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Ana Flávia dos Santos ∗∗∗ Carlos Dias Maciel ∗

∗ Signal Processing Laboratory, São Carlos School of Engineering,
University of São Paulo, São Carlos, SP, Brazil. (e-mail:

vitor.barth@usp.br, jordao.oliveira@usp.br, vhbtsukahara@usp.br,
carlos.maciel@usp.br)

∗∗ Department of Physiotherapy, São Carlos Federal University, São
Carlos, SP, Brazil (e-mail: fserrao@ufscar.br)

∗∗∗ Department of Physiotherapy, UNA University, Pouso Alegre,
MG, Brazil (e-mail: santosaf@live.com)

Abstract: More than a third of the US population engaged in running in 2018, and the rate of
lesions in inexperienced runners is higher than 80%. Often, the diagnosis of lesions in the lower
limb require extensive evaluations, including gait analysis. Such analysis look for differences in
pathological and normal gait, and are often conduced by health professionals which monitor
myoelectric impulses and the kinematic. Yet both EMG and Kinematic are related, many
challenges surround the full comprehension of this coupling. Information theoretic measures
are known for discovering the dependency between variables, and have already been used for
the analysis of muscle synergy and on EEG signals. This work contains a case study of the usage
of Delayed and Conditional Mutual Information on healthy individuals and patellofemoral pain
patients, and presents some differences found in the muscle activation patterns between both
groups.

Keywords: Electromyography, Kinematic analysis, Information theory, Mutual information,
Patellofemoral pain.

1. INTRODUCTION

Though the prevalence of gait disorders increases steeply
with age – from 10% around the age of 60, to 60% on those
over 80 years old (Mahlknecht et al., 2013) – ageing is not
the only nor the most worrying cause of gait disorders:
60% of patients with neuromuscular disorders – such as
stroke (Kim et al., 2016), spinal cord injuries (Tan et al.,
2021), normal pressure hydrocephalus (Davis et al., 2021),
Parkinson’s disease (Bello et al., 2019), etc. – have a
form of walking disability (Rodriguez-Fernandez et al.,
2021), and repeated minor lesions during sport practices or
daily activities can also cause more serious gait disorders
(Moisan et al., 2019).

Lesions caused by running are a particular cause of con-
cern, since in the United States 110 million people (1/3
of the population) engaged on this type of activity in
2018 (Statista, 2020), and the rate of injury in this sport
varies from 3.2% for cross-country runners to 84.9% in
inexperienced runners (Kluitenberg et al., 2015). Lesions
usually lead to the lack of physical activity, increasing
the risk of developing a secondary health condition, and
decreasing the life expectancy of the patient. Therefore, re-
habilitation is one of the main goals of physicians treating
gait disorders (Rodriguez-Fernandez et al., 2021).

Instrumented gait analysis can provide comprehensive
data on normal and pathological gait, which are useful
in the clinical practice for obtaining information about
joint motion, movements, timing and action of the muscle,
contributing for understanding the walking patterns and
identifying the causes of a gait irregularity (Guo et al.,
2020; Agostini et al., 2020). The kinematic analysis of the
gait leads to a better perspective on how individuals use
their combination of strength, flexibility and muscle mem-
ory to achieve gait, allowing more direct approaches to di-
agnosing and treating any abnormalities (Dicharry, 2010).
On the other hand, the knowledge about the muscles activ-
ities during abnormal gait can help physicians to support
their diagnosis, design better surgical interventions, design
and evaluated rehabilitation in personalized manner, eval-
uate muscle fatigue and support forensic medicine with
objective outcomes (Agostini et al., 2020). Despite the
various clinical applications, instrumented gait analysis is
still underutilized (Agostini et al., 2020; Dicharry, 2010).

Many challenges still surround the comprehension of the
gait, mainly the EMG to kinematic coupling (Cruz-
Montecinos et al., 2020; Jorge et al., 2018; Kelencz et al.,
2017). Combined to difficulties in interpretability due to
large intra-subject variability (Stokes et al., 2017; Patikas,
2016), though there is a relevant number of studies (Cruz-
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Montecinos et al., 2020; Jorge et al., 2018; Kelencz et al.,
2017; Stokes et al., 2017; Patikas, 2016) supporting the us-
age of these signals in gait analysis, those factors limit the
widespread use into routine clinical practice (Hong et al.,
2020; Guo et al., 2020; Agostini et al., 2020; Dicharry,
2010).

Mutual Information (MI) is one of several methods for
analyzing the dependency between time series (Runge,
2014). It is an information theoretic and non-parametric
measure of linear and non-linear dependency between two
variables (Kv̊alseth, 2017), which complies to the notion
that real-world time series are usually non-stationary and
non-linear (Wan and Xu, 2018).

