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Abstract: Boats and ships have always been used throughout history as one of the main types
of transportation. In recent years, due to the fast evolution of deep learning techniques and
online datasets available, convolutional neural networks (CNN) have been widely used for ship
and boat detection applications, such as surveillance of marine resources, helping in maritime
rescue, monitoring illegal marine activities, among others. In this paper, we present a robust and
efficient CNN-based on state-of-the-art YOLO model to perform boat and other water vehicles
detection. The training dataset was built considering boats of different sizes, located on the coast
and sea and taken with drones and satellites. We also applied data augmentation techniques such
as flipping, cropping and changing brightness to increase the number of samples and improve
the model robustness. A case study is presented considering a multi Unmanned Aerial Vehicles
(UAV) to detect boats in a Coral Reefs Environmental Protection Area (APARC), where human
activity is limited. We evaluated the developed system considering a testing dataset with images
of the case study, achieving a recognition rate of 87,2% and a mean average precision of 97,23%.

Keywords: Boat, Object Detection, Convolutional Neural Network, YOLO, Unmanned Aerial
Vehicles, Environmental Protection Area.

1. INTRODUCTION

Preserving and protecting the environment is
essential nowadays. Climate change, pollution, and
overexploitation, among other threats, are severely
harming natural resources, biodiversity, ecosystems, and
human health (Fascista, 2022). In this way, government
initiatives have sought to mitigate these impacts through
public policies and incentives for actions related to nature
preservation and sustainable use of natural resources.
Among them is the 9.985 Brazilian law that defined the
Nature Conservation Units (UCs).

The UCs are territorial spaces created for conservation
purposes, where their environmental resources are legally
established by the government. Environmental Protection
Area is a UC category with an extensive area and a
certain degree of human occupation that has the goal
of protecting the biological environment, disciplining the
occupation process and ensuring the sustainability of the
natural resources use.

The Coral Reefs Environmental Protection Area (Área
de Proteção Ambiental Recifes de Corais - APARC, in
portuguese) is a UC located the in the coastal strip from
the cities of Maxaranguape, Rio do Fogo and Touros on
the Brazilian state of Rio Grande do Norte. This region

⋆ This study was financed in part by the Coordenação de
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Figure 1. Coral Reefs Environmental Protection Area
(APARC)

contains several coral reefs and a diverse marine life,
making it an unique place for recreational and tourist
diving, artisanal fishing and scientific research. Figure 1
illustrates the APARC.

The APARC is divided in four zones: Fishing, Tourism,
Recreated Diving and Full Protection (Lopes et al.,
2014). The first three zones allow controlled local and
tourist occupation restricting the number of travelers
and stablishing conducting rules that must be followed.
However, the Full Protection zone is formed by areas with
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rich and fragile ecosystems, which justifies their protection
in relation to any exploitation of natural resources. In
this zone, only scientific research, environmental education
activities and environmental monitoring are allowed.

Therefore, monitoring actions (mainly in the Full
Protection zone) is important to ensure the APARC
conservation. Currently, there is a monitoring program,
but the extensive area and the limited resources difficults
the daily execution. In this sense, an interesting solution
to improve monitoring is to use Unmanned Aerial Vehicles
(UAVs) with cameras to automatically detect human
activities. Thanks to their aerial abilities, UAVs can
reach remote and poorly accessible areas and perform
monitoring activities at different altitudes while ensuring
high sampling rates.

However, using a single UAV may not be enough to
complete a mission. In these cases, a viable alternative is to
use a fleet of UAVs, in which they must be able to exchange
information with each other and act cooperatively to
achieve a common goal. The literature calls this solution a
system of multiple UAVs or multi-UAV (Fu et al., 2019).

