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Abstract: This paper addresses the state-feedback control problem for state-polynomial discrete-
time linear parameter varying systems. The sum of squares formulation is employed to write
the conditions. Two approaches are presented, the first one makes use of the Lyapunov function
to recover the gain matrices, providing state-feedback gains which may be rational in the time-
varying parameter, and linear in the state variables. The second formulation allows the design
of rational state-feedback control gains concerning both the time-varying parameter and the
state variables. Numerical experiments borrowed from the literature are employed to illustrate
the efficacy of the proposed method.
Resumo: Este artigo aborda o problema de controle por realimentação de estados para sistemas
polinomiais nos estados de tempo discreto e sujeitos a parâmetros variantes no tempo. A
formulação baseada na técnica de soma de quadrados é empregada para escrever as condições.
Duas abordagens são apresentadas, a primeira faz uso da função de Lyapunov para recuperar
as matrizes do ganho, fornecendo ganhos por realimentação de estados que podem ser racionais
nos parâmetros variantes no tempo e lineares com as variáveis de estado. A segunda formulação
permite o projeto de ganhos de controle por realimentação de estado racionais considerando
tanto os parâmetros variantes no tempo quando as variáveis de estado. Experimentos numéricos
retirados da literatura são usados para ilustrar a eficácia do método proposto.

Keywords: State-feedback control; State polynomial systems; Time-varying parameters.

Palavras-chaves: Controle por realimentação de estados; Sistemas polinomiais nos estados;
Parâmetros variantes no tempo.

1. INTRODUCTION

The study of nonlinear systems has experienced a rise
in the last decades, mainly due to the several tools to
provide stability certificates and control design for this
class of systems. One may cite the celebrated T-S (Takagi-
Sugeno) fuzzy models (Takagi e Sugeno, 1985) and tech-
niques based on LPV (Linear Parameter Varying), and
quasi-LPV systems (Mohammadpour e Scherer, 2012).
These techniques conveniently rewrite the systems in terms
of simple components, to analyze and design controllers
and filters. However, most of the results in the litera-
ture are concerned with linear systems, i.e., the state
space representation obtained from the T-S fuzzy sys-
tems or the LPV representation as a linear function of
the states. For instance, in (Cherifi et al., 2019) global
stabilization for T-S systems with piecewise continuous

⋆ This work was supported by the Brazilian agencies CNPq
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membership functions is studied. The approach is based
on a Non-Quadratic Lyapunov Function, which considers
the mean values of the membership functions over an
interval. Concerning the LPV representation, one may see
papers dealing with time-varying parameters that belong
to a polyhedral set (Geromel e Colaneri, 2006), or more
recently, piecewise constant parameters (Briat, 2015) and
differentiable parameters (Briat e Mustafa, 2017).

The study of nonlinear state polynomial systems has
attracted attention with the development of techniques
based on the sum of squares (SOS) (Papachristodoulou
et al., 2013). The formulation has been employed to
consider stability analysis problems Ahmadi e Parrilo
(2011), control design, and also the filtering problem (Li
et al., 2012; Lacerda et al., 2015). For instance, in (Jen-
nawasin e Banjerdpongchai, 2018), state-feedback con-
trollers for continuous-time state-polynomial systems with
bounded magnitudes of control input are derived. The
approach is based on rational Lyapunov functions and
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the convex optimization problem is addressed by em-
ploying SOS decomposition. SOS is also used in (Zhao
e Wang, 2009), where state-feedback controllers for con-
tinuous time-varying state-polynomial systems are derived
with parameter and state-dependent Lyapunov functions.
In (Ebenbauer e Allgower, 2006), stability analysis and
design of state-feedback controllers for the same class of
systems are also studied. The authors propose an approach
based on dissipation inequalities and the sum of squares
decomposition. In (Ferreira et al., 2020), the SOS method
is used to design state feedback controllers for continuous-
time state-polynomial systems with time-varying parame-
ters, where the controllers depend simultaneously on states
and a filtered version of the time-varying parameters. The
conditions provide global stabilization certificates. The
designed controllers minimize the L2 gain from the input
disturbance to the output of the continuous-time LPV
state-polynomial system.