Through the analysis of MI between signals over the time,
on what is called Delayed Mutual Information (DMI), it is
possible quantify the information shared across time series,
taking into account previous information as function of
time (Tsukahara. et al., 2020). Endo et al. (2015) have
shown that DMI is an option for analyzing nonlinear
system such as myoeletric data, and Afsar et al. (2018)
used DMI to develop the gait forces profile on Parkinson
patients. To evaluate neural interactions between muscles
during postural tasks, Boonstra et al. (2019) used the
Conditional Mutual Information (CMI), which quantify
the expected value of the mutual information of two
random variables given a third one.

This paper seeks to perform a case study using Delayed
and Conditional Mutual Information, to verify the interac-
tion among EMG and Kinematic signals. In addition, these
measures will be compared between healthy individuals
and patients of patellofemoral pain. In section 2 it is de-
scribed the theory of DMI and CMI. Section 3 presents the
data used and the applied methodology. Section 4 presents
and the achieved results and Section 5 the discussion.
Finally, section 6 contains the conclusions.

2. MUTUAL INFORMATION

The measure of how much uncertainty is in a given
random variable can be determined through its entropy
(H), defined by Shannon (1948) as

H(X) = −
∑
x∈X

p(x) log2p(x) (1)

where X is a discrete random variable and p(x) = P{X =
x} is the probability mass function of X. The entropy is
measured in bits, since the logarithms base is 2.

Given two signals X and Y , the Mutual Information
between them,MI(X;Y ), quantify how much it is possible
to reduce the uncertainty of X given the knowledge of Y
(Cover and Thomas, 1991). This can be calculated by

MI(X;Y ) =
∑
x∈X

∑
y∈Y

P (x, y) log2
p(x, y)

p(x)p(y)
(2)

The Delayed Mutual Information (DMI) uses the same
mathematical framework of the MI, but with Y delayed
by some time t. This allows quantifying how much the
uncertainty of X can be reduced by the knowledge of a

previous state of Y . This can be calculated as a function
of a delay τ , by

DMI((X;Y ), τ) = MI(X(t); Y (t− τ)) (3)

The conditional dependency between two variables X and
Y , given a third random variable Z CMI(X;Y |Z), can
be measured by the Conditional Mutual Information. It is
defined as

CMI(X;Y |Z) =
∑
x∈X

∑
y∈Y

∑
z∈Z

P (x, y, z) log2
p(z)p(x, y, z)

p(x, z)p(y, z)

(4)

The CMI can also be calculated as a function of a delay τ
in order to evaluate the changes in the conditional relations
over time, by

DCMI((X;Y |Z), τ) = CMI(X(t); Y (t−τ) | Z(t)) (5)

However, since all of above MI measures the shared in-
formation between two variables, its value is relative to
the total information content of these variables, and con-
sequently MI cannot be compared between datasets. A
solution for this problem is the usage of normalized MI
(NMI), which is bounded and can be compared across
datasets (Bingham et al., 2017):

NMI(X;Y ) =
MI(X;Y )

min(H(X), H(Y ))
(6)

Normalization can also be made on CMI (Kv̊alseth, 2017),
by

NMI(X;Y |Z) =
MI(X;Y |Z)

min(H(X|Z), H(Y |Z))
(7)

According to Cover and Thomas (1991) the channel ca-
pacity C is given by the maximum measure of Mutual
Information

C = max MI(X;Y ) (8)

and Proakis and Salehi (1994) demonstrated that the
channel capacity for DMI is quantified by its peak value.

The transmission rate estimation R, also described by
Proakis and Salehi (1994), can be written as a function
of channel capacity and signal bandwidth (BW) in Hertz:

R = 2 ·BW · C (9)

If the entropy is measured in bits, the transmission rate is
going to be measured as bits/s.

3. METHODS

Data was obtained from two different datasets, collected
by the Laboratory of Orthopedics and Traumathology
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Evaluation and Intervention (LAIOT), of the São Carlos
Federal University (UFSCar) in São Carlos, Brazil.

Dataset 1 contains kinematic and electromyography data
from 5 healthy participants. Dataset 2 contains kine-
matic and electromyography data from 5 individuals with
patellofemoral pain (dos Santos et al., 2016).

Both datasets were collected during a 30-second run, using
the same methodology. The three dimensional joint kine-
matic of the trunk, hip, knee and foot was collected at
240 Hz, filtered at 6 Hz using a fourth-order zero-lag low-
pass Butterworth filter (Willson and Davis, 2008), and the
Euler angles calculated using a joint coordinate system rec-
ommended by the International Society of Biomechanics
(Vaughan et al., 1992). The electromyography signals were
sampled at 2400 Hz, recorded unilaterally in a frequency
band from 20 Hz to 500 Hz.

