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Abstract:
Pulse oximetry is a non-invasive technique that allows the monitoring of physiological parameters
in a very simplified way from photoplethysmographic (PPG) signals. What was possible to
do only with high-cost and unwieldy biomedical equipment, has been popularized with the
emergence of wearable devices. However, the way these devices are built and used directly
influences the quality of the information provided to the user. PPG signals are susceptible to
noise, which is largely caused by user movement during monitoring. This can cause errors in the
readings and false alarms. In order to mitigate these undesirable effects, this paper proposes an
algorithm called OxiTidy v.1 based on artifical neural network (ANN) capable of detecting noise
in the PPG signals. These affected samples were not used to the measurements computation,
instead a linear interpolation between two normal measurements of oxygen saturation (SpO2)
or heart rate (HR) was performed. The algorithms proposed in this work were tested in the
prototype of a Wi-Fi pulse oximeter developed at the Federal University of São Carlos (UFSCar).
The results indicated that an ANN (3-3-1) based on multilayer perceptron (MLP) was able to
improve SpO2 and HR estimations both at rest and in motion. OxiTidy v.1 identified the
intervals where the measurements were incorrect and then interpolated new values with a good
approximation to the readings performed by a pulse oximeter certified by Anvisa.

Keywords: Photoplethysmography; motion artifact detection; machine learning; multilayer
perceptron; signal processing; oxygen saturation; heart rate; pulse oximeter; wearables.

1. INTRODUCTION

Lately, wireless biomedical vital signs sensors have gained
space in domestic use and are no longer exclusive to large
hospitals and clinics (Rodrigues et al., 2017)(Chacon et al.,
2019). These sensors became popular with the emergence
of wearable devices, initially developed to track physi-
cal activities, now evolving into applications in sports,
medicine, studies of people’s habits, risk assessment of
injuries during physical exercise, monitoring of the elderly,
monitoring of physiological signals, among other diverse
applications for this promising technology (Haghi et al.,
2017).

One of the ways to know the level of oxygen essential for
the vital functions of the body is to measure the percentage
of oxygen available in the hemoglobins (Hb). This can
be done using a pulse oximeter. This device, in addition
to indirectly measuring oxygen saturation (SpO2), also
measures heart rate (HR). The measurements performed

⋆ This study was financed in part by the Coordenação de Aperfeiçoa-
mento de Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance Code
001.

by pulse oximeters are obtained through the phenomenon
of photoplethysmography (PPG). SpO2 obtained through
pulse oximetry is important to evaluate cases of hypox-
emia, pulmonary embolism, congenital heart disease, acute
heart failure and chronic obstructive pulmonary disease
(Sinchai et al., 2018).

Through the photoplethysmographic technique, optical
properties of body tissue and blood can be characterized
using a photodetector and two light sources: a red (660
nm) and an infrared (940 nm). The intensity of the
reflected light changes when the volume of the arterial
vessel changes during the systolic phase, which is the
ejection phase of blood during the cardiac cycle. This
variation in light intensity is converted into an electrical
signal by the oximeter. Pulsatile arterial blood absorbs
and modulates the light emitted by the LEDs that passes
through body tissue and forms the PPG signal. The AC
(alternating current) component of this signal, represented
by the light absorbed by pulsatile arterial blood, is the only
variable term. While the DC (direct current) component,
represented by the light absorbed by non-pulsatile arterial
blood, venous blood and tissues such as skin, nerves and
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Figure 1. Light reflection during plethysmographic mea-
surement. Adapted from Urpalainen (2011).

bones, remains static (Chacon et al., 2019). Figure 1 shows
the components of the PPG signal described above.