According to Yanmaz et al. (2018), multi-UAV systems
present some considerable advantages when compared to
single UAV solutions. Among them, we can highlight:
greater area coverage and reliability (reception of
distinct observations from a particular area of interest);
redundancy and fault tolerance (the collective nature
inserts fault tolerance in isolated points); availability of
resources (can provide an increase in data storage capacity
and the installation of specific sensors for each aircraft);
and scalability (the inclusion or removal of aircraft allows
working on problems of similar nature, but with different
proportions).

In this context, our previous work (Santos et al., 2019)
presented a multi-UAV architecture for monitoring human
activity in the APARC. The main contributions were
establishing an UAV network to send images, a flight
formation strategy to capture images using UAVs, and
testing a pre-trained SSD Neural Network to detect boats
in forbidden regions. However, the SSD network did not
performed well considering the testing dataset.

In this paper, our main contribution is the development
of a convolutional neural network (CNN) to detect boat,
ships and other water vehicles located at coast and sea.
This network will be applied for monitoring human activies
in an Environmental Protection Area using a multi-UAV
architecture. Another contribution is the creation of a new
public test dataset with fully anotated aerial images of
boats in the APARC.

The remainder of this paper is organized as follows:
Section 2 presents related works to boat and ship
detection. Section 3 describes the dataset used to train
and evaluate the network. Section 4 describes the proposed
CNN architecture to detect boats. Section 5 reports and
discuss results of experiments. Finally, section 6 presents
the final considerations.

2. RELATED WORKS

In recent years, many studies related to ships and
boats detection have been developed with applications in

different fields. For example, it is possible to apply this
technology in surveillance of marine resources, helping
in maritime rescue, monitoring illegal marine activities,
securing traffic in ports, among others (Bo et al., 2021).

Most of early works uses satellite images to train and
evaluate their system. In Yang et al. (2013), an automatic
ship detection using high-resolution optical satellite image
based on image processing and sea surface analysis is
proposed. They initially analyze texture and intensity
information of pixels to detect objects over the ocean.
Next, a linear selection function is applied to acquire
ship candidates, and then features related to perimeter
and length-width ratio are used to assure that the object
represents a ship.

Zou and Shi (2016) present a novel ship detection method
called SVDNet, created based on convolutional neural
networks (CNN) and singular value decompensation
algorithm. To supress undesired background and detect
ship candidates, the authors use three convolutional layers
and three nonlinear mapping layers. Then, each ship
candidate is tested using feature pooling operation and
a linear SVM classifier. The framework is trained using
spaceborne optical images and was evaluated considering
ships on the coast and ocean.

Other works also focus on detecting ships considering
satellite images but using different neural network
architectures. Nie et al. (2017) use Single Shot MultiBox
Detector (SSD) with transfer learning while Wang
et al. (2019) employs a RetinaNet architecture using
multi-resolution images.

In Chen et al. (2020b), a novel ship detection architecture
is developed considering non-aerial images acquired by
the authors and online. They used Generative Adversarial
Networks (GAN) and YOLOv2 and the main goal of this
work is to detect small ships such as bamboo rafts and
fishing boats in the river or near-shore sea, achieving an
accuracy of up to 97.2%.

Similarly, Li et al. (2021) acquired ship images on coastal
and river routes using surveillance videos to train the
network, i.e., non-aerial images. The authors present an
Enhanced YOLOv3 tiny network to detect six different
types of boats, which provides a better trade-off between
accuracy and processing time.

Lodeiro-Santiago et al. (2019) provide a solution to detect
small boats used for irregular immigration. In this work,
the images are captured using a smartphone attached to
an UAV and the entire frame is sent to a remote cloud
server, where a CNN is applied to detect ships, pateras (or
cayucos), and people.