Each patient had 5 biosignals collected: 1 kinematic – the
angle of the knee in the sagittal plane – and 4 myoelectric
– the activations of the Biceps femoris, Gastrocnemius,
Rectus femoris and Tibialis anterior muscles.

Upon collection, the EMG signals were filtered with a zero-
lag Butterworth Filter. Then, the envelope was obtained
using the Hilbert Transformation. Although the envelope
has already smoothed the signal, it still has high frequency
components which will be removed with a zero-delay
Savitzky-Golay (S-G) filter. The S-G filter is a digital
moving-average filter, capable of smoothing the signal
without distorting the original tendency (Acharya et al.,
2016). Lastly, all EMG signals were resampled in order to
decrease the sample-rate to 240 Hz using a polyphase FIR
filter with coefficients calculated using a Kaiser window.

Both EMG and Kinematic signals have quasi-periodic be-
havior, with similar periods. Both signals were normalized
by their median and variance in order to be compared
using the same scale. To analyze this dependencies Mutual
Information (MI) was used.

The interaction between muscular activations and the
kinematic responses can be seen as causal, since myoelec-
tric impulses are biologically responsible by the movement,
and therefore a delayed interaction between the EMG and
Kinematic signals is expected. While the DMIs are a good
indicator of the interaction of EMG and Kinematic signals
between themselves and with each other, they are a pair-
wise measurement. Therefore, normalized Delayed Condi-
tional Mutual Information (DCMI) were taken between
two EMG signals given a Kinematic one.

4. RESULTS

Stationarity was observed on the signals allowing the
usage of Shannon’s entropy measure. Table 1 presents
the measure of Entropy, in bits, for each signal of each
individual analyzed. Individuals whose code start by H
are healthy and the ones starting by P are diagnosed with
patellofemoral pain.

The nomenclature used for the signals was BF for Biceps
femoris electromyography, RF for Rectus femoris, TA for
Tibialis anterior, GC for Gastrocnemius and KN for the
angle of the knee in the sagital plane.

The DMI was calculated for EMG and Kinematic signal
pairs, and the results of the channel capacity, obtained
from the DMI peak, are displayed in Table 2. Table 3
presents the bandwidth, in Hz, for each signal.

Table 4 contains the Transmission Rate, in bits/s, for
each of the EMG-Kinematic pairs. A box-plot of the
transmission rate’s mean and standard deviation is shown
in Figure 1.

Figure 1. Box-plot of the transmission rate’s mean and
standard deviation, in bits/s. Dark grey represents
healthy individuals, while light grey represents PFP
patients.

To verify if PFP patients and healthy individuals use the
muscle in the same way, a Delayed CMI was calculated for
GC and TA given KN and the results are present in Figure
2. This heat map shows the expected value of the mutual
information between Tibialis anterior and Gastrocnemius
myoelectric impulses when the angle of the knee in the
sagittal plane is known.

The CMI in healthy individuals shows have higher peaks.
An analysis of the Standard Deviation in the CMIs was
conducted, and Figure 3 shows the box-plot of the nor-
malized SD in four different Delayed CMIs between two
muscles given the angle of the knee.

5. DISCUSSIONS

The data from all of the individuals analyzed was collected
in the same manner while they were performing the same
task – walking in a treadmill. Since all of those individuals
are capable of walking, it can be inferred that myoelectric
impulses on both healthy and PFP individuals are the

Table 1. Entropy calculated for all individuals
and signals used in the case study, given in bits.

Individual BF RF TA GC KN

H1 4.892 4.04 4.962 4.553 6.017
H2 5.025 4.092 5.67 4.819 6.045
H3 4.383 3.291 5.008 3.998 6.157
H4 4.339 4.397 5.362 3.758 6.187
H5 4.794 3.123 5.691 3.897 6.092
P1 5.18 5.364 5.208 4.257 6.187
P2 5.393 4.947 4.335 3.627 6.091
P3 5.133 5.415 5.517 4.378 6.083
P4 5.496 4.054 5.18 4.12 6.029
P5 5.1 4.099 5.197 4.151 6.053
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Table 2. Channel capacity in bits for all indi-
viduals.

Individual BF → KN RF → KN TA → KN GC → KN

H1 0.92 0.795 1.137 1.247
H2 1.029 0.755 1.533 1.465
H3 0.956 0.927 1.173 1.332
H4 1.073 0.828 1.311 1.354
H5 1.413 0.664 1.174 1.4
P1 1.084 1.047 0.83 1.226
P2 1.028 0.762 1.011 1.261
P3 0.952 1.035 1.141 1.175
P4 1.141 0.984 1.019 1.308
P5 1.03 0.755 1.146 1.342

Table 3. Bandwidth calculated for all individ-
uals and signals used in the case study, given

in Hz.