In contrast with the continuous-time state-polynomial sys-
tems, the results for discrete-time still are scarce. More-
over, when the state-polynomial system counts with the
presence of time-varying parameters this difference is more
noticeable. In (Saat et al., 2012), conditions to provide
state-feedback controllers for state-polynomial discrete-
time systems with polytopic uncertainties are developed.
The conditions are based on a parameter-dependent Lya-
punov function and an integral action. Global stability
certificates are obtained. In (Nasiri et al., 2018), the
state-feedback control problem is tackled by considering
discrete-time polynomial fuzzy models, the authors pro-
pose an approach based on the use of an integrator to
guarantee the global stability of the closed-loop systems.
The method proposed in (Chen et al., 2014) is also con-
cerned with the stabilizability problem for discrete-time
polynomial fuzzy systems. However, only a local stability
certificate is provided.

This paper presents new conditions for the design of state-
feedback controllers for state-polynomial LPV discrete-
time systems. The conditions are written with the use
of the sum of squares formulation. The first formulation
makes use of the Lyapunov function to recover the state-
feedback gain that is linear in the state-variable, and ratio-
nal in the time-varying parameter. On the other hand, the
second formulation proposed in this paper uses a rational
gain concerning both the time-varying parameter and the
state variables. Numerical experiments are presented to
illustrate the effectiveness of our approach.

The remainder of this paper is structured as follows. The
preliminaries and the problem formulation are presented
in Section 2. The main results are developed in Section 3.
Section 4 illustrates the effectiveness of the proposed
approach through a numerical experiment, and Section 5
concludes the paper.

Notation: I and 0 denote identity and null matrices of
proper dimension, respectively. ⋆ indicates a block induced
by symmetry. The transpose of any matrix X is repre-
sented by XT , and R

m×n is the set of real m×n matrices.
If f(x) is SOS, then f(x) ∈ Σ [x].

2. PRELIMINARIES

Consider the following state-polynomial LPV system

xk+1 = A(αk,xk)xk +B(αk,xk)uk, (1)

where x ∈ R
n is the state vector and u ∈ R

nu is the control
input vector, k ∈ N is the time instant. The polynomial
LPV matrices in (1) can be generically represented as

Z(αk,xk) =

N
∑

i=1

αk,iZi(xk), αk ∈ ΛN , (2)

where Zi(xk), i = 1, . . . , N , are the vertices of the polytope
and ΛN is the unit simplex:

ΛN =

{

αk ∈ R
N :

N
∑

i=1

αk,i = 1, αk,i ≥ 0, i = 1, . . . , N

}

.

The vertices of the LPV matrices in (1) are described as
state-polynomial matrices that may contain monomials of
the state variables x up to a certain degree.

The main objective in this paper is to design a control
law ensuring the closed-loop stability of (1). To achieve
this end, the following polynomial gain scheduling state-
feedback control law is considered

uk = K(αk,xk), (3)

where K(αk,xk) ∈ R
nu×n is a polynomial LPV matrix

with the same structure presented in (2). Furthermore, the
time-varying parameter αk is considered to be available,
measured, or estimated online. Taking into account the
state-feedback controller (3), the closed-loop system reads

xk+1 = Ã(αk,xk)xk, (4)

with Ã(αk,xk) = A(αk,xk) +B(αk,xk)K(αk,xk).

The conditions proposed in this paper are obtained via
Lyapunov Theory, and the matrices constraints certificates
are secured through the sum of squares (SOS) decomposi-
tion. A multiple variables polynomial F (x1,x2, . . . ,xn) of
degree 2d is SOS, if it can be written according to

F (x1,x2, . . . ,xn) =
m
∑

i=1

f2
i (x1,x2, . . . ,xn), (5)

where each polynomial fi(x1,x2, . . . ,xn) has degree lower
or equal to d. Equation (5) is clearly semi-positive definite
and can be written as

F (x) = zTQz, (6)

where z is a vector containing monomials of degree up to
d of (x1, x2, . . . , xn). Q ≥ 0 and can be decomposed, for
instance by using the Cholesky factorization, as Q = V TV .
Subsequently, one may calculate a vector f containing all
fi’s according to

f(x1,x2, . . . ,xn) = V z. (7)

In the sequel, we will establish conditions to design state-
feedback controllers which can stabilize the closed-loop
system (4).

