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Abstract: This paper presents a design methodology for obtaining a robust proportional-
integral-derivative (PID) multivariable controller for second-order linear systems with time-
varying delay, guaranteeing a pre-established exponential decay rate. Relevant control challenges
such as stabilization, modeling error and constant reference tracking are addressed within the
proposed Linear Matrix Inequality (LMI) design approach. The design strategy is derived from
a transformation that can be applied to obtain constant reference tracking for an actuated
subspace of underacted systems. Furthermore, the integral action has an additional objective
which is to increase the degree of design. Simulation case studies are used to highlight the
benefits of the proposed results.

Resumo: Este artigo apresenta uma metodologia de projeto para a obtenção de um controlador
multivariável proporcional-integral-derivativo (PID) robusto para sistemas lineares de segunda-
ordem com atraso variante no tempo, garantindo uma taxa de decaimento exponencial pré-
estabelecida. Desafios de controle relevantes, como estabilização, erro de modelagem e ras-
treamento de referência constante são tratados dentro da proposta de abordagem de projeto
de Desigualdade de Matriz Linear (LMI). A estratégia de projeto é obtida a partir de uma
transformação que pode ser aplicada para obter rastreamento de referência constante para um
subespaço atuado de sistemas subatuados. Além disso, a ação integral tem um objetivo adicional
que é aumentar o grau de liberdade de projeto. Estudos de caso de simulação são usados para
destacar os benef́ıcios dos resultados propostos.
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1. INTRODUCTION

The field of vibration mechanics is of paramount impor-
tance and has originated several contributions from rese-
archers in recent years, since in some processes such vibra-
tions can be unwanted, compromising the performance of
machines and structures (Hiramoto and Grigoriadis, 2016;
Zhang et al., 2021). Vibratory systems may be subject
to time delay, due to many reasons, such as detection
and actuation in the feedback of states, physical separa-
tion between sensors and measurement points, delay in
communication channels, online data acquisition, filtering,
signal transmission from a computer to the actuator, which
can degrade control performance and destabilize a system
(Araújo and Santos, 2018; Zhang et al., 2020). In general,

⋆ This study was financed in part by the Coordenação de Aperfeiço-
amento de Pessoal de Nı́vel Superior - Brasil (CAPES), Conselho Na-
cional de Desenvolvimento Cient́ıfico e Tecnológico - Brasil (CNPq),
and Fundação de Amparo à Pesquisa do Estado de Minas Gerais -
Brasil (FAPEMIG).

time-delayed second-order systems can be stable in open-
loop and become unstable in closed-loop if delays are not
properly considered at some stage of the control design. In
this context, delays can be constant or time-varying. Be-
cause the notion of poles or eigenvalues cannot be applied
to systems subject to time-varying delays (Santos et al.,
2018) to design controllers for this class of system is more
complex. However, because time-varying delay are found in
a large class of systems (Yu et al., 2015; Seguy et al., 2010),
it is important to develop control design methodologies for
systems subject to time-varying delays.

The literature discusses the constant and time-varying
delay in second-order systems (Araújo and Santos, 2018;
Santos et al., 2018). In Araújo and Santos (2018) a method
based on reception and smith predictor is proposed to
handle the constant delay, however, the proposal deals only
with stable and marginally stable systems, not guarante-
eing the internal stability of unstable open-loop systems.
Araujo and Santos (2020) proposes a sample data strategy
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to apply a smith predictor based approach to solve these
unstable problems.

Regarding constant delays, Natori et al. (2008) investigates
a dedicated control scheme for delay compensation based
on the concept of network disturbance and communication
disturbance observer. Belotti and Richiedei (2020) pro-
poses a numerical method for partial poles placement in
second-order systems, which allows a priori verification of
the stability of primary and secondary roots through the
reception method, which combined with an LMI condition,
guarantees asymptotic stability for a given delay upper
bound.