Individual BF RF TA GC KN

H1 4.991 5.031 6.431 4.863 4.248
H2 4.594 4.562 4.409 4.429 2.847
H3 5.007 4.537 4.977 4.456 2.026
H4 11.912 4.872 7.697 4.149 2.251
H5 4.928 5.29 5.83 3.958 2.991
P1 4.606 5.27 6.107 4.714 8.426
P2 8.536 5.591 8.84 3.932 1.222
P3 5.826 5.156 6.532 4.359 9.218
P4 5.377 4.968 5.274 5.197 2.662
P5 4.058 4.578 4.088 11.466 3.19

Table 4. Transmission rate in bits/s for all
individuals.

Individual BF → KN RF → KN TA → KN GC → KN

H1 1.753 1.514 2.166 2.375
H2 2.166 1.59 3.227 3.085
H3 2.238 2.169 2.744 3.118
H4 1.648 1.271 2.013 2.079
H5 3.271 1.537 2.718 3.241
P1 2.551 2.463 1.952 2.884
P2 2.755 2.041 2.709 3.377
P3 3.302 3.591 3.959 4.075
P4 2.167 1.87 1.935 2.484
P5 2.173 1.594 2.418 2.831

cause for the kinematic responses. This hypothesis is sup-
ported by the similar results of entropy and transmission
rate found across all of the experiments.

Some of the healthy subjects showed a similar CMI map
over (TA, GC | KN), with a high CMI near the antidi-
agonal and a repeating pattern of two higher CMI areas
near from one another. Having a high CMI near the an-
tidiagonal indicate that the information on the knee angle
within the same time, but when one or both signals are
delayed with different times, the CMI decreases, indicating
they have less information on the position of the knee in
the sagittal plane. This probably indicates a joint activa-
tion pattern between such muscles, which is supported by
Vaughan et al. (1992).

The CMI from PFP patients are similar between each
other, but with different characteristics from the ones
calculated from healthy patients signals. Now, patterns in
the antidiagonal are less visible, giving place to a CMI
pattern in the form of vertical or horizontal lines. A vertical
or horizontal peak of CMI indicates that one of the muscles
have more information about the knee than the other,
suggesting their activations are now unsynchronized.

Figure 2. Normalized Conditional Mutual Information
between the myoelectric activation of Tibialis anterior
(TA) and Gastrocnemius (GC) given the Knee Angle
in the Sagittal plane. Plots on the left are from healthy
individuals, and on the right from PFP patients.

Mutual Information analysis were a good indicative that
there are some underlying relationships between kinematic
and electromyography data that might be unsensitive to
inter-subject variability, and that may also allow the clas-
sification of healthy and unhealthy patients. To verify this
hypothesis, the CMI maps for 4 different cases were merged
and the standard deviation (SD) was than analyzed.

The SD of the CMI in PFP patients had a lower mean
in all of the 4 cases analyzed, and a lower interval in
three of them. The separation between Healthy and PFP
patients was more noticeable in the first and third cases,
where the interval of the CMI standard deviation in PFP
patients was below to the mean of the analysis using
healthy patients data.

Both of the more separable cases included the Biceps
femoris in the analysis, suggesting that it is activated
differently in healthy and PFP patients. This is also
supported by the Transmission Rate analysis, where the
Biceps femoris displays a slightly smaller rate in Healthy
patients than in PFP patients.
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Figure 3. Box-plot of the normalized Standard Deviation
of the DCMI in 4 different triplets. Dark grey repre-
sents healthy individuals, while light grey represents
PFP patients. The background color indicates the
separation between Healthy and PFP patients: green
background shows a good separation and red shows
an overlap.

6. CONCLUSIONS

This research presents an approach for verifying the inter-
action between EMG and Kinematic signals using Delayed
and Conditional Mutual Information. This measures were
also compared across healthy and patellofemoral pain pa-
tients.

Detecting a pattern in the Delayed Mutual Information
function across patients, specially between Kinematic and
EMG signals is a clue that these signals are related to
each other. The relations found in the CMI also reflect
the biomechanical understanding that the Biceps femoris,
Rectus femoris, Tibialis anterior and Gastrocnemius mus-
cles are all related to the movement of the knee, but with
different activation patterns, reinforcing that the develop-
ment EMG-kinematic coupling model is possible despite
of inter-subject variability.

Differences between the Conditional Mutual Information
are also an indicator that there are changes in the
Kinematic-EMG coupling among healthy subjects and in-
dividuals with Patellofemoral Pain. The Biceps femoris
muscle had the most noticeable difference, therefore indi-
cating that the analysis of such muscle during gait may be
a path to better understanding the gait in PFP patients.
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