It should be noted that the DC and AC components of
the generated PPG signals are different for each LED.
This is due to the distinct absorption characteristics of Hb,
oxyhemoglobin (HbO2) and other body tissue components
for different wavelengths. From this difference, it is possible
to calculate the oxygen saturation in the blood (Chacon
et al., 2019). HR values can be estimated based on the
PPG signal as there is a strong influence of cardiac activity
on the pulsatile nature of arterial blood flow (Johnston,
2006). It is worth noting that for this, conventionally, only
the infrared PPG signal is used, although it is also possible
to obtain HR through the red PPG signal.

As will be discussed in subsection 1.2, user motion not
only causes a loss of SpO2 and HR measurements, but it
can also cause false alarms, displayed warnings of desatu-
ration (hypoxemia) even though the patient is fine. Under
certain circumstances this is quite common, a study in the
pediatric intensive care unit found that 71% of all pulse
oximeter alarms were false (Barker, 2002). This can be
very risky, according to Barker (2002, p. 967), “[. . . ] This
frequent false-positive rate encourages nurses and other
care providers to manually disable alarms, thereby risking
failure to detect actual sudden hypoxemia.”

Given the importance of correctly obtaining these mea-
surements, in this paper, is proposed a new approach
based on artificial neural network (ANN) and inertial
measurement unit (IMU) used to detect affected samples
of PPG signals and prevent SpO2 and HR measurements
from being displayed incorrectly to the user. These affected
samples were not used to the measurements computation,
instead a linear interpolation between two normal mea-
surements of SpO2 or HR was performed. The fidelity of
the results generated by this algorithm was determined by
comparing the estimated SpO2 and HR with a reference
value measured by a pulse oximeter certified by the Brazil-
ian Health Regulatory Agency (Anvisa).

This paper describes the importance of using the oximeter,
its measurement principle (subsection 1.1), issues related
to artifact errors (subsection 1.2) and how to treat them
(subsection 1.3). The rest of the paper is organized as

follows: section 2 presents the techniques and materials
used in this work, section 3 describes how the proposed
algorithm works, section 4 discusses the evaluation metrics
and algorithms performance, and section 5 concludes the
paper.

1.1 Measurement Principle

To get SpO2 from the PPG signals it is necessary to obtain
the AC and DC components first. A simple and quick
way to do this is to use differentials, as demonstrated by
Mendelson (1992). The DC components in this approach
can be obtained from the average value of a samples section
of the PPG signal, in this same section, the absolute
derivative is averaged to produce the AC component.
Oxygen saturation can be obtained by calculating the
ratio of red and infrared LED lights. The AC and DC
components of the PPG signals are normalized (calculating
the ratio of AC to DC) to obtain the R ratio, which is given
by the ratio of normalized red light to normalized infrared
light, according to the following equation:

R =
ACred/DCred

ACinfrared/DCinfrared
. (1)

Finally, SpO2 is calculated from a linear approximation de-
termined by the sensor manufacturer (Maxim Integrated,
2018), where its coefficients are found through empirical
data obtained through a calibration process named CO-
oximetry. The coefficients presented in equation 2 below
were determined by the manufacturer of the PPG sensor
used in this work.

SpO2 = 104− 17×R (2)

According to the World Health Organization (2011), oxy-
gen saturation in healthy people of any age should be 95%
or higher. If a person’s SpO2 is 94% or less, they should
be evaluated quickly to identify and treat the cause. Levels
below 90% are considered a clinical emergency and should
be treated urgently.

To estimate HR, the absolute derivative of the PPG signal
can be used to identify the pulse peaks, it determines
the number of times the heart beats. These peaks are
generated in the systolic phase and the interval at which
they occur determines the duration of a cardiac cycle
(Johnston, 2006). The number of pulse peaks that occur in
a 60-second period determines the HR in beats per minute
(bpm). According to Johns Hopkins Medicine (2022), the
normal pulse rate for healthy adults ranges from 60 to
100 bpm, but it may fluctuate and increase with exercise,
illness, injury and emotions.