3. DATASET

In the literature, there are many ship and boat
datasets available online that focus mainly on aerial
(MakeML, 2020; G ↪asienica-Józkowy et al., 2021), satellite
(Antonio-Javier Gallego, 2018; Chen et al., 2020a) or
both (Zhang et al., 2020) images. In this paper, the
dataset used to train and validate the neural network
contains approximately 7,900 images provided by three
datasets (Antonio-Javier Gallego, 2018; MakeML, 2020;
G ↪asienica-Józkowy et al., 2021).
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Figure 2. Sample images with data augmentation from training datasets: MakeML (2020) (left), Antonio-Javier Gallego
(2018) (middle) and G ↪asienica-Józkowy et al. (2021) (right)

These datasets can be summarized as follows: (1) MakeML
(2020) has 621 aerial images of ships and boats on the
coast and sea; (2) Antonio-Javier Gallego (2018) has 7,389
satellite images labeled in seven classes: land, coast, sea,
ship, multi, coast-ship, and detail. The distance between
targets and the acquisition satellite is changed to obtain
captures at different altitudes; and (3) G ↪asienica-Józkowy
et al. (2021) has 3,647 images taken from video clips
captured by various drone-mounted cameras and labeled in
six classes: human, wind/sup-board, boat, buoy, sailboat,
and kayak. Images from all datasets are labeled and have
bounding boxes of the objects.

In this paper, we focus on detecting boats and other similar
vehicles on the sea. However, some of the mentioned
datasets have images and classes that does not fit this
purpose, which required us to preprocess and filter out
some images and redefine some classes. Thus, for dataset
(2), we selected only images with the classes ship (1,027
images of singles ships on the sea) and multi (304 images
with more than one ship), defining both of them as only
one class. Similarly, for dataset (3), we selected images
with the classes wind/sup-board, boat, sailboat, and
kayak, considering them as only one class, and disregarded
the bounding boxes of the classes human and buoy.

The images of these datasets have boats and ships of
distinct sizes, located on the ocean and coast, taken with
UAVs and satellites at different angles. This diverse image
configuration can help improve network generalization,
detecting boats from different perspectives. Together, after
preprocessing, there are 3,219 images which will be divided
in 70% for training and 30% for validation.

We also performed data augmentation to improve the
model robustness by introducing new samples to the
training dataset. Each training instance has three outputs
by executing the following operations: flip each image
horizontally or vertically; randomly crop the image by
zooming up to 40%; and change brightness between -20%
and +20%. These procedures work well with our dataset

because flipping will cause no harm since most images were
taken directly over the object; zooming up is equivalent
to lower the altitude of the drone that took the image
and changing the brightness simulates different sunlight
levels. The training dataset increased to 6,756 images after
data augmentation. Figure 2 shows some examples of each
dataset alongside a data augmentation technique.

To test the performance of the neural network, we built
our own test dataset from 17 high resolution images
(4000x3000 pixels) taken in APARC using a DJI Phantom
3 Standard Quadcopter Drone provided by the Institute of
Sustainable Development and Environment of Rio Grande
do Norte (IDEMA). Some images show the same boats
but from a different angles and lightning conditions. We
decided to split them in 98 smaller images with a 400x300
resolution, where each image has at least one boat. In total,
there are 219 boats in this dataset randomly positioned
within the images. Figure 3 shows a sample image of the
testing dataset and Figure 4 resumes the dataset explained
in this section.

Figure 3. Sample of testing dataset.
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Figure 4. Dataset creation.

The test dataset was manually labeled by the authors and
is publicly available for research purposes at Mendeley
Data over the name of this paper’s title. Every image has
a text file in which each line corresponds to one object’s
position (in our case, a boat) in the image. This position
has four coordinates shown in a sequence that represents
the x- and y-axis position of the upper-left vertice of the
object’s bounding box, the width and the height of the
object. All coordinates are expressed in pixels and we also
resized the images to 416x416 to match the network input.