More recent studies have focused on the treatment of sys-
tems subject to time-varying delays, using robust control
techniques. The use of LMIs and the Lyapunov-Krasovskii
theory is an effective methodology to investigate the sta-
bility of time-varying delay systems, this methodology is
addressed in this paper.

Motivated by the problem of controlling time-varying de-
lay systems, this paper presents a robust framework for
designing multivariable Proportional-Integral-Derivative
(PID) controllers for second-order systems via LMI formu-
lations, guaranteeing a rate pre-established convergence,
thus improving transient performance. In contrast to rela-
ted work based only on proportional and derivative feed-
back, integral action is used to achieve null tracking error
for constant set-points concerning the actuated states and
to increase design flexibility.

2. PROBLEM FORMULATION

Consider the class of systems described by the second-
order linear model:

Mz̈(t) +Dż(t) + Sz(t) = Bu(t− d(t)) (1)

where z(t) ∈ R
n is the state vector and w(t) ∈ R

p is
the exogenous disturbance vector, the delay d(t) affects
the control signal u(t − d(t)). The delay is modeled as
d(t) = τ + µ(t), representing a time-varying delay, with
τ being the nominal delay value and µ(t) a time-varying
scalar function, which satisfies µ(t) ≤ |µ(t)| ≤ τ . M ,
D, S ∈ R

n×n are, respectively, the mass, damping and
stiffness matrices, and B ∈ R

n×m is the control matrix.
In this paper we assume that the mass matrix M is
nonsingular.

The control signal u(t) is an extension of the single-
variable PID controller to the multivariable case, as so
the proportional control action (P) is proportional to the
current error. The integral action (I) can eliminate the
steady-state offset and the derivative action (D) is specially
related with shaping the damping behavior of the closed-
loop system. Thus the multivariable PID controller is
defined by

u(t) = KP e(t) +KI

∫ t

0

ea(τ)dτ +KD ė(t), (2)

with e(t) = z(t) − r(t) where r(t) ∈ R
n is the desired

set-point vector, and ea(t) denotes the error signal on the
actuated states; in the case of full actuated systems ea(t) =
e(t), otherwise, ea(t) = Ue(t) ∈ R

a, for an appropriated
binary matrix U ∈ R

a×n, such that ea(t) is composed only
by the entries of e(t) resulting from the actuated states.

In addition KP ,KD ∈ R
m×n and KI ∈ R

m×a. Notice that
we cannot guarantee perfect tracking of arbitrary constant
reference in the underactuated case, due to the control
action limitation. Thus the actuated error, namely ea(t),
is defined in order to ensure trajectory tracking on the
actuated degrees-of-freedom.

In order to enjoy from the LMI framework to design the
robust controller we rewrite the system (1) such that
the PID part of the controller (2) becomes a static state
feedback controller. In view of that we define the following
state variables:

x1(t) = z(t), x2(t) = ż(t), x3(t) = −

∫ t

0

ea(τ)dτ (3)

thus the closed-loop descriptor system is given as


























Eẋ(t) = Ax(t) +Buu(t− d(t))

+ ([0 0 −U ]T )r(t)

u(t− d(t)) = Kx(t− d(t))

−K[rT (t) ṙT (t) 01×a]
T

y(t) = Cx(t)

(4.1)

(4.2)

(4.3)

where
xT (t) = [xT

1 (t) xT
2 (t) xT

3 (t)],

A =

[

0n In 0n×a

−S −D 0n×a

U 0a×n 0a

]

, Bu =

[

0n×m

B
0a×m

]

,

E = diag{In,M, Ia},

K = [KPm×n KDm×n KIm×a] , C = [In 0n 0n×a] .

Then replacing (4.2) in (4.1), we get:



















Eẋ(t) = Ax(t) +Adx(t− d(t))

+BuK([rT (t) ṙT (t) 0]T )

+ ([0 0 −U ]T )r(t)

y(t) = Cx(t)

(5.1)

(5.2)

where Ad = BuK, doing this transformation we get a state
feedback project, being easily solved via LMIs.