In this work, the SpO2 and HR measurements obtained
through these methods demonstrated above, were named
raw, i.e., the measurements were only computed and no
further processing was done. On the other hand, the new
approach propoused in this paper is named OxiTidy v.1.

1.2 Artifact Induced Errors

It should be considered that the result of the oximetric
reading is influenced by the way the device is used and,

Sociedade Brasileira de Automática (SBA) 
XXIV Congresso Brasileiro de Automática - CBA 2022, 16 a 19 de outubro de 2022 

ISSN: 2525-8311 2785 DOI: 10.20906/CBA2022/3554



especially, by the quality of the device (Giuliano and Liu,
2006). The accuracy of pulse oximeters tends to decrease
as external factors interfere with the PPG signal, i.e.,
external lights and device movements due to breathing
and/or user movement, such as: walking, finger tremors,
hand movement, among others (Lee et al., 2003).

According to Hayes and Smith (2001), and Yousefi et al.
(2014), the movement in the oximeters is the most common
problem of noise in the PPG signal, which can affect it
and even corrupt it to the point that it is impossible
to use it in the monitoring of SpO2 and HR. In Figure
2, it is possible to observe that in the range where the
oximeter is moving (B), both PPG signals are affected
(A). This causes changes in the raw SpO2 (C) and raw
HR (D) estimations, which drastically reduces the oxygen
saturation value displayed in the range where the user’s
hand is moving. In this interval, readings from static
reference oximeter showed SpO2 remained constant (see
SpO2 ref.). Comparing the normal value of the reference
with the raw estimation of SpO2, it is possible to observe
the false alarm the movement caused.

1.3 Related Work: Artifact Reduction

According to Hayes and Smith (2001), and Lee et al.
(2003), removing noise caused by user movement from the
PPG signal may not be a simple task when using only
signal processing techniques, such as a filter that has a
fixed cutoff frequency. Usually, the respiration frequency
band is 0.04 – 1.6 Hz; the pulse wave of the oximeter is
0.5 – 4 Hz; and the frequency band of noise caused by user
movement is 0.1 Hz or more. Therefore, it is complex to
remove the noise, since its frequency band is superimposed
on the user’s pulse wave measured by the oximeter (Lee
et al., 2003).

Since motion noise is a problem, several techniques have
been used to detect and remove it. Among them, moving
average is a method that can be used to eliminate noise,
although for cases where the patient has continuous chills
and recurrent tremors, the SpO2 error can be considerably
large (Lee et al., 2003). Another approach to dealing with
noise is adaptive filters, in addition to being easy to imple-
ment, they can also be used in real-time applications, but
their main disadvantage is that to provide the input signals
it is necessary to install additional sensors (Salehizadeh
et al., 2014).

Digital signal processing (DSP) techniques can also be
applied in order to mitigate noise caused by movement.
Among them are: the Fast Fourier Transform (FFT)
and the Smoothed Pseudo Wigner-Ville Distribution (SP-
WVD) (Cho et al., 2014). In addition to the DSP tech-
niques applied for decades, other mechanisms can also
be applied with the same objective of improving the
performance of pulse oximeters, for example, algorithms
based on artificial intelligence for photoplethysmographic
wave correction (Barker, 2002)(Tarvirdizadeh et al., 2020).
Among the clever techniques that are able to detect noise
from movement and reconstruct, in real time, the cor-
rupted parts of the PPG signal, the following stand out:
the modeling based on the multilayer perceptron (MLP),
radial basis function (RBF) and adaptive neuro-fuzzy in-
ference system (ANFIS).

2. MATERIALS AND METHODS

Aiming to investigate the interferences in the PPG signals
caused by the oximeter motion, 40 oximetry records were
collected from the author*, each one lasting 72 seconds,
using a MAX30102 PPG sensor manufactured by Maxim
Integrated. These records were collected over three con-
secutive days, in the three periods of the day: during the
morning, in the afternoon and at night. To record the
intensity of the movements applied to the oximeter, an
MPU-9250 accelerometer produced by InvenSense Inc. was
used.

