
Pareto-Nash Equilibrium in Multiobjective

Formation Control Problems

Daniel S. Horevicz ∗ Paulo A.V. Ferreira ∗

∗ Faculty of Electrical and Computer Engineering
University of Campinas - UNICAMP
13083-852 Campinas (SP) - Brazil

Abstract: The formation control of teams of agents constitutes an important class of multiagent control
systems. We combine control, graph and game theories to address a particular formation control problem
– the formation tracking problem – in the context of the multiobjective noncooperative game theory. The
solution concept proposed for the problem is the Pareto-Nash equilibrium, which is at the same time a
Nash equilibrium (stable, self-enforcing) and, with respect to the Nash equilibrium, Pareto-optimal for
each agent in the formation. A numerical example illustrates the main characteristics and contributions
brought by the approach and solution concept proposed.

Keywords: Multiagent Systems, Formation Control, LQ Control, Graph Theory, Game Theory

1. INTRODUCTION

Formation control problems (FCPs, henceforth) have been ex-
tensively investigated in the last few decades and constitute a
consolidated research area in control systems engineering (Cao
et al. (2013), Lewis et al. (2014), Chen and Ren (2019)), with
practical applications in the coordination of aerial vehicles,
mobile robots and sensor networks, among others. Formation
control explores the fact that a team of agents working as a
group often exceeds the performance of the same team of agents
working individually.

In formation tracking control, in particular, a team of agents
must reach some predefined geometrical configuration while
following a prescribed team reference (Wang ans Slotine
(2006), Ni and Cheng (2010)). In the leader-follower approach
for formation tracking, one agent plays the role of leader and
the other agents act as followers. The leader moves along a
predefined trajectory and all the agents must keep prescribed
distances from each other, which produces the geometrical and
trajectory configurations of interest.

Formation tracking problems have been addressed using a rich
combination of systems theory, algebraic graph theory, and
game theory. In Gu (2008), the formation control of mobile
robots with double integrator dynamics is modeled as a non-
cooperative graphical game. The solution of the FCP is char-
acterized as an open-loop Nash equilibrium (Nash (1950a),
Başar and Olsder (1999)). The same problem is addressed in
Shamsi et al. (2011), Aghajani and Doustmohammadi (2011)
and Horevicz and Ferreira (2021). Shamsi et al. (2011) pro-
vides a closed-loop Nash equilibrium solution for a particu-
lar time varying formation. Aghajani and Doustmohammadi
(2011) proposes a cooperative approach centered in the concept
of Pareto-optimal solution (Miettinen (1998)). Horevicz and
Ferreira (2021) shows the superiority of the (cooperative) Nash
bargaining solution (Nash (1950b)) over the (non-cooperative)
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Nash equilibrium solution for the FCP. Bardhan and Ghose
(2018) proposes a negotiation procedure involving the Nash
barganing solution and the Nash equilibrium solution, applied
to a rendezvous problem of a team of unmanned aerial vehicles
(UAVs).

Although the existing approaches for the FCP assume that a
single objective is associated to each agent, nothing precludes
us to consider the FCP in the context of multiobjective games
(Shapley (1959)). The existence of Pareto equilibria in multiob-
jective games is discussed, among others, in Wang (1993), and
rely on the quasi-convexity of the functionals and the compact-
ness of the strategies space. An investigation about bargaining
equilibria in multiobjective games, focused on the Pareto-Nash
equilibrium, is presented in Wang and Yang (2021).

In this paper we formulate and solve the FCP in the context
of multiobjective games. The Pareto-Nash solution that we
propose is a Nash equilibrium (stable, self-enforcing) with
the additional property of being Pareto-optimal for each agent
with respect to the Nash equilibrium, in contrast to the Nash
bargaining solution (Horevicz and Ferreira (2021)), which is
Pareto-optimal for the grand coalition of the agents.