3. MAIN RESULTS

Theorem 1. If there exist parameter dependent matri-
ces P (αk) and polynomial parameter dependent matrices
Z(αk,xk) such that

Mi,z − ǫI ∈ Σ [x] ,
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i = 1, . . . ,N, z = 1, . . . ,N , with

Mi,z =

[

Pi Zi(xk)
TBi(xk)

T + PiAi(xk)
T

⋆ Pz

]

, (8)

and
Qi,j,z − ǫI ∈ Σ [x] ,

i = 1, . . . ,N − 1, j = i+ 1, . . . ,N, z = 1, . . . ,N , with

Qi,j,z =

[

Pi + Pj Φij

⋆ 2Pz

]

, (9)

where

Φij = Zj(xk)
TBi(xk)

T + PjAi(xk)
T

+ Zi(xk)
TBj(xk)

T + PiAj(xk)
T , (10)

then, the discrete-time state-polynomial LPV system (4)
is asymptotically stable and the polynomial LPV state-
feedback controller is given by

K(αk,xk) = Z(αk,xk)P (αk)
−1.

Proof. Note that if Theorem 1 is satisfied, then (8) and (9)
are positive definite matrices. Multiplying (8) by α2

k,i,

i = 1, . . . ,N , multiplying (9) by αk,iαk,j , i = 1, . . . ,N − 1,
j = i+ 1, . . . ,N , and summing up one has
[

P (αk) Z(αk,xk)
TB(αk,xk)

T + P (αk)A(αk,xk)
T

⋆ Pz

]

> 0.

Multiplying the last matrix by βk,z, z = 1, . . . ,N , and
summing up yields
[

P (αk) Z(αk,xk)
TB(αk,xk)

T + P (αk)A(αk,xk)
T

⋆ P (βk)

]

> 0.

(11)
By replacing Z(αk,x) = K(αk,xk)P (αk), and applying a
congruence transformation in (11) with

[

P (αk)
−1 0

0 P (βk)
−1

]

,

one can write
[

P (αk)
−1 Ã(αk,xk)

TP (βk)
−1

⋆ P (βk)
−1

]

> 0. (12)

Replacing P (αk)
−1 and P (βk)

−1 by W (αk) and W (βk)
respectively, and applying a Schur complement yields

W (αk)− Ã(αk,xk)
TW (βk)Ã(αk,xk) > 0, (13)

with βk = αk+1. Therefore, by calling V (xk) =
xT
kW (αk)xk, and noting that W (αk) > 0, we have that

there exist positive scalars c2 > c1 > 0 such that

c1‖x‖
2 ≤ V (xk) ≤ c2‖x‖

2.

A possible choice for c1 and c2 is c1 = min
αk

(λ(W (αk)))

and c2 = max
αk

(λ(W (αk))). By pre- and post-multiplying

(13) by xT and its transpose, respectively, and using the
closed-loop equation in (4), we get V (xk+1)− V (xk) < 0.
Therefore, there always exists a small enough scalar c3 > 0
such ensuring that V (xk+1)− V (xk) < −c3‖x‖

2.

The main drawback with the conditions proposed in Theo-
rem 1 is the fact that the state-feedback controller is recov-
ered from the Lyapunov matrix that does not depend on
the state vector xk. The gain stills a polynomial function
of the state vector xk, once the matrix Z(αk,xk) is also
employed to recover it. The next result presents a condition
that does not employ the Lyapunov matrix to recover the
controller and allows the design of rational controllers in
both αk and xk.