During each collection, movements were produced in order
to affect the PPG signals for half of the total time of 72
seconds, i.e., during the initial 18 seconds, the oximeter
was kept at rest, then it was moved for 36 seconds and, for
end, returned to be held at rest in the final 18 seconds. This
approach was adopted so that there was a balance between
the amount of affected and normal samples. To signal
these moments, a buzzer was used as a beeper. The data
that make up this dataset were sampled at a frequency
of 50 Hz. Logged information includes NTP (Network
Time Protocol); the time in milliseconds; the strength of
the infrared and red PPG signals; the acceleration (acc)
on the x, y and z axes; SpO2 and HR measured by an
Anvisa-certified pulse oximeter; and, finally, a column that
identifies the samples affected by motion artifacts (MAs),
manually labeled from rest and motion times. AWemos D1
Mini microcontroller was also used, a Wi-Fi board based
on ESP-8266EX. The items that make up the oximeter
under development 1 are shown in Figure 3.

To compare the SpO2 and HR values measured by the
oximeter under development with a reference value, a pulse
oximeter Model L5 (Anvisa registration no. 81334699002)
was used. To synchronize these SpO2 and HR samples
obtained by the two oximeters, a camera captured images
from the standard oximeter so that it was possible to syn-
chronize them with the samples obtained by the oximeter
under development. The idea behind this method was to
automate the SpO2 and HR reading and recording process,
eliminating the need to manually take notes, avoiding
information loss and data synchronization problems.

It is common when working with digital data the presence
of high frequency noise that can affect the signal, for this
issue, a digital filter is applied that increases the accuracy
of the data without distorting the signal tendency. One of
the most commonly used and frequently cited solution is
the digital filter presented by Savitzky and Golay (1964),
popularly named as Savitzky-Golay filter, or simply savgol.
Savgol is a type of low-pass filter that derive directly from
the time-domain problem of data smoothing, moreover, it
has highly desirable properties for this application (Press
and Teukolsky, 1990). As demonstrated by Gallagher
(2020, p. 1), “[. . . ] for a given signal measured at N points
and a filter of width w, savgol calculates a polynomial fit of
order o in each filter window as the filter is moved across
the signal.”

1 This is an open project to assist in remote monitoring of patients
by measuring HR, SpO2 and temperature. This system automatically
collects data and sends it to a cloud server, which enables remote
monitoring of patients. More information can be accessed on the
project website: https://bipes.net.br/UFSCar/oximetro/
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Figure 2. SpO2 and HR affected by motion artifacts. (A) Both PPG signals, infrared (IR) and red, affected in the range
where the oximeter moves. (B) Range where the oximeter moves. (C) Effect produced on SpO2 in the range where
the oximeter moves. (D) Effect produced on HR in the range where the oximeter moves.

Figure 3. Pulse oximeter components under development.
(A) Pulse oximeter kit. (B) Fingertip-clip that houses
the sensors. (C) MAX30102 reflective PPG sensor.
(D) MPU-9250 3-axis accelerometer, adapted from
InvenSense Inc. (2014) and ElectroPeak Inc. (2021).

2.1 Experimental Protocol

The purpose of this experiment was to compare the per-
formance of two different methods (raw and OxiTidy)
in estimating SpO2 and HR while the oximeter was at

rest and in motion. To this end, the standard oximeter
was placed on the left hand fingertip and kept at rest
throughout (72 s). While the developing oximeter was
placed on the fingertip of the right hand and during half of
the collection time (36 s), random movements were applied
in order to affect the PPG signals. Figure 4 depicts how
the data were recorded. In order to identify the values
recorded by the oximeter certified by Anvisa (left hand),
the images captured by the camera were used to analyze
the records performed and result SpO2 and HR values.