3. MAIN RESULTS

In this section, appropriate conditions are proposed for
the state feedback design of the system (5) subject to
time-varying delay. The control problem can be stated as
follows.

Problem 1. Design a PID controller for the time-delayed
second-order linear system in (1) ensuring stability and a
given exponential decay rate for the closed-loop system.

3.1 Design conditions

Next, we present the LMI conditions for solving Problem
1 by guaranteeing a pre-specified exponential convergence
rate.

Theorem 1. Let τ > 0, τ ≥ µ ≥ 0, such that d(t) ∈ [τ −
µ, τ + µ], δ > 0 and α 6= 0 a scalar fit parameter. Then,
the system (5) is exponentially stabilized with exponential
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convergence rate δ by the PID controller with gains given

in the matrix K = XF
−T

, if there exist matrices of

appropriate dimensions: F , P = P
T
, S = S

T
, Q, R1 =

R
T

1 , R2, R3 = R
T

3 , Z = Z
T

and X such that the
following LMIs are satisfied

[

P ⋆

Q
T

ε1S

]

> 0, (6)

where ε1 = e−2δτ/τ ,

R =

[

R1 ⋆
R2 R3

]

> 0, (7)

and

[

Ξ ⋆

Γ
T

ε−1
2 µZ

]

< 0, (8)

where ε2 = e−2δ(τ+µ), Γ
T
= µ[XTBT αXTBT 0 0] and

Ξ give in (A.4).

Ξ =











F

E(P + τR2)E
T − ε2(EFET − αAF

T
ET )

ε1R
T

3 E
T −Q

T
ET + ε2X

TBT

2δQ
T
ET − ε1R

T

2 E
T

⋆ ⋆ ⋆
⋆ ⋆ EGET

ε2αX
TBT −ε1(R3 + τS) ⋆

Q
T
ET ε1R

T

2 −ε1R1









. (9)

where F = E(2δP + Q + Q
T
+ τR1 − ǫ1R3 + S)ET +

ε2(AF
T
ET + EFAT ) and G = τR3 + 2µZ − ǫ2(G+G

T
).

Proof 1. Since we assumed that the mass matrix M is
nonsingular the matrix E in (5.1) is nonsingular as well.
Then left-multiplying (5.1) by E−1 the descriptor system
(5) becomes a standard space-state description. Then we
apply Lemma 1, Appendix A, to the resulting system
description.

Now defining the variables: F
∆
= F−1 and

[P Q R1 R2 R3 Z]
∆
= F [P Q R1 R2 R3 Z]F

T

The LMIs in (6) and (7) are obtained pre- and post-
multiplying the LMIs (A.1) and (A.2), respectively, by
diag{F , . . . , F} and diag{F , . . . , F}T .

Furthermore, the LMI in (8) is obtained through the LMI
in (A.3) performing the substitutions: Ad = E−1BK, A =
E−1A and G = αF in (8), and pre- and post- multiplying
(8) by diag{F , . . . , F} and diag{F , . . . , F}T . Finally, con-

sidering the new linearizing variable X = KF
T

and pre-
and post-multiplying the LMI (8) by diag {E,E, I, I} and
its transpose, respectively, the conditions in the Theorem 1
are obtained.

Procedure 1. PID controller design for solving Problem 1:

Step 1: Rewrite the time-delayed second-order linear sys-
tem (1) as the augmented descriptor model (5.1);

Step 2: Define the decay rate of the system response,
δ > 0, and α, a free tuning parameter, defining the
variation in the value of the delay, µ.

Step 3: Find the solution (X, F ) that solves the LMI
conditions presented in Theorem 1.

Step 4: The PID controller parameters are given in K =

[KP KD KI ], where K = XF
−T

.

4. NUMERICAL EXAMPLES

In this section, are presented three numerical examples
drawn from the literature to illustrate and validate the
proposed robust PID controller design method. In all case
studies, a time-varying delay was considered, expressed in
(1) by d(t). This term is a time-varying function within
the interval [τ − µ, τ + µ], where τ is the nominal value
of the delay and µ the lower and upper bound imposed
on the variation of the delay. It was considered d(t) as a
random function as illustrated in Fig. 1.