Theorem 2. If there exist parameter dependent matri-
ces P (αk) and polynomial parameter dependent matrices
X(αk,xk) and Z(αk,xk) such that

Ψi,z − ǫI ∈ Σ [x] ,

i = 1, . . . ,N, z = 1, . . . ,N , with

Ψi,z =

[

Xi(xk) +Xi(xk)
T − Pi ⋆

Ai(xk)Xi(xk) +Bi(xk)Zi(xk) Pz

]

, (14)

and
Θi,j,z − ǫI ∈ Σ [x] ,

i = 1, . . . ,N − 1, j = i+ 1, . . . ,N, z = 1, . . . ,N , with

Θi,j,z =

[

R ⋆
S 2Pz

]

, (15)

where

R = Xi(xk) +Xj(xk) +Xi(xk)
T +Xj(xk)

T − Pi − Pj ,

S = Ai(xk)Xj(xk) +Bi(xk)Zj(xk) +Aj(xk)Xi(xk)

+Bj(xk)Zi(xk),

then, the discrete-time state-polynomial LPV system (4)
is asymptotically stable and the polynomial LPV state-
feedback controller is given by

K(αk,xk) = Z(αk,xk)X(αk,xk)
−1.

Proof. If Theorem 2 is satisfied, then following the same
steps used in Theorem 1 one can write
[

X(αk,xk) +X(αk,xk)
T − P (αk) ⋆

A(αk,xk)X(αk,xk) +B(αk,xk)Z(αk,xk) P (βk)

]

> 0.

(16)
Replacing Z(αk,xk) = K(αk,xk)X(αk,xk) yields

[

X(αk,xk) +X(αk,xk)
T − P (αk) ⋆

Ã(αk,xk)X(αk,xk) P (βk)

]

> 0. (17)

By exploiting the inequality

X(αk,xk)
TP (αk)

−1X(αk,xk) ≥ X(αk,xk)

+X(αk,xk)
T − P (αk),

one gets
[

X(αk,xk)
TP (αk)

−1X(αk,xk) ⋆

Ã(αk,xk)X(αk,xk) P (βk)

]

> 0. (18)

Pre- and post-multiplying (18) by S and ST respectively,
with

S =

[

X(αk,xk)
−T 0

0 P (βk)
−1

]

,

one has exactly (12). Then, the same steps performed in
Theorem 1 can be followed to conclude the proof.

Remark 3. The ǫ value employed in the conditions, is
a small positive definite function used to certify that
the conditions are strictly positive. The choice for such
a parameter is not unique, and it could be also state-
dependent. For instance,

ǫ =

n
∑

k=1

ǫkx
2
k,

where ǫk, k = 1, . . . ,n, are positive scalar variables. The
reader is referred to (Papachristodoulou e Prajna, 2002,
2005) for a more detailed discussion.

Remark 4. Note that, differently from Theorem 1, the
LPV state-feedback controller obtained with Theorem 2
may be rational in both parameters αk and state xk.
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Corollary 5. If there exist symmetric parameter-
dependent matrices P (αk) and matrices X and Z
such that

Ψi,z − ǫI ∈ Σ [x] ,

i = 1, . . . ,N, z = 1, . . . ,N , with

Ψi,z =

[

X +XT − Pi ⋆
Ai(xk)X +Bi(xk)Z Pz

]

, (19)

then, the polynomial LPV system (4) is asymptotically
stable and the robust state-feedback control gain is given
by

K = ZX−1.

Proof. The proof follows the same steps presented in the
Proof of Theorem 2 by using Z = KX.

Remark 6. Note that Corollary 5 presents a condition
where constant matrices X and Z are employed. In this
case, a robust controller is obtained. However, the Lya-
punov function employed is a parameter-dependent Lya-
punov function.

4. NUMERICAL EXPERIMENTS

To illustrate the potential of the proposed method
some numerical experiments are considered. The routines
were implemented in Matlab R2014a using the SOS-
TOOLS (Papachristodoulou et al., 2013) and the solver
SeDuMi (Sturm, 1999).

Consider the polynomial LPV system (1) with matrices

A1(xk) =

[

−1 0.1x2k

0.2 1

]

, A2(xk) =

[

1 0.1x2k

0.2 1

]

,

B1 = B2 =

[

1
0

]

.

This system was borrowed from (Nasiri et al., 2018), in
the context of polynomial fuzzy systems. In that paper,
an integrator has been employed, and a convex solution
in terms of SOS was provided. The controller obtained for
this example involved polynomial matrices with degrees 7
and 8. The global stability was certified and a polynomial
Lyapunov function radially unbounded has been used to
certify the closed-loop stability.

