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Abstract:
The majority of mechanical components went through a machining process during their
manufacturing. Therefore, manufacturing processes with inadequate condition tools are likely to
induce unexpected operational interruptions, accidents, product quality, and economic losses.
Accordingly, the ability to classify fault imminences can result in cost reduction, along with
productivity and safety increase. This paper aims to discuss an autonomous model based
on the Self-Organised Direction Aware Data Partitioning Algorithm (SODA) and machine
learning techniques, including time series Feature Extraction based on Scalable Hypothesis
tests (TSFRESH), to solve this problem. The model proposed in this work can identify the
patterns that distinguish the cutting tool’s flank wear in a multi-class scenario as adequate,
intermediate, and inadequate conditions, achieving satisfactory performances in all cases and
allowing to prevent fault occurrences.
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1. INTRODUCTION

The 2020 World Machine Tool Survey (Gardner Busi-
ness Media, 2021) shows a downturn regarding global
machine tool consumption and production comparing with
previous years. The coronavirus and resulting economic
lockdowns in numerous countries had a significant impact
on the machine tool market.

Global machine tool consumption in 2020 was US$66.8
billion, down 20.1% from 2019. According to (Steven Kline,
2021), taking into consideration the consumption decline
during 2008-2009 financial crisis, the effects of the eco-
nomic lockdowns on the global machine tool market are
not as severe as could have been expected.

Nevertheless, markets of primary and intermediate goods,
such as automotive or electronic components and durables
goods, tend to recover. Considering that the demand for
machine tools comes from these manufacturers, a similar
growth of machine tools consumption is expected for the
following years. In this scenario of financial recovery, the
increasing competitiveness leads the companies to demand
reduction in tools consumption, maintenance time, and
improvements in manufacturing processes quality, avail-
ability and reliability.

The innovation in smarter maintenance procedures is
likely to results in the replacement of the schedule-based
maintenance by condition-based maintenance (Lee et al.,
2010). Therefore, incorporating machine learning tech-

niques, particularly time series analyses, into smarter
maintenance operations may increase machining process
reliability while also reducing machine down time, result-
ing in lower maintenance costs. In this context, our work is
essential, since it integrates data monitoring and machine
learning to the machining process.

Time series are used in various fields of application to
understand and analyze the evolution of a phenomenon
over time. If the observed variables are more than one, the
series is called multiple or multivariate. The time series
used in this work are a collection of data acquired at
regular intervals from current and voltage sensors from
the lathe’s spindle motor.

Selecting pertinent and representative features from data
is one of the major challenges when analyzing time series.
To overcome this challenge, a methodology named TS-
FRESH was adopted in this work Christ et al. (2018). The
TSFRESH algorithm extracts 74 different features from
the time series. Additionally, it applies feature selection
by hypotheses test. The hypotheses test method applied
in the feature selection is the Kolmogorov-Smirnov (KS)
(Wilcox, 2005). The KS test is based on calculating the
highest difference between cumulative distributions be-
tween two random variables. Hence, the KS test is designed
for binary classification problems. Although the TSFRESH
method was adopted in many models included in the faulty
detection literature, the implementation of this method
in a multi-class scenario holds an unexplored prospect. In
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this work, we propose an enhanced TSFRESH method for
multi-class feature selection.

Aiming to minimize user interference in the model, the
Self-Organised Direction Aware Data Partitioning Algo-
rithm (SODA)(Gu et al., 2018) was adopted in this work.
The SODA can self-adjust the data cloud structure and
parameters to follow possible changes in data patterns and
processes. Moreover, the SODA algorithm considers both
spatial and angular divergence, resulting in a more accu-
rate similarity recognition among the data than traditional
clustering/partitioning methods. The application of this
algorithm in different engineering problems (Fernandes
and de Aguiar, 2021; Pinto et al., 2022) vogue for SODA’s
capability to adapt to various types of data.

In this context, the main contributions of this work are
summarized as follows:

• We propose, for the first time in the literature, a
method for multiclass feature selection based on Scal-
able Hypothesis tests. This method made it possible
to study the tool’s wear state prior to its failure,
enabling the model to prevent inadequate condition
operations.