The paper is organized as follows. In Section 2, we introduce
the dynamics of the agents, the elements of graph theory
used to describe their interconnections, and the affine-quadratic
formulation of the FCP. In Section 3 and 4, respectively, we
characterize the Pareto and Nash equilibria, and in Section
5 we introduce the concept of Pareto-Nash equilibrium for
the FCP. In Section 6, a numerical example illustrates the
main characteristics and contributions brought by the game-
theoretic approach proposed. Finally, in Section 7 we present
our conclusions and a topic for future research.

2. PROBLEM FORMULATION

2.1 Notation and Conventions

Throughout the article, R
n, R

n
+ and R

n
++ denote the n-

dimensional real space and the sets of n-dimensional vectors
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with nonnegative and positive coordinates, respectively. If x,y∈
R

n, then x ≤ y (resp., x < y) means that xi ≤ yi for i = 1,2, . . . ,n
(resp., xi < yi for i = 1,2, . . . ,n). The space of all real matrices
with m rown and n columns is denoted by R

m×n. The shorthand
notation M = {mi j} is used to define M ∈ R

m×n; M = MT ≥ 0

(resp., M = MT > 0) means that M is a symmetric positive
semidefinite (resp., positive definite) matrix. Quadratic forms
xT Mx, M = MT ∈ R

n×n, are written as ‖x‖2
M . The Kronecker

product of matrices A and B of arbitrary sizes is the matrix
defined by A⊗B= {ai jB}. If A is a set, then |A | is the number
of elements (cardinality) of A .

2.2 System Dynamics

We consider linear controllable systems with double integrator
dynamics, which is a standard mass-force model for wide
variety of autonomous vehicles. See, for example, Cao et al.
(2011) and Wu et al. (2021). Let N := {1,2, . . . ,N} be a set of
N identical systems – agents:

ẋi = Φxi +Ωui, i ∈ N , (1)

where xi = (qi, q̇i) ∈ R
2n is the state vector, described by

position (qi) and velocity (q̇i) coordinates, and ui : [0,T ]→ R
n

is, by assumption, for some finite time horizon T , the piecewise
continuous control vector of agent i ∈N . The state and control
matrices are

Φ =

[

On In

On On

]

and Ω =

[

On

In

]

,

where On and In are the n-order zero and identity matrices.
Defining x = [xT

1 xT
2 · · · xT

N ]
T , u = [uT

1 uT
2 · · · uT

N ]
T , A = IN ⊗Φ

and Bi = [0 0 · · · 1 · · · 0 ]T ⊗ Ω, we obtain the global state
equation

ẋ = Ax+ ∑
i∈N

Biui

= Ax+Bu, (2)

where B := [B1 B2 · · · BN ]. The reference trajectory ri for state
xi (i ∈ N ) is constrained to its dynamics, that is,

ṙi = Φri +Ωρi,

where ρi is the reference control input that produces ri. Simi-
larly, the global reference state equation is

ṙ = Ar+Bρ . (3)

2.3 Graph Representation

As in Gu (2008) and Horevicz and Ferreira (2021), algebraic
graph theory is used to obtain an equivalent affine-quadratic
FCP. The interconnections of a set of agents is represented by
a graph G = (V ,E ), where V and E are the sets of vertices
and edges of G . Vertices are associated to agents and edges
to their interconnections. A directed graph G consists of a
vertex set V = {v1,v2, . . . ,vN} and an ordered set of edges
E ⊂ V ×V . By assumption, G does not have self-loops, that
is, if (vi,v j) ∈ E then vi 6= v j. A directed graph G is connected
if there exists a path in E (a sequence of edges in E ) from vi to
v j for any two vertices vi,v j ∈ V . We assume that the team of
agents is represented by a connected graph G .

The incidence matrix of a directed graph G is the matrix

G ∈R
N×|E | whose rows and columns represent the vertices and

edges of G , respectively. Specifically, G = {gνε}, and gνε = 1,
if ν is the head of the edge ε , gνε = −1 if ν is the tail of the
edge ε , and gνε = 0, otherwise.