4. CNN ARCHITECTURE

Two main approaches can be used for object detection
considering CNN. The first one is a two-stage object
detection, used on R-CNN (Girshick et al., 2014) and
FPN (Lin et al., 2017). It consists of two networks:
the region proposal network, which predicts bounding
boxes of the classes; and the object detection network,
which classifies these candidate regions and redefines
the object localization. In contrast, the second approach
is a one-stage object detection and used on YOLO
(Bochkovskiy et al., 2020) and SSD (Liu et al., 2016),
predicting both bounding boxes with associated class
probabilities in a single step. Two-stage object detection
approaches have higher accuracy, with the drawback of
higher processing time.

The neural network developed in this paper will be
deployed on an edge device attached to a UAV. Therefore,
due to the edge device processing and storage limitations,
we need to balance a lightweight network architecture
with satisfactory accuracy. In this context, we used
YOLOv4-tiny, a lighter version of YOLOv4 developed for
edge and lower-power devices. YOLOv4-tiny has been used
for many real-time object detections applications, such
as pothole recognition (Silva et al., 2020), complex road
scenarios (Zhu et al., 2021), and aircraft detection (Hou
et al., 2021), providing a satisfactory trade-off between
accuracy and time processing.

To use YOLO-based models, we have to change the
number of filters (F ) in the last convolutional layer based
on the number of classes (C), anchor boxes (A), and
coordinates of each bounding box, as pointed out by the
equation below.

F = (C + 5)×A (1)

For this paper, we only have one class that represents boats
and other similar water vehicles, and we will consider 3
anchor boxes in each last convolutional layer. These values
result on 18 filters before each YOLO instance. Table 1
resumes the YOLOv4-tiny architecture used in this work,
where layers 29 and 36 have 18 filters. Also, the input
image is resized to 416x416 pixels.

Table 1. YOLOv4-tiny architecture.

Layer Type Filters Size/Stride Input

0 Conv. 32 3x3/2 416x416x3
1 Conv. 64 3x3/2 208x208x32
2 Conv. 64 3x3/1 104x104x64
3 Route 2
4 Conv. 32 3x3/1 104x104x32
5 Conv. 32 3x3/1 104x104x32
6 Route 5 4
7 Conv. 64 1x1/1 104x104x64
8 Route 2 7
9 Max Pool 2x2/2 104x104x128
10 Conv. 128 3x3/1 52x52x128
11 Route 10
12 Conv. 64 3x3/1 52x52x64
13 Conv. 64 3x3/1 52x52x64
14 Route 13 12
15 Conv. 128 1x1/1 52x52x128
16 Route 10 15
17 Max Pool 1x1/1 52x52x256
18 Conv. 256 3x3/1 26x26x256
19 Route 18
20 Conv. 128 3x3/1 26x26x128
21 Conv. 128 3x3/1 26x26x128
22 Route 21 20
23 Conv. 256 1x1/1 26x26x256
24 Route 18 23
25 Max Pool 2x2/2 26x26x512
26 Conv. 512 3x3/1 13x13x512
27 Conv. 256 1x1/1 13x13x512
28 Conv. 512 3x3/1 13x13x256
29 Conv. 18 1x1/1 13x13x512
30 YOLO
31 Route 27
32 Conv. 128 1x1/1 13x13x256
33 Up Sample 2x 13x13x128
34 Route 33 23
35 Conv. 256 3x3/1 26x26x384
36 Conv. 18 1x1/1 26x26x256
37 YOLO

The training was performed considering 7,000 iterations
(max batches) and learning rate = [2, 61 ∗ 10−3,2, 61 ∗
10−4,2, 61 ∗ 10−5] with steps at 5,600 and 6,300 iterations.

5. RESULTS

In this section, we will present and discuss the experiments
to evaluate our system considering the test dataset
described in Section 3. To perform the tests, we used
Google Colab with a Tesla K80 GPU and 12 GB of memory
using the Darknet framework (Redmon, 2013–2022).
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(a) (b) (c)

(d) (e) (f)

Figure 5. Boat detection examples considering a 0,25 confidence threshold.

