResNeXt-50 (Xie et al., 2016), and CapsNet (Sabour et al., 2017). Another important aspect involves evaluating simpler classification methods by applying the raw images directly, and in this

Table 9. Training time(s) and function call time(s) for kNN of the Classifiers with RGB-D images obtained from Kinect sensor

			RGB-D				
Classifier	Bayes	kNN	RF	MLP	SVM (Linear)	SVM (Poly.)	SVM (RBF)
VGG16	0.027 ± 0.006	0.024 ± 0.001	5.919 ± 1.349	42.061 ± 9.755	1.286 ± 0.064	2.372 ± 0.053	1.350 ± 0.053
VGG19	0.051 ± 0.023	0.024 ± 0.000	6.956 ± 1.747	54.409 ± 14.176	1.302 ± 0.074	2.389 ± 0.025	1.447 ± 0.040
MobileNet	0.043 ± 0.013	0.053 ± 0.001	9.063 ± 2.557	110.412 ± 41.555	3.111 ± 0.055	2.939 ± 0.034	3.256 ± 0.066
InceptionV3	0.098 ± 0.018	0.178 ± 0.110	11.953 ± 2.348	67.547 ± 24.147	6.068 ± 0.103	8.909 ± 0.266	6.438 ± 0.112
Xception	0.087 ± 0.011	0.163 ± 0.071	14.665 ± 1.735	126.040 ± 51.244	5.683 ± 0.079	9.223 ± 0.279	5.794 ± 0.101
ResNet50	0.123 ± 0.017	0.121 ± 0.004	51.246 ± 1.704	299.568 ± 83.043	4.326 ± 0.101	8.926 ± 0.240	4.530 ± 0.109
InceptionResNetV2	0.075 ± 0.018	0.090 ± 0.004	42.111 ± 3.417	145.097 ± 54.793	4.329 ± 0.083	6.799 ± 0.207	4.515 ± 0.073
NASNetMobile	0.090 ± 0.024	$0.051 {\pm} 0.003$	35.841 ± 1.852	137.584 ± 35.169	3.009 ± 0.100	2.871 ± 0.084	4.168 ± 0.094
DenseNet121	0.038 ± 0.000	0.056 ± 0.004	9.864 ± 2.132	124.647 ± 49.385	2.778 ± 0.058	4.566 ± 0.140	3.129 ± 0.049
DenseNet169	0.080 ± 0.027	0.088 ± 0.002	13.492 ± 2.729	147.620 ± 52.917	4.385 ± 0.113	7.171 ± 0.211	4.689 ± 0.098
DenseNet201	0.079 ± 0.014	0.109 ± 0.002	31.235 ± 1.370	186.674 ± 66.198	4.985 ± 0.084	8.323 ± 0.231	5.356 ± 0.080

Table 10. Training time(s) and function call time(s) for kNN of the Classifiers with RGB-De images taken from the AdaBins block pre-trained weights with the NYU dataset.