Figure 4. Method used to obtain the oximetric parameters.
(A) A camera was used to capture the standard-
parameters (left hand) to synchronize with the values
obtained from oximeter under development (right
hand). (B) Pulse oximeter Model L5. (C) Fingertip-
clip of pulse oximeter under development.
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Figure 5. Oximeter 3-axis acceleration versus motion arti-
fact.

2.2 Exploratory Data Analysis

After the collections were completed, a pre-processing of
the data was carried out in order to understand how
the data were distributed, facilitating its visualization
and interpretation. Thus, it is very important that the
data are understood and properly processed. Visualization
techniques are very useful to show, in a summarized
way, important characteristics of the data. This step was
essential to understand the problem and seek the most
appropriate technique to deal with motion artifact.

To analyze the relationship between the variables of the
created dataset, scatter plots were created to analyze the
influence of movement on PPG signals. In Figure 5, it is
possible to see the distribution of samples classified as nor-
mal and affected by motion artifacts. Figure 6 show that
the amplitude of the movement (observed by the amplitude
of the acceleration dispersion) is the major factor for the
sample to be classified as affected, as expected.

Boxplots were also created to facilitate the visualization
of the distribution of each attribute, as well as to analyze
the presence of outliers. Figure 7 presents the boxplots
for each class of the problem, i.e., for the samples that
remained normal (A) and for those that were affected
(B) and, consequently, produced erroneous SpO2 and HR
estimations.

As expected, the samples belonging to the affected class
presented a greater degree of dispersion in the data of each
attribute. Except for the PPG IR and PPG Red attributes
which maintained a more similar interquartile range in
both rest and motion states. This once again confirms that
acceleration is the preponderant factor to characterize the
sample as affected or normal. During the manual process of
labeling the data, i.e., identifying the class of each sample,
certain samples were classified as normal although they
belonged to the class of affected and therefore it is possible
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Figure 6. Oximeter norm acceleration and PPG infrared.
Herein, it is possible to notice that the bulk of the
samples belonging to the normal class remain intact
throughout steady state, around 10 m/s2.

to see the presence of these outliers in the acceleration
boxplots during rest. This issue did not affect the ANN
training, as there were few samples and no problems were
observed in the debugging process.

Figure 7. Boxplots for the samples that remained normal
(A) and those that were affected (B) by motion
artifact. In the normal class it is possible to see some
outliers in the acceleration attributes coming from the
data labeling process.
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2.3 Multilayer Perceptron

From the created dataset, ANNs based on MLP were
implemented to identify the samples in which the PPG
signals were affected and it was not possible to observe
their characteristic waveform. Figure 8 shows the samples
of PPG signals that were affected (1) and those that
remained normal (0) during the acquisition.

Figure 8. Samples predicted by the ANN as normal and
affected by motion artifact in one of the collects. (A)
Representation of predictions made by the sample
classifier. (B) Range where the oximeter moves.

The Backpropagation algorithm was used to train the
ANNs. Of the 40 collections performed, 30 were used for
training and 10 were used to analyze the performance of
the evaluated models. Eleven tests were performed with
different topologies of ANNs in order to evaluate each
model as a function of the number of input attributes,
number of neurons and performance of the networks.
Figure 9 summarizes the average performance and the
standard deviation of the results predicted by each model
for the 10 test collections. These results were properly
discussed in section 4.

3. ALGORITHM IMPLEMENTATION

The algorithm named OxiTidy v.1 proposed in this paper
aims to mitigate measurement errors and false alarms in
SpO2 and HR estimations using an IMU. It works mainly
in cases where the PPG signals are affected by noise
caused by the users movements. For this, it has a 3-axis
accelerometer and a savgol-filter of polynomial order equal
to 3 and window width of 7 (samples). The procedure for
the OxiTidy v.1 algorithm is presented in Table 1.