2.4 Formation Control

The formation error of the system represented by G is (Gu
(2008), Horevicz and Ferreira (2021)):

∑
(i, j)∈E

wi j‖xi − x j −di j‖= ‖x− r‖2
L̄
, (4)

where di j = ri − r j is the desired distance between neighbour

agents (vertices) i, j ∈ N , L̄ = L⊗ I2n, where L = GWGT is

the Laplacian matrix of G (L = LT ≥ 0), and W ∈ R
|E |×|E |,

W = {wi j}, is a diagonal matrix of weights wi j ≥ 0.

Let Wi,Wi f ∈ R
|E |×|E |, i ∈ N , be diagonal matrices such that

wi j > 0 if (i, j)∈ E and wi j = 0, otherwise. Let Li =GWiG
T and

Li f =GWi f GT be their corresponding Laplacian matrices. Then
to each agent is associated a convex quadratic cost functional

Ji(u) =
1

2
‖x(T )− r(T )‖2

Qi f
+

+
1

2

∫ T

0

[

‖x(t)− r(t)‖2
Qi
+‖ui(t)‖

2
Ri

]

dt, i ∈ N , (5)

where the matrices Qi f = Li f ⊗ I2n (Qi f = QT
i f ≥ 0) and Qi =

Li ⊗ I2n (Qi = QT
i ≥ 0) weigh the formation errors, and the

matrix Ri = RT
i > 0 weighs the control effort. The agents are

also required to follow a trajectory rℓ assigned to some leader
agent ℓ ∈ N . The cost functional of the leader agent is

Jℓ(u) =
1

2

[

‖x(T )− r(T )‖2
Qℓ f

+‖xℓ(T )− rℓ(T )‖
2
Kℓ f

]

+

+
1

2

∫ T

0

[

‖x(t)− r(t)‖2
Qℓ

+‖xℓ(t)− rℓ(t)‖
2
Kℓ
+

+‖uℓ(t)‖
2
Rℓ

]

dt, (6)

where Kℓ f = KT
ℓ f ≥ 0 and Kℓ = KT

ℓ ≥ 0 are weighting matrices

for tracking errors. The cost functional of the leader agent ℓ can
be written in the form (5) substituing Qℓ f and Qℓ with

Qℓ f +diag(O2n, . . . ,O2n,Kℓ f ,O2n, . . . ,O2n)

and Qℓ+diag(O2n, . . . ,O2n,Kℓ,O2n, . . . ,O2n), respectively. The
FCP consists in solving, in some sense, the optimization prob-
lem

min
u

J(u) = (J1(u),J2(u), . . . ,JN(u)) subject to (2), (7)

where u = (u1,u2, . . . ,uN). In the next sections we characterize
three game-theoretic equilibrium solutions for the FCP: Pareto,
Nash and Pareto-Nash equilibria.

3. PARETO EQUILIBRIUM

The Pareto equilibrium is a cooperative solution concept for
the set (grand coalition) of agents of the FCP. Under a Pareto
equilibrium, any decrease in the cost functional of any agent is
accompanied by an increase in the cost functional of at least
one of the other agents. Let J(u) = (J1(u),J2(u), . . . ,JN(u))
be the cost vector associated to the FCP. Then a solution
u⋆ = (u⋆1,u

⋆
2, . . . ,u

⋆
N) is Pareto-optimal if there exists no other

solution u such that J(u) ≤ J(u⋆) with Ji(u) < Ji(u
⋆) for at

least one i ∈N . A solution u⋆ is weakly Pareto-optimal if there
exists no other solution u such that J(u)< J(u⋆). Every Pareto-
optimal solution is also weakly Pareto-optimal. Pareto-optimal
solutions can be determined by using scalarization methods
(Miettinen (1998)). Let λ1, λ2, . . . , λN be weights assigned to
the costs J1, J2, . . . , JN . The domain of the weighting vector
λ = (λ1,λ2, . . . ,λN) ∈ R

N is, without loss of generality,
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Λ = {λ ∈ R
N
+ : ∑

i∈N

λi = 1}.