			RGB-De				
Classifier	Bayes	kNN	RF	MLP	SVM (Linear)	SVM (Poly.)	SVM (RBF)
VGG16	0.049 ± 0.017	0.024 ± 0.002	26.114 ± 2.707	62.683 ± 18.757	1.305 ± 0.149	2.627 ± 0.228	2.257 ± 0.045
VGG19	0.113 ± 0.080	$0.025 {\pm} 0.001$	24.468 ± 9.099	55.731 ± 23.876	1.411 ± 0.038	2.866 ± 0.085	2.421 ± 0.062
MobileNet	0.056 ± 0.008	0.072 ± 0.016	16.663 ± 6.779	70.738 ± 24.376	3.062 ± 0.039	3.070 ± 0.055	4.566 ± 0.066
InceptionV3	0.069 ± 0.011	0.129 ± 0.033	11.424 ± 2.465	290.229 ± 111.480	6.442 ± 0.115	8.956 ± 0.222	6.964 ± 0.138
Xception	0.091 ± 0.020	0.148 ± 0.041	23.374 ± 2.374	131.792 ± 50.627	5.377 ± 0.091	8.426 ± 0.111	7.679 ± 0.137
ResNet50	0.107 ± 0.029	0.145 ± 0.005	16.438 ± 2.878	410.348 ± 107.988	4.817 ± 0.103	9.948 ± 0.269	5.200 ± 0.074
InceptionResNetV2	0.063 ± 0.005	0.082 ± 0.004	6.977 ± 1.744	166.297 ± 58.708	4.007 ± 0.070	6.793 ± 0.225	5.028 ± 0.129
NASNetMobile	0.059 ± 0.014	0.055 ± 0.002	9.965 ± 2.093	116.031 ± 40.760	3.015 ± 0.071	3.278 ± 0.107	4.574 ± 0.123
DenseNet121	0.044 ± 0.006	0.056 ± 0.003	13.339 ± 2.684	103.971 ± 39.986	2.384 ± 0.049	4.429 ± 0.111	2.668 ± 0.050
DenseNet169	0.058 ± 0.005	0.101 ± 0.012	10.693 ± 2.624	80.411 ± 26.885	4.045 ± 0.070	7.116 ± 0.182	5.638 ± 0.084
DenseNet201	0.079 ± 0.011	$0.154 {\pm} 0.090$	33.409 ± 1.510	97.632 ± 32.946	4.600 ± 0.082	8.478 ± 0.250	5.341 ± 0.153

Table 11. Training time(s) and function call time(s) for kNN of the Classifiers with RGB-De images taken from the AdaBins block pre-trained weights with the KITTI dataset.

			RGB-De				
Classifier	Bayes	kNN	RF	MLP	SVM (Linear)	SVM (Poly.)	SVM (RBF)
VGG16	0.047 ± 0.019	0.028 ± 0.002	36.526 ± 1.529	50.299 ± 19.809	1.411 ± 0.086	2.805 ± 0.122	1.565 ± 0.030
VGG19	0.041 ± 0.013	$0.031 {\pm} 0.004$	27.102 ± 2.609	66.370 ± 20.671	1.377 ± 0.108	2.671 ± 0.056	1.666 ± 0.110
MobileNet	0.048 ± 0.007	0.076 ± 0.037	14.015 ± 3.005	57.264 ± 24.453	3.264 ± 0.074	3.116 ± 0.068	4.017 ± 0.070
InceptionV3	0.113 ± 0.024	0.210 ± 0.083	46.377 ± 2.200	198.043 ± 81.017	6.977 ± 0.124	9.622 ± 0.257	8.813 ± 0.215
Xception	0.099 ± 0.014	0.125 ± 0.005	30.111 ± 2.605	118.055 ± 54.341	5.103 ± 0.159	5.516 ± 0.171	5.523 ± 0.123
ResNet50	0.109 ± 0.009	0.162 ± 0.062	12.591 ± 2.571	355.899 ± 44.826	4.277 ± 0.093	10.137 ± 0.221	5.344 ± 0.101
InceptionResNetV2	0.101 ± 0.047	0.128 ± 0.055	17.968 ± 3.033	185.668 ± 73.678	4.481 ± 0.064	6.972 ± 0.145	4.724 ± 0.058
NASNetMobile	0.067 ± 0.019	0.055 ± 0.001	12.781 ± 2.007	151.102 ± 35.603	2.969 ± 0.062	2.916 ± 0.070	3.323 ± 0.056
DenseNet121	0.045 ± 0.000	0.054 ± 0.002	51.697 ± 1.842	155.797 ± 62.362	2.726 ± 0.072	5.045 ± 0.131	3.718 ± 0.107
DenseNet169	0.081 ± 0.026	0.109 ± 0.021	34.326 ± 2.357	32.265 ± 10.791	4.513 ± 0.128	8.174 ± 0.244	6.965 ± 0.174
DenseNet201	0.069 ± 0.015	$0.117{\pm}0.013$	$27.906 {\pm} 2.056$	$150.570{\pm}47.949$	$5.111 {\pm} 0.084$	9.263 ± 0.300	5.373 ± 0.139

context we can mention the Nearest Neighbors (NN), Minimum Distance Classifier (MDC), and the Linear and Quadratic Classifier (CQ and LMQ).