• We present and evaluate two different solutions for
applying the multiclass feature selection on a data set
recorded by a data acquisition system developed in
the UFJF’s the Laboratory of Industrial Automation
and Computational Intelligence (LAIIC).

• We propose an autonomous approach to classifying
lathe cutting tools in a multi-class scenario (as an ad-
equate, intermediate, and inadequate condition), does
not require prior expert knowledge, and improves the
machining process reliability.

And our major conclusions are:

• The proposed approach can identify the patterns that
distinguish the lathe’s cutting tool between adequate,
intermediate and inadequate, achieving satisfactory
performances in all cases, and enabling to prevent
faulty pieces fabrication.

• Considering achieved results, the multi-class Time
Series Feature Extraction on basis of Scalable Hy-
pothesis tests (TSFRESH) (Christ et al., 2018) is
entirely suitable for voltage and current time series
from a lathes’ three-phasic spindle motor, specially
with the implementation of the proposed multi-class
KS test.

• The development of a lathe’s cutting tool diagnosis
methodology based on the TSFRESH, SODA, and
Machine Learning Techniques is reasonable due to the
positive aspects in analyzing voltage and current time
series from a lathes’ three-phasic spindle motor, such
as the ability to manage uncertainties. The numerical
examples in this paper demonstrate that the proposed
autonomous model produces high-quality clustering
results.

This paper is organized as follows: Section 2 states the
problem formulation. Section 3 discusses the data acqui-
sition system. Section 4 discusses the methods adopted in
the proposed model. After that, Section 5 discusses the
numerical results. Finally, the Section 6 closes the work

and exhibits the conclusions with respect to the stated
propositions.

2. PROBLEM FORMULATION

The replacement of the cutting tool earlier or later than
necessary will cause either loss of resources or damaging
products. However, the replacement of the cutting tool
remains supported by schedule-based maintenance. The
cutting force is essentially a function of the cutting speed,
the feed rate, and the depth of the cut. Consequently,
the tool replacement schedules depend on these same
cutting parameters (Li et al., 2000). Note that the tools
are replaced without further inspection. Since machining is
a highly dynamic process, this method can lead to greater
machinery downtime, waste of good condition tools, and
fault occurrences.

This work focus on the monitoring and diagnoses of the
cutting tool’s flank wears. The development of the flank
wear takes place in the contact area between the cutting
tool and the work-piece. This contact area causes the
erosion of the cutting tool by friction. Figure 1 presents
the flank wear evolution on a cutting tool studied in this
work.

(a) Adequate Condition (b) Adequate Condition

(c) Intermediate Condition (d) Inadequate Condition

Figure 1. Lathe’s cutting tool flank wear evolution

The evolution of the flank wear causes an increase in
the contact area at the tool-work-piece interface. Con-
sequently, friction and machining forces are intensified,
which results in greater power consumption by the process.
Therefore, more energy is consumed when machining with
a worn tool than with a new tool (Shao et al., 2004).
The electric voltage and current of the lathe’s motor, have
been broadly used in cutting tools’ wear monitoring. The
monitoring of other physical quantities such as acoustic
emission, forces, vibration, and temperature require sen-
sors in moving parts and near the tool-work-piece inter-
face. The electric voltage and current were chosen due to
their simple implementation in machining systems. It is
worth mentioning that no other physical quantity has been
investigated in this work.
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Therefore, the time series used in this work is a collection
voltage and current of the three phases of the lathes’
motor. The time series were recorded from operations in a
real machining system at the National Industrial Training
Service (SENAI) in collaboration with the Laboratory
of Industrial Automation and Computational Intelligence
(LAIIC). This procedure used in this work is regulated
by ISO 3685/1993. It consisted of executing successive
machining operations and examining the regular intervals
of the tool wear condition. This process is repeated until
the tool wear reaches a pre-established limit. Considering
the technical guidelines of ISO 3685/1993, the adopted
limit was the flank wear’s maximum length of 0.6 mm.
Thus, the flank wears greater than the established limit
was considered an inadequate condition. Furthermore, the
machining conditions were: depth of cut of 0.5 mm, cutting
speed of 120 m/min, and feed rate of 0.156 mm/rev.