The method proposed in (Chen et al., 2014) was also able
to provide a stabilizing controller, by using polynomials
with degrees 6 and 8 in the state-feedback gains, however,
the Lyapunov function employed only provided a local
stability certificate was shown in (Nasiri et al., 2018).

Theorem 1 with a constant matrix P and ǫ = 10−3 is
able to provide a state-feedback controller that stabilizes
the system. The matrix Z(αk,xk) has been considered only
with monomials of the state variable x2k up the degree two.
In this way, the state-feedback controller has the following
form

K1(xk) = [K11 K12] , K2(xk) = [K21 K22] , (20)

with

K11 = 0.8456− 6.6535× 10−6x2k − 5.3009× 10−11x2
2k
,

K12 = −0.5357− 0.1000x2k + 4.8633× 10−12x2
2k
,

K21 = −1.0302− 6.3553× 10−6x2k + 5.3963× 10−11x2
2k
,

K22 = −0.5159− 0.1000x2k − 1.4127× 10−11x2
2k
.

Moreover, the matrix P obtained from the solution is

P =

[

0.8782 −0.3522
−0.3522 0.6506

]

.

The Lyapunov function is given by V (xk) = xT
k P

−1xk.
Level sets of the Lyapunov function are presented in
Figure 1. It can be seen that the Lyapunov function is
radially unbounded and it is able to certify the global
stability of the closed-loop system.

 

 

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x1

x
2

Figure 1. Level sets of the Lyapunov function
V (xk),

{

xk, x
T
k P

−1xk = ξ
}

for ξ = [0.1,1,5,10, 20,30].

To evaluate the performance of the controller the following
rule has been considered for the LPV parameters. This is
the same rule considered in (Nasiri et al., 2018).

αk,1 =
1

2
(1 + sin(x1k)) , αk,2 = 1− αk,1.

Figure 2 depicts the trajectories for different initial condi-
tions. In this case, 100 randomly generated initial con-
ditions have been considered. It can be seen that the
trajectories always converge to the origin. Each trajectory

5 10 15 20 25 30 35 40
−3

−2

−1

0

1

2

3

4

k

x
k

Figure 2. State trajectories for 100 randomly generated
initial conditions with the state-feedback control law
given in (20).
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presented in Figure 2 is associated with a Lyapunov func-
tion that is positive definite and monotonically decreasing
along the trajectories. For instance, considering an initial

condition [−1 1]
T
, the trajectory of the Lyapunov function

is shown in Figure 3.

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

k

V

Figure 3. Trajectory of the Lyapunov function along the
trajectories of the system.

Theorem 2 is also able to stabilize this system. For in-
stance, by considering a constant matrix P , a matrix
X(x2k) of degree up to one in x2k and matrices Z(αk,x2k)
with degree 1 in α and degree up to one in x2k , a feasible
solution can be found. In this case, a parameter-dependent
rational feedback gain in xk is obtained, since the control is
obtained by employing the inverse of the matrixX(x2k). In
this Example, Corollary 5 fails to find a feasible solution.

To further test the robustness of the proposed conditions
consider the matrices A1(xk), and A2(xk) = ρA2(xk). The
goal is to obtain the maximum value of ρ such that the
conditions are feasible. Theorem 1 achieved ρ = 83.42,
while Theorem 2 attained ρ = 400. This shows that
Theorem 2 can provide controllers for a wide range of vari-
ations of the vertices of the LPV state-polynomial system.
This corroborates the fact that the use of a parameter-
dependent rational state-feedback controller may provide
less conservative results than an LPV controller.

5. CONCLUSIONS

This work presented new conditions to design state-
feedback controllers for discrete-time state-polynomial
LPV systems. The control gains present a rational struc-
ture in both the time-varying parameter and the state
variables. Two formulations are presented, the first based
on the use of the Lyapunov matrix to recover the control
gain, and the second makes use of a slack variable to
design the controllers. Different from existing methods, the
proposed Lyapunov function does not depend on the state
variables, producing global stability certificates for the
closed-loop systems. Numerical experiments with an exam-
ple borrowed from the literature illustrated the efficacy of
our approach. In future research, the proposed conditions
will be extended to take into account constraints in the

input signal, and the use of the ℓ2 gain to consider the
presence of input disturbances.
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