A weighted-sum quadratic cost functional Jλ is associated to
each λ ∈ Λ:

Jλ (u) =
N

∑
i=1

λiJi(u) =
1

2
‖x(T )− r(T )‖2

Q f ,λ
+

+
1

2

∫ T

0

{

‖x(t)− r(t)‖2
Qλ

+‖u(t)‖2
Rλ

}

dt

where
Q f ,λ = ∑

i∈N

λiQi f , Qλ = ∑
i∈N

λiQi

and Rλ = diag(λ1R1,λ2R2, . . . ,λNRN). It is possible to show

(Miettinen (1998)) that if uλ , λ ∈ Λ, is an optimal solution of
the convex optimization problem

min
u

Jλ (u) subject to (2), (8)

then uλ is a weakly Pareto-optimal solution of the FCP. If, in

addition, (i) uλ is the unique solution of problem (8), or (ii)

λ ∈ R
N
++, then uλ is a Pareto-optimal solution of the FCP. The

convexity of problem (8) guarantees that every Pareto-optimal
solution of the FCP is an optimal solution of (8) for some λ ∈ Λ
(Miettinen (1998)).

Theorem 1. (Pareto Equilibrium). Given λ ∈ Λ∩R
N
++, assume

that P and ξ are solutions for the differential equations

Ṗ(t) =−P(t)A−AT P(t)−Qλ+

+P(t) ∑
j∈N

λ−1
j S jP(t), P(T ) = Q f ,λ ,

where S j = B jR
−1
j BT

j , and

ξ̇ (t) =

[

P(t) ∑
j∈N

λ−1
j S j −AT

]

ξ (t)−

−Qλ r(t), ξ (T ) = Q f ,λ r(T ).

Then uλ = (uλ
1 ,u

λ
2 , . . . ,u

λ
N) defined by

uλ
i (t) =−λ−1

i R−1
i BT

i [P(t)x(t)+ξ (t)], i ∈ N , (9)

is a Pareto-optimal solution of problem (8).

Proof. The proof follows from the general solution of linear-
quadratic tracking problems (Lewis and Syrmos (1995), pg.
217) particularized for the structures of the matrices Rλ (block-
diagonal) and B (Horevicz and Ferreira (2021)). ✷

See Lewis and Syrmos (1995), Chapter 4, for a comprehen-
sive discussion (which includes the stability of the closed-loop
system) of the classical tracking problem and other LQR exten-
sions. The Nash bargaining solution (Nash (1950b)) for the FCP
proposed in Horevicz and Ferreira (2021) corresponds to affine
state feedback controls (9) for a specific λ ∈ Λ that minimizes

the weighted-sum cost functional Jλ (u).

4. NASH EQUILIBRIUM

The FCP can be modeled as a noncooperative nonzero sum
graphical game represented by the tuple

Γ = {G ,(Ji)i∈N ,(ui)i∈N }.

The agents are assumed to be rational, solely aiming at mini-
mizing their own cost functionals (5) subject to the state equa-
tion (2); the tuple Γ is assumed to be common knowledge

among the players (Maschler et al. (2013)). A strategic profile
uNE =(uNE

1 ,uNE
2 , . . . ,uNE

N ) is a Nash equilibrium (NE, henceforth)
of Γ if

Ji(u
NE
i ,uNE

−i)≤ Ji(ui,u
NE
−i)

for all controls ui and all i ∈ N , where uNE
−i is the deleted

profile from uNE which does not include uNE
i . Equivalently,

uNE = (uNE
i ,uNE

−i) is a Nash equilibrium of Γ if uNE
i is a best

response of the agent i when the remaining N −1 agents adopt
the deleted profile uNE

