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Abstract:
Generalized predictive control (GPC) has become one of the most studied and popular control
approaches. The GPC control law requires the estimation of the Hessian matrix, which requires
a matrix inversion procedure. However, depending on the plant model and the GPC parameters,
the aforementioned procedure may be ill-conditioned: a slight variation in the parameters
may generate a more significant variation in the Hessian matrix value. In that case, the
noise or quantization effect reduces the GPC robustness. The process of solving ill-conditioned
problems is called regularization. This paper proposes the Singular Value Decomposition (SVD)
application to regularize the matrix inversion procedure used to get the Hessian matrix. SVD
decomposes a matrix based on the concept of singular values. Only the most significant singular
values are used in the SVD regularization technique to calculate a matrix inverse, as the smallest
singular values produce ill-conditioned problems. A methodology to define the singular values
used in matrix inversion is explained in this work. The proposed approach was used in a GPC-
based resonant controller, using 16 bits fixed-point numbers. Simulation and experimental tests
using a FPGA show that the proposed approach allows getting an accurate and robust GPC
response for the tracking of sinusoidal references.

Keywords: Generalized predictive control; matrix inversion; regularization; singular value
decomposition.

1. INTRODUCTION

Nowadays, generalized predictive control (GPC) is one of
the most popular and studied control strategies (Camacho
and Bordons, 2007; Qin and Badgwell, 2003). GPC is
based on the prediction of future plant responses. That
prediction is made using the current augmented model
state vector and a set of future control actions. An op-
timization process allows the optimal future actions to
minimize a cost function that measures the control per-
formance (Wang, 2009; Cordero et al., 2021a).

The GPC control law requires calculating a Hessian matrix
through the matrix inversion method. This matrix depends
on the augmented model and the prediction parameters.
Depending on those factors, the matrix whose inverse is
the Hessian can be almost singular (with a high condi-
tion number). If so, the GPC control law estimation may

⋆ This study was financed in part by the Coordenação de Aperfeiçoa-
mento de Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance Code
001.

become an ill-conditioned problem (Aidoud et al., 2019;
Sanchis et al., 2002): a small error in the input data may
produce a larger error in the answer. The nominal plant
parameters used to get the control law are different from
the actual parameters for practical applications. Besides,
the digital implementation of the controller produces quan-
tization errors. As a result, the estimation of the GPC
control law may become unstable (prone to significant
numerical errors) when the matrix inversion to get the
Hessian matrix is ill-conditioned.

Regularization is the process to solve ill-conditioned prob-
lems. Different regularization techniques were proposed in
literature (Neumaier, 1998; Belsley and Oldford, 1986).
Singular value decomposition (SVD) can be used for reg-
ularization: the matrix to be inverted is decomposed into
three matrix factors, using the concept of singular values,
and the matrix inverse is estimated through those factors
(Strang, 1988; Wang, 2009). SVD-based matrix inversion
method eliminates the effect of the small singular values
(which are responsible for the ill-conditioned inversion
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problem). Thus the matrix inversion is well-conditioned
(small variations in the input data will produce small
variations in the result). This matrix inversion approach
is also called Truncated SVD (TSVD).

This paper proposes using SVD to get a robust GPC
control law against noise and numerical errors, which
are common problems in embedded systems. The SVD-
based inversion method is used to get the Hessian
matrix. The mathematical analysis considers a SISO
(Single-Input Single-Output) plant, but it can be eas-
ily adapted for MIMO (Multiple-Input Multiple-Output)
plants. Simulation and experimental results using an Field-
Programmable Gate Array (FPGA) show that the pro-
posed approach allows calculating a well-conditioned GPC
control law.

In this paper, M ∈ ℜn×m indicates that M is a n × m
matrix, In denotes a n × n identity matrix, O represents
a matrix of zeros with adequate dimensions, the difference
operator is ∆a(k) = ∆1a(k) = a(k)− a(k− 1), ∆0a(k) =
a(k) and ∆ma(k) = ∆m−1a(k)−∆m−1a(k− 1). Besides,
similarly to MATLAB software, M(r1 : r2, c1 : c2) denotes
a sub-matrix of M composed by the element between the
rows from r1 to r2 and the columns c1 to c2.