REFERENCES

- Akai, N. (2022). Mobile robot localization considering uncertainty of depth regression from camera images. IEEE Robotics and Automation Letters, 7(2), 1431-1438. doi:10.1109/LRA.2021.3140062.
- Alexandre, L.A. (2014). 3d object recognition using convolutional neural networks with transfer learning between input channels. In IAS.
- Alhashim, I. and Wonka, P. (2018). High quality monocular depth estimation via transfer learning. ArXivabs/1812.11941.
- Bhat, S., Alhashim, I., and Wonka, P. (2021). Adabins: Depth estimation using adaptive bins. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 4008-4017.
- Bhat, S.F., Alhashim, I., and Wonka, P. (2020). Adabins: Depth estimation using adaptive bins. CoRR, abs/2011.14141.
- Breiman, L. (2004). Random forests. Machine Learning, 45, 5-32.
- Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1800-1807.
- da Nobrega, R.V.M., Filho, P.P.R., Rodrigues, M.B., da Silva, S.P.P., Júnior, C.M.J.M.D., and de Albuquerque, V.H.C. (2018). Lung nodule malignancy clas-

sification in chest computed tomography images using transfer learning and convolutional neural networks. Neural Computing and Applications, 1–18.

- da Silva, S.P.P., Almeida, J.S., Ohata, E.F., Rodrigues, J.J., de Albuquerque, V.H.C., and Filho, P.P.R. (2020). Monocular vision aided depth map from rgb images to estimate of localization and support to navigation of mobile robots. IEEE Sensors Journal, 20, 12040–12048.
- Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., and Fei-Fei, L. (2009). Imagenet: A large-scale hierarchical image database. In CVPR.
- Elaraby, A.F., Hamdy, A., and Rehan, M.M. (2018). A kinect-based 3d object detection and recognition system with enhanced depth estimation algorithm. 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), 247-252.
- Fonder, M., Ernst, D., and Droogenbroeck, M.V. (2021). M4depth: A motion-based approach for monocular depth estimation on video sequences. CoRR, abs/2105.09847.
- Fu, H., Gong, M., Wang, C., Batmanghelich, K., and Tao, D. (2018). Deep ordinal regression network for monocular depth estimation. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2002–2011.
- Geiger, A., Lenz, P., Stiller, C., and Urtasun, R. (2013). Vision meets robotics: The kitti dataset. The International Journal of Robotics Research, 32(11), 1231-1237. doi:10.1177/0278364913491297. URL https:// doi.org/10.1177/0278364913491297.

- Guo, J. (2022). Robot localization and scene modeling based on rgb-d sensor. In J. Macintyre, J. Zhao, and X. Ma (eds.), The 2021 International Conference on Machine Learning and Big Data Analytics for IoT Security and Privacy, 753–760. Springer International Publishing, Cham.
- Hao, Z., Li, Y., You, S., and Lu, F. (2018). Detail preserving depth estimation from a single image using attention guided networks. 2018 International Conference on 3D Vision (3DV), 304–313.
- Haykin, S. (2010). Neural networks and learning machines.
- He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778.
- Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., and Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. ArXiv, abs/1704.04861.
- Hu, J., Ozay, M., Zhang, Y., and Okatani, T. (2019). Revisiting single image depth estimation: Toward higher resolution maps with accurate object boundaries. 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), 1043–1051.
- Huang, G., Liu, Z., and Weinberger, K.Q. (2017). Densely connected convolutional networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2261–2269.
- Huynh, L., Nguyen-Ha, P., Matas, J., Rahtu, E., and Heikkila, J. (2020). Guiding monocular depth estimation using depth-attention volume. *ArXiv*, abs/2004.02760.
- Islam, N.U. and Park, J. (2021). Depth estimation from a single rgb image using fine-tuned generative adversarial network. *IEEE Access*, 9, 32781–32794. doi:10.1109/ ACCESS.2021.3060435.
- Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., and Fei-Fei, L. (2014). Large-scale video classification with convolutional neural networks. 2014 *IEEE Conference on Computer Vision and Pattern Recognition*, 1725–1732.
- Krizhevsky, A., Sutskever, I., and Hinton, G.E. (2012). Imagenet classification with deep convolutional neural networks. *Communications of the ACM*, 60, 84 – 90.
- LeCun, Y., Boser, B.E., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W.E., and Jackel, L.D. (1989). Handwritten digit recognition with a back-propagation network. In *NIPS*.
- Lee, J.H., Han, M.K., Ko, D.W., and Suh, I.H. (2019). From big to small: Multi-scale local planar guidance for monocular depth estimation. ArXiv, abs/1907.10326.
- Li, Y. and Shi, C. (2018). Localization and navigation for indoor mobile robot based on ros. 2018 Chinese Automation Congress (CAC), 1135–1139.
- Ma, F. and Karaman, S. (2018). Sparse-to-dense: Depth prediction from sparse depth samples and a single image. 2018 IEEE International Conference on Robotics and Automation (ICRA), 1–8.
- Molchanov, P., Tyree, S., Karras, T., Aila, T., and Kautz, J. (2016). Pruning convolutional neural networks for resource efficient transfer learning. ArXiv, abs/1611.06440.