−i. Under a Nash equilibrium, there is no

incentive for the agent i to unilaterally deviate from uNE
i if all

the other agents stick to uNE
−i. For the characterization of Nash

equilibria of the FCP stated in Theorem 2, we introduce the
error vector δ = x − r and, using (3), rewrite the FCP as a
quadratic regulator problem with affine dynamics:

δ̇ = Aδ +Bu+ c, c =−Bρ . (10)

Theorem 2. (Nash Equilibrium). Assume that for Γ there exists
a solution set {Pi : i ∈ N } for the coupled Riccati differential
equations

Ṗi =−Pi(t)A−AT Pi(t)−Qi+

+Pi(t) ∑
j∈N

Si jPj(t), Pi(T ) = Qi f ,

where Si j = B jR
−1
i BT

j . Then Γ admits an open loop Nash

equilibrium uNE = (uNE
1 ,uNE

2 , . . . ,uNE
2 ) described by

uNE
i (t) =−R−1

i BT
i [Pi(t)δ (t)+ξi(t)], i ∈ N , (11)

where {ξi : i ∈ N } solve uniquely the set of differential
equations

ξ̇i =−AT ξi(t)+Pi(t) ∑
j∈N

Si jξ j(t)+Pi(t)Bρ(t), ξi(T ) = 0,

and δ solves (10) for the controls (11) and δ (0) = x(0)− r(0).

Proof. See Başar and Olsder (1999), Theorem 6.12. ✷

Conditions for the solution of coupled Riccati equations param-
eterized by the time horizon T are discussed in Başar and Ols-
der (1999) and Engwerda (2005). A closed-loop NE solution
for the FCP can be also derived from Başar and Olsder (1999),
Chapter 6.

5. PARETO-NASH EQUILIBRIUM

The Nash equilibrium is an stable (self-enforcing) equilibrium
concept. When reached, it will not be breached even in the
absence of binding agreements. However, a Nash equilibrium
is not necessarily Pareto-optimal (Maschler et al. (2013)). On
the other hand, as the NE is determined by a given definition of
cost functionals, the agents may act strategically by choosing
a cost functional which provides him (her), for example, the
best compromise between tracking the reference trajectory and
spending energy for that. Thus, it is natural to introduce a set
Mi = {1,2, . . . ,Mi} of convex quadratic cost functionals Ji j

( j ∈ Mi) for each agent i ∈ N and consider the multiobjective
noncooperative (in the sense that each agent solely aims at
minimizing his/her own cost functionals) graphical game

ΓM = {G ,(Ji j)i∈N , j∈Mi
,(ui)i∈N }.

The weighted-sum cost functional of each agent is

J
λi
i (u) = ∑

j∈Mi

λi jJi j(u), i ∈ N ,
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where (with some abuse of notation) λi = [λi1 λi2 · · · λiMi
]T and

λi ∈ Λi = {λi ∈ R
Mi
+ : ∑

j∈Mi

λi j = 1}, i ∈ N .

A strategy ūi of agent i ∈ N is Pareto-optimal (resp., weakly
Pareto-optimal) with respect to the profile ū = (ū1, ū2, . . . , ūN)
if there is no other ui such that Ji j(ui, ū−i) ≤ Ji j(ūi, ū−i) for all
j ∈ Mi and Ji j(ui, ū−i) < Ji j(ūi, ū−i) for at least one j ∈ Mi

(resp., Ji j(ui, ū−i) < Ji j(ūi, ū−i) for all j ∈ Mi). A strategic
profile ū is a Pareto-optimal (resp., weakly Pareto-optimal)
equilibrium of ΓM if ūi is Pareto-optimal (resp., weakly Pareto-
optimal) with respect to ū for all i ∈ N (Wang (1993), Yuan
and Tarafdar (1996)). Given weighting vectors λi ∈ Λi, i ∈ N ,
a strategic profile uNE = (uNE

i ,uNE
−i) is a Nash equilibrium of ΓM

if
J

λi
i (uNE

i ,uNE
−i)≤ J

λi
i (ui,u

NE
−i)

for all controls ui and all i ∈ N . The later inequalities imply
that uNE as a weakly Pareto-Nash equilibrium of ΓM , since uNE

i
is weakly Pareto-optimal with respect to uNE for each agent

i ∈ N . If, in addition, λi ∈ Λi ∩R
Mi
++ for all i ∈ N , then uNE is

a Pareto-Nash equilibrium of ΓM .