The machining process was executed in a 2014 Romi
GL280M Turning Center with FANUC’S CNC exhibited
in Figure 2. This machine was equipped with a set of
interchangeable TNUX 160- 404 R LT 1000 inserts. The
time series was acquired during the experiments using
a data acquisition system developed at the Laboratory
of Industrial Automation and Computational Intelligence
(LAIIC).

Figure 2. 2014 Romi GL280M Turning Center with
FANUC’S CNC.

3. DATA ACQUISITION SYSTEM

The data acquisition system developed at LAIIC consists
of an embedded electronic board that read sensors infor-
mation, convert the acquired data into digital form and
store the information onto a SD Card.

The analog sensors used in this work are three non in-
vasive current sensors SCT-013 and three voltage sensors
ZMPT101B-250V, connected to the lathe’s three phase
spindle motor. The current sensors operate acquiring sig-
nals in the range of ±100A and the voltage sensor in the
range of ±250V . Afterwards the sensor converts the signal
to an output voltage between 0 to 5V.

The acquisition module requires a 16-bit resolution in
order to achieve the necessary accuracy in the measures.
Therefore the Analog Devices Inc. Analog/Digital Con-
verter AD7606 is used in the acquisition system.

The analog signal, from the sensor, is sent to the AD7606.
The main advantage of AD7606 is the simultaneous ac-
quisition system of its eight channels that can lead to 200

KS/s. After the conversion, the digital signal are sent to
the STM32F407ZGT6.

The STM32F407ZGT6 is based on the high-performance
Arm Cortex-M4 32-bit RISC core operating at a frequency
of up to 168 MHz, with a 1 MB Flash memory and 192
Kb SRAM. On Figure 3 a Finite State Machine (FSM)
explains the STM32F407ZGT6 algorithm.

Figure 3. STM32F407ZGT6 algorithm diagram.

The states of the FSM can be described as:

• AQ WAIT: Wait for the falling edge of BUSY Pin,
end of AD7606 conversion;

• AQ READ: Read and store into memory one sample
of each AD7606 channel. Increment i;

• AQ SAVE: When i == 3584 (time series length) save
time series onto the SD Card and reset i value.

4. LATHES TOOL MODEL

The structure of the model is presented in Figure 4. The
data set R consists of 785 time series recorded with the
prototype developed in this work. Each time series has
3584 measurements of voltage and current of the lathe’s
three-phase spindle motor.

Figure 4. Proposed Model

After the pre-processing stage, the matrix F is presented
to the TSFRESH algorithm, which is responsible for
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extracting 74 different features of each variable of the
time series, as well as selecting, through hypothesis test,
which of those are relevant for characterizing the fault
occurrences. The output of TSFRESH consists of a matrix
I.

Aiming to reduce the I matrix dimensionality, the Princi-
pal Component Analysis (PCA) method was applied. The
PCA output, represented by J, results from the projection
of the data of matrix I in a new coordinate system formed
by axes, named Principal Components (PC’s), which are
calculated at the beginning of this process. Note that, after
this projection, the data in matrix J can not be directly
related to a specific sensor nor with a specific feature from
the previous process, since the PC’s are calculated from
the variation of the data within all dimensions of matrix I.
On the other and, the relevance of each feature and sensor,
in this process, will be further discussed in Section ??.

In order to group the data in matrix J into Data Clouds,
the Data partitioning Module commences by presenting
the matrix J to the SODA algorithm. The data clouds are
formed by calculating distance and dissimilarity metrics
among the data points. Consequently, the SODA’s output,
represented by K, consists of the same data presented in
matrix J, however, with labels defining which data cloud
the data points belong.

Afterwards, the Data Partitioning Module is concluded by
the Grouping Algorithm, which gathers the data clouds
into the two groups that follow: adequate condition tool
and inadequate condition tool. Therefore, the Grouping
Algorithm’s output, represented by L, is very similar to
the matrix K, though each data point bears a new label
granted by this algorithm.