0 5 10 15 20 25

d
(t
)

Time (sec)

τ + µ

τ − µ

Figura 1. Time-varying delay given by a random function
d(t).

4.1 Example 1

In this example a standard benchmark is considered, the
3-DoF model for a wing in an airflow studied in Araujo
and Santos (2020), the system matrices are given by:

M =

[

17.6 1.28 2.89
1.28 0.824 0.413
2.89 0.413 0.725

]

, C =

[

7.66 2.5 2.1
0.23 1.04 0.223
0.6 0.756 0.658

]

,

K =

[

121 18.9 15.9
0 27 0.145

11.9 3.64 15.5

]

, B =

[

1
0
0

]

, U = BT . (10)

It is important to note that the system is unstable in open
loop. The delay value considered is τ = 0.1, µ = 0.5τ , the
decay rate of the system response is δ = 0.2, and the free
tuning parameter is α = 0.3. The Procedure 1 yields the
PID controller gains:

KP = [32.0294 17.1678 3.9326],

KD = [−62.1339 − 3.0704 − 9.3095],

KI = −20.1665.

For the analysis of the results, Fig. 2 shows the evolution of
the closed-loop system state vector z(t) and its derivative
ż(t) for a unity set-point. In Fig. 3 we can see that the
displacement error ea(t) from the actuated state reaches
zero in steady state and the input signal u(t) can also be
analyzed.
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Figura 2. The system closed-loop response. Example 1.
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Figura 3. Closed-loop error response on the actuated state
vector ea(t) and control signal u(t). Example 1.

4.2 Example 2

Consider the system studied in Ram et al. (2011) and
Araújo (2018), represented by matrices:

M =

[

1 0
0 1

]

, C =

[

1 −1
−1 1

]

, K =

[

3 −2
−2 3

]

,

B =

[

1
0

]

, U = BT . (11)

For this example we considered a delay of τ = 0.3,
µ = 0.5τ , with a decay rate equal to δ = 0.2, and the
free tuning parameter α = 0.8. The PID controller gains
obtained through the Procedure 1 are

KP = [−0.3820 − 0.3370], KD = [−1.7233 − 1.3550],

KI = −0.6712.

For results analysis purposes, the Fig. 4 shows the response
evolution of the closed-loop system state vector z(t) and
its derivative ż(t) to a constant set-point (dashed line) on
the actuated degree of freedom. The displacement error

ea(t) of the actuated state and the input signal u(t), can
are shown in Fig. 5.

Now for comparison purposes we consider a constant time-
delay τ = 0.1 and we design a PID controller applying
the proposed method and a controller as proposed in Ram
et al. (2011). Fig. 6 presents the system states evolution
considering both controllers, where we observe that the
actuated state z1(t) follows the reference only when the
proposed PID controller is applied, showing the advantage
of the integral action in the control law.

0 5 10 15 20 25

0

0.5

1

0 5 10 15 20 25

-0.3

-0.2

-0.1

0

0.1

0.2

z
(t
)

Time (sec)

ż
(t
)

Time (sec)

ref
z1(t)
z2(t)

ż1(t)
ż2(t)

Figura 4. The system closed-loop response. Example 2.
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)

Time (sec)

u
(t
)

Figura 5. Closed-loop error response on the actuated state
vector ea(t) and control signal u(t). Example 2.

Ram et al. (2009)

4.3 Example 3

Consider the system with more than one independent
control force studied in Xia et al. (2019):

M =

[

2 0 0
0 2 0
0 0 3

]

, C =

[

2.5 −2 0
−2 3 −1
0 −1 1

]

,
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z
(t
)

Time (sec)

z1(t)-Ram et al. (2011)
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Figura 6. The system closed-loop responses with the pro-
posed controller and the one proposed in Ram et al.
(2011). Example 2.