To evaluate the developed network, we will analyse the
precision, recall and recognition rate (RR), shown in
Equations 2, 3 and 4, respectively. In short, the precision
retrieves the proportion of detected boats that are actually
correct while the recall retrieves the proportion of boats
that were actually detected. Recognition rate represents
the relation between true positives (TP ) and the total
amount of boats (TB) in the dataset. Also, we computed
the mean average precision (mAP ), a popular metric for
measuring the accuracy of object detectors.

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

RR =
TP

TB
(4)

where FN and FP represents false negative and false
positive, respectively.

We tested the network performance using different
confidence threshold values, as summarized in Table 2. We
also considered an Intersection over Union (IoU) threshold
of 50%, i.e., if the overlapping area between the predicted
and the actual bounding box is more than 50%, the
prediction is considered to be correct.

Analyzing Table 2, we can see the best option regarding
recall is using a confidence threshold of 0,25 since it
provides a recall value of 0,97 with only 6 FN and 190
TP. A threshold value of 0,20 could also be used, but
the number of FP would increase by 6 while decreasing
only 1 FN. If both precision and recall were considered, a
confidence value of 0,45 would be the best case since there
are 7 FN with only 15 FP.

Table 2. Network performance for different
confidence thresholds. TB = 219 boats.

Thres. TP FP FN Precision Recall Rec. Rate

0,15 191 33 5 0,85 0,97 0,872
0,20 191 31 5 0,86 0,97 0,872
0,25 190 25 6 0,88 0,97 0,867
0,30 189 23 7 0,89 0,96 0,863
0,35 189 19 7 0,91 0,96 0,863
0,40 189 17 7 0,92 0,96 0,863
0,45 189 15 7 0,93 0,96 0,863
0,50 186 12 10 0,94 0,95 0,849

For the application of this paper, once a boat is detected,
the image of this supposed boat will be sent to an operator
in the ground station, which will analyze the image and
send a team to investigate the occurrence if necessary.
Therefore, even if a FP occurs, the operator will be able
to analyze the image and choose not to send a team.
However, if a FN occurs, there will be human activities in
the APARC but the operator would not be notified, which
is much more critical. In this sense, we will prioritize a
high recall to detect as much human activity as possible
and use a confidence threshold of 0,25.

Figure 5 shows some results when considering a 0,25
confidence threshold. In Figures 5a, 5b and 5c, the network
correctly detected 1, 3 and 5 boats with accurate bounding
boxes, respectively, which illustrates the good performance
of the system. An interesting point is that Figure 5d has 2
FP, where the network predicted people as boat. However,
since our final goal is to detect human activity, this error is
actually helpful. In Figure 5e another FP occurred, where a
coral was predicted as boat, and in Figure 5f a FN ocurred,
where a boat was not detected.

In our previous work (Santos et al., 2019), we used a SSD
network to perform boat detection, where a recognition
rate of up to 62,15 % was achieved with 10 FP. In this
paper, we significantly improved this metric to 86,70 %
while also decreasing the FP to 6. Finally, the network
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achieved a mAP of 97,23 % in the test dataset and it
took an average time of 15,739 ms to predict each image
using the Darknet framework considering a computer with
specifications described in the beginning of this section.

6. CONCLUSION

In this paper, we presented a novel convolution neural
network to detect boats, ships, and other water vehicles
located at sea, which will be applied for monitoring human
activities in an Environmental Protection Area. Another
contribution is the construction of a new testing dataset
with fully annotated aerial images of boats.

Experiments proved that the developed neural network
achieved outstanding results in the testing dataset,
achieving a recognition rate of 86,70%, recall of 97% and
precision of 88% considering a confidence threshold of 0,25.

In future works, we will evaluate the performance of the
developed network in an embedded system that will be
attached to a UAV and test different CNN architectures
to improve recognition rate and inference speed. Also, we
plan to validate the newly developed network in real-life
experiments using a multi-UAV communication system in
the APARC.
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