Finally, the data is presented to the Classification stage,
in which the labeled matrix L is used to train different
classifiers in the task of classifying a cutting tool condition
as adequate, fault imminence and inadequate. Note that all
steps, exposed above, will be discussed further in Sections
5.1.

4.1 Normalization

Let F be a set of time series such that F = {t1, t2, ..., tj}
with j = 785 where tk represents the kth time series of the
normalized values of voltage and current from Tk. The
normalization applied follows the equation 1.

tk(i, j) =
Tk(i, j)− µi

σi
(1)

Where tk(i, j) is the normalized data of the ith variable
at the jth measurement, µi is the mean of the time series
and σi is the standard deviation of the corresponding time
series variable. Note that each variable of the time series
is normalized independently.

4.2 Feature Extraction on basis of Scalable Hypothesis
tests (TSFRESH)

The TSFRESH framework (Christ et al., 2018) is capable
of extracting 77 features from each variable of the time

series. These features are extracted with different param-
eters. Hence, one feature returns multiple outputs. For
instance, the Fourier Transformation returns the real part,
the imaginary part, the absolute value, and the angle in
degrees.

Considering X a feature calculated for one of the variables
within tk, the kth time series from F, the relevance of
X (Christ et al., 2018) to a target Y is calculated as
the difference between their conditional distribution and
expressed as fX|Y=y1

and fX|Y=y2
, where y1 and y2 are the

set of values for feature X calculated for the time series
of adequate and inadequate condition tools respectively.
Therefore, feature X is relevant to estimate Y if, and only
if:

∃y1, y2 with fy(y1), fy(y2) > 0 : fx|y=y1
̸= fx|y=y2

(2)

Equation 2 also corresponds to X and Y being statistically
dependents. Feature X is irrelevant when:

∃y1, y2 with fy(y1), fy(y2) > 0 : fx|y=y1
= fx|y=y2

(3)

and it also means that X and Y are statistically indepen-
dents.

The relevancy can also be investigated through hypoth-
esis test christ2016distributed. To the extracted features
X1, X2, ..., Xn, a hypothesis test is applied independently,
in order to investigate the following hypothesis:

Hi
0 = Xi is not relevant to Y

and Hi
1 = Xi is relevant to Y (4)

The result of each test is called p-value and corresponds
to the probability of obtaining a measure of equality or
inequality between the hypothesis test and the observed
in the data based on the null hypothesis. In this work, the
p-value measures if the analyzed feature is relevant or not
and small p-values show more relevant features.

The test applied in this paper is the Kolmogorov-Smirnov
(KS) wilcox2005kolmogorov, considering the following hy-
potheses:

Hi
0 =

{
fXi|Y=y1

= fXi|Y=y2

}
Hi

1 =
{
fXi|Y=y1

̸= fXi|Y=y2

} (5)

where fXi|Y=y1
is the cumulative distribution function

(CDF) of feature X considering one class and fXi|Y=y2

is the CDF of feature Xi considering another class.

The KS test considers the maximum difference between
the CDF obtained from the features, a shown in Equation
(6).

D = sup |fXi|Y=y1
− fXi|Y=y2

|. (6)

It is worth emphasizing that the KS test identifies features
that can distinguish between two classes. However, this
work deals with a multi-class problem. Aiming to provide
features capable of distinguishing all desired classes, the
strategy presented in Figure 5 was applied.

Firstly, the feature extraction by TSFRESH is applied
to the data set. The extracted features are separated by
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Figure 5. TSFRESH detailed description.

tool condition in order to execute two separated KS tests.
The first test aims to selected features to distinguish the
adequate from the intermediate and inadequate condition
tools. Afterward, the KS test is applied to select features
that can distinguish intermediate from inadequate condi-
tions tools. Finally, the proposed algorithm computes the
intersection or union between the selected features of these
two hypothesis tests. The output of TSFRESH consists of
a matrix I. It is worth mentioning that the comparison
between these two approaches (intersection or union) is
presented in Section 5.1.