K =

[

10 −3 −4
−3 3 0
−4 0 4

]

, B =

[

1 2
2 0
1 1

]

, U =

[

1 0 0
0 0 1

]

. (12)

For this example we considered a delay of τ = 0.5,
µ = 0.5τ , with a decay rate equal to δ = 0.1, and the
free tuning parameter α = 0.8. The PID controller gains
obtained through the Procedure 1 are

Kp =

[

0.0077 −0.2843 0.5601
0.0673 0.2588 −0.7424

]

,

Kd =

[

−0.2156 −0.2933 0.8126
−0.1286 −0.1903 −1.8294

]

,

Ki =

[

−1.8664 1.6509
2.3014 −2.2047

]

.

Fig. 7 shows the evolution of the closed-loop state vector
z(t), where the two actuated states converge to the refe-
rence, and its derivative ż(t) for a unitary set-point. Since
the decay rate δ considered in this example is very small,
the states converge slowly, this parameter can be changed
according to the need of the project. The error of the
actuated states ea(t) and the input signal u(t) are shown
in Fig. 8. Fig. 9 shows the behavior of the closed-loop
step response considering two PID controllers designed by
the proposed methodology for τ = 0.5 but one considered
δ = 0.2 and the other δ = 0.001. Therefore, as expected
one can see the effect of the decay rate parameter, that is,
higher values of δ lead to shorter transients.

5. CONCLUSION

A robust framework for proportional-integral-derivative
(PID) multivariable design was proposed to control time-
varying delay systems modeled by second-order differen-
tial equations. The method guarantees a pre-established
exponential decay rate for second-order systems subject
to time-varying delay, using the Lyapunov-Krasovskii sta-
bility theory based on linear matrix inequalities (LMI).
Integral action was able to provide additional design flexi-
bility, the design strategy can be applied to obtain constant
reference tracking for an actuated subspace of underacted
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ż3(t)

Figura 7. The system closed-loop response. Example 3.
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(t
)

Time (sec)

u
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)
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Figura 8. Closed-loop error response on the actuated state
vector ea(t) and control signal u(t). Example 3.

systems. Three numerical examples were presented to de-
monstrate the effectiveness of the proposed method.
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ção de Amparo à Pesquisa do Estado de Minas Gerais -
Brasil (FAPEMIG: APQ-00543-17).

REFERENCES
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Appendix A. AUXILIARY RESULTS

Lemma 1. (Fenili et al., 2014): Consider the system ẋ(t) =
Ax(t) +Adx(t− d(t)). Let τ > 0 and 0 ≤ µ ≤ τ be given ,
such that d(t) ∈ [τ − µ, τ + µ], and δ > 0, the exponential
convergence rate. So the system with d(t) ∈ [τ−µ, τ+µ] is
exponentially stable, with exponential convergence rate δ,
if there are matrices of appropriate dimensions: F,G, P =
PT , S = ST , Q,R1 = RT

1 , R2, R3 = RT
3 , Z = ZT , such

that the LMIs below are satisfied

[

P ⋆
QT ε1S

]

> 0, (A.1)

where ε1 = e−2δτ/τ ,

R =

[

R1 ⋆
R2 R3

]

> 0, (A.2)

and

[

Ξ ⋆

ΓT ε−1
2 µZ

]

< 0, (A.3)

where ε2 = e−2δ(τ+µ), ΓT = µ[AT
d F

T αAT
d G

T 0 0] and
Ξ is give:

Ξ =









F ⋆
P + τR2 − ǫ2(F

T −GA) τR3 + 2µZ − ǫ2(G+GT )
ǫ1R

T
3 −QT + ǫ2A

T
d F

T ǫ2A
T
d G

T

2δQT − ǫ1R
T
2 QT

⋆ ⋆
⋆ ⋆

−ǫ1(R3 + τS) ⋆
ǫ1R

T
2 −ǫ1R1







(A.4)

where F = 2δP+Q+QT+τR1−ǫ1R3+S+ε2(AFT+FAT ).
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