5.1 Some Implementation Issues

Assuming common knowledge of ΓM by all the agents, after
exchanging their weighting vectors λi, i ∈ N , each agent can
compute his/her open-loop NE control independently. To over-
come the continuous exchange of state information between
agents in a closed-loop NE implementation, a receding state-
feedback strategy based on the open-loop solution (Gu (2008))
is being developed. Another possibility is the use of local
state-observers (Dong (2010)). The problem of selecting proper
weighting vectors λi, i ∈ N , which give rise to the weighting
matrices of the FCP, can be formulated in a robust (worst-case)
sense (Qu et al. (2015)).

6. ILLUSTRATIVE EXAMPLE

We consider an example discussed in Gu (2008) and Horevicz
and Ferreira (2021), which assumes two-dimensional coordi-
nates vectors (n = 2) for all the agents and a triangular forma-
tion of four agents (N = 4), illustrated in Fig. 1.

1

2

3

4

Fig. 1. Graph for the illustrative example.

The triangular formation is characterized by the graph G =
(N ,E ) with vertices (agents) N = {1,2,3,4} and edges E =
{(1,2),(2,3),(1,4)}. The incidence matrix of G is

G =







−1 0 −1
1 −1 0
0 1 0
0 0 1







The weighting matrices (from which all the other matrices are
computed) are

W1 f =W1 = diag(5,0,5),

W2 f =W2 = diag(5,5,0),

W3 f =W3 = diag(0,5,0),

W4 f =W4 = diag(0,0,5),

K1 f = K1 = diag(1,1,1,1),

Ri = I2, i = 1,2,3,4.

We are interested in analyzing the fundamental conflict between
accuracy and energy spent when each agent in a formation
tries to keep the desired distances from the his (her) neighbour
agents while tracking the reference trajectory. The bi-objective
(M1 = M2 = M3 = M4 = 2) cost functionals of the agents are

Ji1(u) =
1

2
‖x(T )− r(T )‖2

Qi f
+

1

2

∫ T

0
‖x(t)− r(t)‖2

Qi
dt,

Ji2(u) =
1

2

∫ T

0
‖ui(t)‖

2
Ri

dt, i = 1,2,3,4.

The weighted-sum cost functional of each agent can be ex-
pressed by a single parameter λi ∈ [0,1), in the form

J
λi
i (u) = λiJi1(u)+(1−λi)Ji2(u), i = 1,2,3,4.

The time horizon is T = 10 sec and the formation is required to
follow a sinusoidal trajectory, that is,

ri = (t,sin t), ρi = (0,−sin t), t ≥ 0, i = 1,2,3,4.

The leader agent, ℓ = 1, tracks the sinusoid and the other
agents keep prescribed distances from their neighbors. Nu-
merical algorithms were implemented in MATLAB, Version
R2018b. Nash equilibria were obtained by solving (backwards)
the coupled Riccati and auxiliary differential equations and
then computing the individual controls according to Theorem
2. The state trajectories presented in Fig. 2 are for the selection
λ1 = λ2 = λ3 = λ4 = 0.5, that is, all the agents weigh their
tracking and energy costs equally. After a transitory period, the
desired trajectory was followed in triangular formation with
prescribed distances, as required. The associated cost vectors
for the formation were

J1(u
NE) = (15.7079,10.1479,8.5522,1.3910)

and
J2(u

NE) = (3.6422,2.3664,1.5903,1.9116).