According to Yan et al. (2005), the rate of change of oxime-
try measurements is relatively slow, therefore, SpO2 that
changes by more than 2% per second can be considered to
be physiologically impossible, which could indicate a false
alarm. Based on this premise, OxiTidy v.1 detects sam-
ples affected by MA and disregards these measurements,
which are replaced by interpolated values from two known
normal estimations. In other words, instead of displaying
the incorrect value, it shows a more accurate value, given
the established range.

Table 1. OxiTidy v.1 algorithm: SpO2 and HR
estimations.

Stage 1 Raw data acquisition

1.1
Gets PPG IR and Red signals, and 3-axis
acceleration (xyz).

Stage 2 Sample state prediction using ANN (MLP 3-3-1)

2.1
Gets 3-axis acceleration to predict sample state
(affected or normal).

Stage 3 Savitzky-Golay filter
3.1 Apply savgol-filter on PPG IR and Red signals.

Stage 4 Calculation of AC and DC components every 6 seconds

4.1
Uses all samples collected within a 6-second period to
calculate AC and DC for PPG IR and Red signals.

Stage 5 SpO2 estimation
5.1 Computes R ratio (eq. 1) using values of substage 4.1.
5.2 Estimates SpO2 (eq. 2) using value of substage 5.1.

Stage 6 HR estimation

6.1
Uses PPG IR signal to calculate 1st derivative
(within a 6-second period).

6.2 Gets the absolute values of substage 6.1.
6.3 Finds the peaks referring to the cardiac cycle.

6.4
Computes the number of peaks found in substage 6.3
to estimate HR in bpm.

Stage 7 Removal of affected samples

7.1
If the number of affected samples is greater than 1%
(within a 6-second period), the calculated SpO2

is rejected (NaN).

7.2
If the number of affected samples is greater than 1%
(within a 6-second period), the calculated HR
is rejected (NaN).

Stage 8 Correction of NaN1 values

8.1
For each standard 6-second period, interpolates the
NaN values using two regular SpO2 measurements.

8.2
For each standard 6-second period, interpolates the
NaN values using two regular HR measurements.

1 NaN standing for Not a Number, is a symbol used to represent an
undefined numeric value.

In this algorithm, SpO2 and HR measurements were esti-
mated in a 6-second window, i.e., at each 6-second section a
new measurement of each parameter was computed from
the samples corresponding to that section. To guarantee
that at least two positive and two negative pulse peaks
were present in any given window, the window width was
set to 6 seconds (Johnston, 2006).

As it was found, and it was expected, the ANN prediction
process presented a small error where samples that be-
longed to the affected class were classified as normal and
vice versa. This can be seen in Figure 8 (A). For this, in
the algorithm proposed here, a threshold was implemented
precisely to make this distinction between the two classes.
During the tests with the data predicted by the ANN, the
threshold of 1% of samples affected was reached, i.e., if the
number of samples affected in a section was greater than
1%, these measurements were rejected and, in this referred
section, SpO2 and HR estimations were linearly interpo-
lated from two measurements obtained with samples from
a section with a threshold less than or equal to 1%.

4. RESULTS AND DISCUSSION

The first step, based on exploratory data analysis, was
to define an appropriate technique capable of classifying
samples affected by MA. In order to identify the intervals
where the PPG signals were affected by the MA, different
topologies of ANNs based on the MLP were evaluated.
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The performance metrics used to evaluate each ANN were
summarized in Figure 9 below. It is possible to observe
that the acceleration was the major factor to determine
the state of the sample, and the use of an accelerometer
was fundamental since the information coming only from
the PPG signals were not enough for the ANNs to achieve
a good performance.

Figure 9. Performance of the ANNs evaluated. Herein,
it is possible to verify the average performance and
standard deviation of each ANN. Again it is possible
to see that acceleration (acc) is the preponderant
factor in the sample classification process.