4.3 Principal Component Analysis

Given a set of variables X = xi, with i = 1, 2, 3, ..., n, it is
possible to investigate a smaller set of variables, within X,
in which their linear combination αkX preserves a major
part of the information available in X with maximum
variance. These variable are called principal components
and the first of the principal components is zi, known for
comprising the major variability of the data:

z1 = α11x1 + α12x2 + ...+ α1nxn =
n∑

k=1

α1kxk (7)

The other components are calculated analogously and the
jth principal component must not be correlated to the
previous components Jolliffe1986:

zj = αj1xj + αj2xj + ...+ αjnxn =
n∑

k=1

αjkxk (8)

4.4 Self-Organised Direction Aware Data Partitioning
Algorithm(SODA)

In order to express this method, we must consider data
space Rm and assume a data set as {x1, x2, x3...} , where

xi = [xi,1, xi,2, ..., xi,m]T ∈ Rm is a m dimensional vector,
i = 1, 2, 3, ...; m is the dimensionality; subscript i(i =
1, 2, 3, ...) indicate the time instances at which the ith

data sample arrives. Therefore, within the observed data
set at the nth time instance denoted by {x1, x2, ..., xn} ,
we also consider the set of sorted unique values of data
samples {u1, u2, ..., unu} (ui = [ui,1, ui,2, ..., ui,m]T ∈ Rm)
from {x1, x2, ..., xn} and the corresponding normalized
numbers of repeats {f1, f2, ..., fn}, where nu(1 < nu ≤ n)
is the number of unique data samples and

∑nu

i=1 fi = 1.
The following derivations are conducted at the nth time
instance as a default unless there is a specific declaration
SODA.

Distance/Dissimilarity Components in SODA The SODA
approach, in this work, employs SODA:

i a magnitude component dM (xi, xj) based on the
euclidean distance metric;

ii a angular dA(xi, xj) component based on the cosine
similarity;

EDA Operators The recently introduced Empirical Data
Analytics (EDA) SODA is an alternative methodology
for machine learning which is entirely based on actual
empirically observed data samples.

The EDA operators includeSODA:

i. Cumulative Proximity(Gu et al., 2018):
The cumulative proximity, π of xi(i = 1, 2, ..., n) is

defined as:

πn(xi) =

n∑
j=1

d2(xi, xj) (9)

where d(xi, xj) denotes the distance/dissimilarity
between xi and xj .

ii. Local Density (Gu et al., 2018):
Local density D is defined as the inverse of the

normalized cumulative proximity and it directly indi-
cates the main pattern of the observed data. The local
density, D of i xi(i = 1, 2, ..., n;nu > 1) is defined as
follows:

Dn(xi) =

∑n
j=1 πn(xj)

2nπn(xi)
(10)

In the proposed SODA data partitioning approach,
since both components, the magnitude (metric) and
the angular one are equally important, the local den-
sity of xi(i = 1, 2, ..., n;nu > 1) is defined as the sum
of the metric/Canberra-based local density (DM

n (xi))
and the angular-based local density (DA

n (xi)).
iii. The Global Density (Gu et al., 2018):

The global density is defined for unique data sam-
ples together with their corresponding numbers of re-
peats in the data set/stream. It has the ability of pro-
viding multi-modal distributions automatically with-
out the need of user decisions, search/optimization
procedures or clustering algorithms. The global den-
sity of a particular unique data sample, ui(i =
1, 2, ..., nu;nu > 1) is expressed as the product of its
local density and its number of repeats considered as
a weighting factor as follows:

DG
n (ui) = fiDn(ui) (11)
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As we can see from the above equations, the main
EDA operators: cumulative proximity (π ), local den-
sity (D) and global density (DG) can be updated
recursively, which shows that the proposed SODA al-
gorithm is suitable for online processing of streaming
data.

SODA Algorithm for Data Partitioning The main steps
of the SODA algorithm include: firstly, form a number of
DA planes from the observed data samples using both, the
magnitude-based and angular-based densities; secondly,
identify focal points, using the granularity γ of the cluster-
ing results and relates to the Chebyshev inequality SODA,
we used γ = 7.0 in this work; finally, use the focal points
to partition the data space into data-clouds. The detailed
procedure of the proposed SODA partitioning algorithm is
presented by SODA.