In Fig. 3 we present Pareto-Nash frontiers of the agents. The
frontier of agent i (i = 1,2,3,4) was obtained by varying his
(her) single weight from 0.1 to 0.9 with increment of 0.1, and
keeping constant the weights of the other agents at 0.5. Figs.
4, 5, 6 and 7 show the Pareto-Nash frontiers of the agents in
greater detail.

The Pareto-Nash frontiers show that the formation imposes
different costs for the agents. The agent 1 must track the
reference trajectory and keep prescribed distances from agents
2 and 4. The tracking/formation and energy costs of agent 1 are
the greatest. Agents 3 (whose distance to agent 1 is the greatest)
and 4 must keep the prescribed distances from agents 2 and 1,
respectively. The formation and energy costs of agent 4 are the
smallest, while such costs for agent 3 are the second smallest.
The costs for the agent 2, which must keep prescribed distances
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Fig. 2. State trajectories for λ1 = λ2 = λ3 = λ4 = 0.5.
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Fig. 3. Pareto-Nash frontiers of the agents 1, 2, 3 and 4.
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Fig. 4. Pareto-Nash frontier of the leader agent 1.

from agents 1 and 3, are the second greatest. The Pareto-
Nash frontiers show (when the weights of the other agents
are kept constant at 0.5) that the energy costs of all agents
decrease rapidly when their own weights vary from 0.9 to 0.5,
approximately, without much effect on the tracking/formation
costs. As a second experiment, we selected the alternative
weights λ1 = 0.7, λ2 = 0.7, λ3 = 0.8, and λ4 = 0.5, aiming
at reducing the tracking/formation errors of the agents. The

10 10.5 11 11.5 12 12.5 13

J
1

0

1

2

3

4

5

6

7

8

9

J
2

Fig. 5. Pareto-Nash frontier of the agent 2.
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Fig. 7. Pareto-Nash frontier of the agent 4.

corresponding state trajectories are shown in Fig. 8 and the cost
vectors for the team of agents were

J1(u
PN) = (15.0695,9.6682,8.1779,1.2747)

and

J2(u
PN) = (5.3218,3.6921,3.5226,2.2038).

As expected, the cost vector J1(u
PN) dominates J1(u

NE) (in the
sense that J1(u

PN) < J1(u
NE)), that is, the alternative control

uPN provides smaller tracking/formation errors than uNE for
all the agents. That was possible (also as expected) by the
increase of energy costs (J2(u

NE) dominates J2(u
PN)). The better

performance of uPN relative to uNE in terms of tracking errors is
more evident (graphically) when the state trajectories of Figs. 2
and 8 are compared in the first 4 sec.
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Fig. 8. State trajectories for λ1 = 0.7, λ2 = 0.7, λ3 = 0.8 and
λ4 = 0.5.

The Nash equilibrium obtained is self-enforcing and Pareto-
optimal for each agent, that is, with respect to the Nash equilib-
rium, no other individual control can reduce tracking/formation
error without increasing energy cost, and vice-versa. The
Pareto-Nash frontiers of the FCP evidence the role of each
agent in the formation.

Comparatively to the single objective per agent formulation,
the multiobjective formulation proposed provides flexibility
for defining objectives and, from the Pareto-Nash frontiers,
useful trade-offs (as energy versus cost), which can be used for
establishing an informed weighting of the objectives.

7. CONCLUSION

Formation control has been a rich area for the integration of
different disciplines as control theory, graph theory and game
theory. In this paper we i) introduced a multiobjective game-
theoretic approach for the problem, ii) characterized the Pareto-
Nash equilibrium of the resulting multiobjective game, and iii)
validated both the approach and the solution concept proposed
numerically. We believe that the multiobjective formulation
represents a significant addition to the literature dedicated to the
formation control problem. The authors currently investigate
the problem of selecting cost-guaranteed weighting vectors
(λi, i ∈ N ) for the agents, which would enable a Pareto-Nash
robust solution for the formation control problem.
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