Aiming at a good performance in the face of the four
evaluated metrics and a simplified ANN topology, the 3-3-
1 model was chosen, applying the acceleration attributes in
the xyz-axes to the ANN input. Table 2 shows the details
of the ANN used in OxiTidy v.1.

To evaluate the performance between the two approaches
presented in this paper, the SpO2 bias and precision, and

Table 2. MLP neural network parameters.

Parameter/method Value/description

No. of hidden layers 1

No. of hidden neurons 3

No. of output neurons 1

Learning algorithm Backpropagation

Activation function of

hidden neurons
Hyperbolic tangent

Activation function of

output neurons
Sigmoid

Learning epochs 20

Input data preprocessing StandardScaler (sklearn)

the mean absolute error (MAE) were calculated (Barker,
2002). The bias and precision are defined as the mean and
standard deviation of the differences between the SpO2

reference values (measured by a certified oximeter) and the
values estimated by the proposed algorithm, respectively.
These error measures were used to evaluate the estimations
without any processing (raw) and those performed by
OxiTidy v.1 while the subject was in a position of rest and
motion. These results are summarized in Table 3 below.

Table 3. Performance statistics of the two
approaches.

State Approach
SpO2 bias

(%)

SpO2 precision

(%)

HR MAE

(bpm)

resting
raw 3.22 2.23 6.28

OxiTidy v.1 1.46 1.03 2.86

motion
raw 4.09 3.32 13.08

OxiTidy v.1 1.51 0.92 4.18

Note that the OxiTidy v.1 approach demonstrates a sig-
nificant improvement in both SpO2 and HR estimations
when compared to the approach where there is no signal
processing. This was observed both in the resting state
and during motion. It is evident that the savgol-filter
fulfilled its role in the presence of MAs and, especially,
in the intervals where the oximeter remained at rest. The
ANN also performed well in the intervals where there was
movements, keeping the metrics similar during rest and
motion for the evaluated dataset.

It should be considered that these results are limited
to a dataset of a single subject with normal oxygen
saturation. Therefore, the next step would be to evaluate
the performance of the algorithm proposed here in low
saturation conditions and in a larger group of people.
OxiTidy could also be compared with other techniques
such as FFT, weighted moving average (WMA), etc.
Thus, it would be possible to assess the performance of
this algorithm with the other techniques present in the
literature.

Indeed, OxiTidy v.1 is applied to post-processed data, i.e.,
the PPGs signals are collected and then the SpO2 and
HR measurements are computed. This initial version is
intended to demonstrate its performance and serve as a
basis for future implementations. For example, embedding
it in a microcontroller to run online. For this, it would be
interesting to alert the user (e.g. using a buzzer or LED)
the presence of MA, thus asking the user to rest so that
the measurements are correctly computed or interpolated.
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5. CONCLUSION

Pulse oximetry is a non-invasive technique that allows the
monitoring of physiological signals in a very simplified way.
What was possible to do only with high-cost and unwieldy
biomedical equipment, has been popularized with the
emergence of wearable technologies. However, the way
these devices are built and used directly influences the
quality of the information provided to the user. There are
several factors that can impair the accuracy of the data
generated by the oximeters, among them is the MA. This
can cause errors in the readings and cause false alarms. In
order to mitigate these undesirable effects, in this paper,
an algorithm based on ANN capable of detecting noise in
the oximetry signal was proposed.

In this study, OxiTidy v.1 was presented to minimize
the effects of movements on PPG signals to improve
the accuracy of SpO2 and HR estimations of a Wi-Fi
pulse oximeter under development by the Department
of Electrical Engineering, Computing Department and
Medicine Department at the Federal University of São
Carlos (UFSCar). The applied technique used MLP to
identify the intervals where the measurements performed
were incorrect and then estimated new values with a good
approximation to the readings performed by an Anvisa-
certified pulse oximeter. A significant improvement in
SpO2 and HR estimations was demonstrated both at rest
and in motion in a limited dataset obtained from the
author* of this work.
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