4.5 Grouping algorithm

This algorithm gathers all data-clouds that contain data
pertaining to the same group. The groups are adequate
condition tool data (Index = 0), intermediate condition
tool data (Index = 1) and inadequate condition tool data
(Index = 2), as presented in Section 1. Accordingly, the
grouping algorithm associates each data sample to a label
that is used in the classification module (Fernandes et al.,
2022). The output provided by SODA is a vector composed
by the indexes that indicate from which data-cloud each
data sample belongs. Taking the number of data samples
into consideration for each data-cloud, the percentage of
data relating to each group (0, 1 or 2) was determined.
The Hard Voting method is used to create the target
vector. Hence, the time series are labeled according to the
majority group in each data cloud (Fernandes et al., 2022).

The main objectives of this algorithm are to reduce human
interference and optimize the number of groups considered
in the classification task. The grouping algorithm considers
both the user and the SODA labels when performing the
data categorization. Therefore it combines the optimal
number of groups with the data-driven and non-parametric
properties of the data clouds provided by SODA (Fernan-
des et al., 2022).

5. EXPERIMENTAL RESULTS

In this Section, all the algorithms were executed on a
computer with an Intel Core i7-8565U processor with a
clock frequency of 4.60 GHz and 12 GB of RAM. The data
set used in this work consists of 785 time-series recorded
with the acquisition system described in Section 3 using an
acquisition rate of 24 kHz. Each time series is a collection
of 3584 measurements of electric voltage and current from
the 3 phases of the lathes’ spindle motor. The data set
comprises 552-time series related to the adequate condition
tool, 80 related to intermediate condition tool and 153
related to the inadequate condition tool.

The train and test subsets were divided using k-fold cross-
validation with 5 folds.

The TSFRESH algorithm, was used as the solution for
features extraction/selection of this work. As presented

in Section 4.2, features are extracted with different pa-
rameters. The feature selection strongly depends on the
data patterns of the training subset. Hence the number of
extracted features may differ along the cross-validation.

The feature selection resulted in 1642 relevant features
using the union strategy and 655 relevant features using
the intersection strategy for each time series. It is worth
mentioning that, these strategies were presented in Section
4.2. Afterward, the PCA method was applied to the TS-
FRESH output data aiming to reduce its dimensionality.
Owing to the fact that using more components would not
increase significantly the maintained information the first
4 PCs were kept.

5.1 Classification

The SODA (Gu et al., 2018) divided the data into 8 data
clouds. The grouping algorithm, exposed in Section 2,
divided these clouds into groups as follows: adequate con-
dition tools’ clouds, intermediate condition tools’ clouds,
inadequate condition tools’ clouds. The data was labeled
according to this division. The train and test subsets
were divided using k-fold cross-validation with 5 folds. For
comparison purposes, the classification was executed with
union and intersection on the features selection provided
by TSFRESH. The classification results for each case are
presented in Table 1.

Considering Table 1, for the majority of classifiers, the
features union strategy results in higher accuracy than the
intersection strategy. On the other hand, the union strat-
egy doubles the algorithm’s execution time. Consequently,
the accuracy gain does not justify the use of features union.

Considering the classification results, Nearest Neighbors,
Radial-basis function kernel Gaussian Process, Decision
Tree and Random Forest delivered similar performances
in term of balanced accuracy and all classifiers, when
using the selected features intersection, exhibited a similar
performance in terms of elapsed time. However, balancing
both accuracy and elapsed time, the Nearest Neighbor
classifier using selected features intersection exhibited the
best performance. Therefore, to exemplify the final results
this classifier was selected and Figure 6 presents its confu-
sion matrix.

The classifiers implemented in this work were based
on scikit-learn (Pedregosa et al., 2011), an open-
source machine learning library in python. Even
though other configurations, for the classifiers, were
experimented, the maximum accuracy was achieved with
the configurations presented in the example that follows
https://scikit-learn.org/stable/auto_examples/
classification/plot_classifier_comparison.html,
except from the Decision Tree, the Random Forest and
the MLP methods.