- Nunes, T., Coelho, A., Lima, C., Papa, J., and Albuquerque, V. (2014). Eeg signal classification for epilepsy diagnosis via optimum path forest - a systematic assessment. *Neurocomputing*, –. doi:10.1016/j.neucom.2014. 01.020.
- Pan, S.J. and Yang, Q. (2010). A survey on transfer learning. *IEEE Transactions on Knowledge and Data Engineering*, 22, 1345–1359.
- Sabour, S., Frosst, N., and Hinton, G.E. (2017). Dynamic routing between capsules. *CoRR*, abs/1710.09829.
- Sarbolandi, H., Lefloch, D., and Kolb, A. (2015). Kinect range sensing: Structured-light versus time-of-flight kinect. CoRR, abs/1505.05459. URL http://arxiv. org/abs/1505.05459.
- Silberman, N., Hoiem, D., Kohli, P., and Fergus, R. (2012). Indoor segmentation and support inference from rgbd images. In *ECCV*.
- Simonyan, K. and Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. *CoRR*, abs/1409.1556.
- Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.E., Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A. (2015). Going deeper with convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1–9.
- Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2016). Rethinking the inception architecture for computer vision. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2818–2826.
- Tang, H., Scaife, A.M.M., and Leahy, J.P. (2019). Transfer learning for radio galaxy classification. *Monthly Notices* of the Royal Astronomical Society, 488, 3358–3375.
- Theodoridis, S. and Koutroumbas, K.D. (2008). Pattern recognition, fourth edition.
- Vapnik, V.N. (2000). The nature of statistical learning theory. In *Statistics for Engineering and Information Science*.
- Wang, C., Dong, S., Zhao, X., Papanastasiou, G., Zhang, H., and Yang, G. (2020). Saliencygan: Deep learning semisupervised salient object detection in the fog of iot. *IEEE Transactions on Industrial Informatics*, 16, 2667– 2676.
- Weiss, K.R., Khoshgoftaar, T.M., and Wang, D. (2016). A survey of transfer learning. *Journal of Big Data*, 3, 1–40.
- Wofk, D., Ma, F., Yang, T., Karaman, S., and Sze, V. (2019). Fastdepth: Fast monocular depth estimation on embedded systems. *CoRR*, abs/1903.03273.
- Xie, S., Girshick, R.B., Dollár, P., Tu, Z., and He, K. (2016). Aggregated residual transformations for deep neural networks. *CoRR*, abs/1611.05431.
- Xu, D., Wang, W., Tang, H., Liu, H., Sebe, N., and Ricci, E. (2018). Structured attention guided convolutional neural fields for monocular depth estimation. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 3917–3925.
- Zhang, D., Han, J., Li, C., Wang, J., and Li, X. (2016). Detection of co-salient objects by looking deep and wide. *International Journal of Computer Vision*, 120, 215–232.
- Zoph, B. and Le, Q.V. (2017). Neural architecture search with reinforcement learning. ArXiv, abs/1611.01578.