In the Decision tree and in the Random Forest methods,
the maximum depth of the tree was not defined, therefore
the nodes are expanded until all leaves are pure or until
all leaves contain less than 2 samples. In the MLP the
maximum number of iterations was set to 200. In the
Linear SVM and in the Radial-basis function kernel SVM,
the multi-class support is handled according to a one-vs-
one scheme. In the Radial-basis function kernel Gaussian
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Table 1. Classification Balanced Accuracy

Classifier Balanced Accuracy[%] Time [min]
Union Intersection Union Intersection

Nearest Neighbors 86.18 ± 2.02 86.50 ± 3.40 7:22.220 ± 0:13.210 3:28.626 ± 0:23.626
Linear SVM 53.03 ± 6.20 51.95 ± 3.49 7:22.215 ± 0:13.211 3:28.620 ± 0:23.625
Radial-basis function kernel SVM 53.99 ± 5.26 69.48 ± 4.30 7:22.216 ± 0:13.211 3:28.621 ± 0:23.625
Radial-basis function kernel Gaussian Process 86.27 ± 1.83 83.47 ± 3.57 7:22.238 ± 0:13.211 3:28.645 ± 0:23.628
Decision Tree 83.02 ± 4.37 80.42 ± 2.46 7:22.214 ± 0:13.211 3:28.619 ± 0:23.625
Random Forest 83.73 ± 2.46 83.27 ± 2.06 7:22.224 ± 0:13.211 3:28.630 ± 0:23.625
MLP neural network 74.94 ± 3.78 74.47 ± 6.25 7:22.214 ± 0:13.211 3:28.619 ± 0:23.625
AdaBoost 74.41 ± 3.86 78.18 ± 6.60 7:22.222 ± 0:13.211 3:28.627 ± 0:23.625
Gaussian Naive Bayes 66.58 ± 2.76 64.16 ± 5.68 7:22.214 ± 0:13.211 3:28.619 ± 0:23.625
Quadratic Discriminant Analysis 69.76 ± 2.79 63.92 ± 5.46 7:22.214 ± 0:13.211 3:28.619 ± 0:23.625

Figure 6. Confusion Matrix for Nearest Neighbors Classi-
fier using selected features intersection.

Process, the multi-class support is handled according to a
one-vs-rest scheme.

6. CONCLUSION

This paper proposed an approach to classify lathe’s cutting
tools based on TSFRESH, SODA and Machine Learning
techniques on a multi-class scenario. Considering the clas-
sification results, Nearest Neighbors, Radial-basis function
kernel Gaussian Process, Decision Tree and Random For-
est delivered a performance above 80% of balanced accu-
racy. Since this work deals with an imbalanced multi-class
classification and the balanced accuracy is the average of
Recall obtained on each class, these results indicate that
our model misclassifies only a small amount of samples.

The proposed model can identify the patterns that distin-
guish the cutting tool operations as adequate, intermedi-
ate, or in an inadequate condition, achieving satisfactory
performances in all cases. Therefore, the proposed model
allows preventing faulty pieces fabrication, waste of tools,
and fault occurrences. Using this model, in a condition-
based maintenance strategy, it is possible to increase the
machining process reliability, quality, and availability, and
reduce economic losses.

Furthermore, SODA algorithm provides a more accurate
similarity recognition between the data than traditional
clustering/partitioning methods, due to the fact that it
considers both spatial and angular divergence. Moreover, it
demonstrates an outstanding performance when applied to
large-scale and high-dimensional situations without user-
dependent parameters. Thus, decreasing the human inter-
ference in the proposed model application and granting a
high computational efficiency, which supports the machine
learning techniques in the classification task.

As an indication for future works, we intend to apply the
SODA in the online processing of streaming data related
to the lathe’s motor time series analysis. Additionally, we
intend to implement a different approach in the classifi-
cation stage, such as fuzzy systems, aiming to generate
an interpretable model capable to deal with uncertainties
in the measure data. Also, the development of a low-
cost embedded system capable of acquiring the data and
classifying the tool condition in real-time.
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