2. THEORETICAL FOUNDATIONS

2.1 GPC

The discrete-time space state model of a n-order SISO
(Single Input Single Output) plant is defined as follows:

xd(k + 1) = Adx(k) +Bdud(k), (1)

yd(k) = Cdx(k), (2)

where xd(k) ∈ ℜn×1 is the state vector, ud(k) is the plant
input, yd(K) is the plant output, Ad ∈ ℜn×n, Bd ∈ ℜn×1

and Cd ∈ ℜ1×n. In GPC, an augmented model is used to
predict the future plant response:

x(k + 1) = Ax(k) + Bµ(k), (3)

y(k) = Cx(k), (4)

where A, B, C, x(k), y(k) and µ(k) are defined according
to the prediction technique. The matrices A, B and C
depend on Ad, Bd and Cd. Table 1 shows the matrices
of the augmented model for the following approaches:

• GPC for step reference tracking defined in Wang
(2009).

• Poly-GPC: GPC for the tracking of polynomial ref-
erences of degree m − 1, defined in Cordero et al.
(2021b).

• RGPC: Resonant GPC for sinusoidal reference track-
ing defined in Cordero et al. (2022).

In GPC, the future outputs of the selected augmented
model y(i+1), y(i+2), . . ., y(i+np) are predicted, being
np the size of the prediction window (Wang, 2009). This
prediction is done using the current model state vector
x(k) and the future control trajectory µ(k), µ(i + 1), . . .,
µ(i+nc−1), being nc the size of the control horizon such as
nc ≤ np. The vector of future responses Y and the vector
of future actions U are defined as follows:

Y =
[
y(k + 1) y(k + 2) . . . y(k + np)

]
∈ ℜnp×1, (5)

U = [µ(k) µ(k + 1) . . . µ(k + nc − 1)] ∈ ℜnc×1, (6)

Table 1. Augmented Prediction Models

Matrix Wang (2009) Poly-GPC RGPC

A
[

Ad O
CdAd 1

] [
E −γCdAd

O Ad

] [
Ad O O

CdAd 1 ς
CdAd 1 1+ ς

]

B
[

Bd

CdBd

] [
−γCdBd

Bd

] [
Bd

CdBd

CdBd

]
C

[
O 1

] [
1 O O

] [
O 0 1

]
x(k)

[
∆x(k)
y(k)

] [
ε(k)

∆mx(k)

] [
ςx(k−1)−∆2x(k)

∆e(k)
e(k)

]
µ(k) ∆x(k) ∆mx(k) ςu(k−1)−∆2u(k)

y(k) y(k) e(k) e(k)

ε(k) = [e(k) ∆e(k) ... ∆m−1e(k)]T , γ = [1 1 ... 1]T , ς = 2 cos(ϖ)−2,
E is an upper diagonal matrix composed by 1, while ϖ = ωts (ω is
the sinusoidal reference frequency).

The vector of future response can be obtained through (7):

Y = Fx(k) + Φ, (7)

where

F =


CA
CA2

...

CAnp

 , (8)

Φ=


CB 0 0 . . . 0
CAB CB 0 . . . 0
CA2B CAB CB . . . 0

...
...

...
. . .

...
CAnp−1B CAnp−2B . . . . . . CAnp−ncB

 . (9)

An optimization process is applied to get the optimal U
to minimize future errors. Let R ∈ ℜnp×1 be a vector
composed of the plant references during the prediction
window. According to GPC, R should be constant within
that window. Equation (10) defines the cost function used
in the optimization process (Wang, 2009):

J = (Y −R)
T
(Y −R) + UTRwU, (10)

Rw = rwIc, (11)

where Ic is a nc × nc identity matrix, while rw is an
adjustment parameter. The larger the value of rw, the
more important the minimization of the magnitude of U
(Wang (2009)). Replacing (5) into (10) yields:

J =(R− Fx(k))
T
(R− Fx(k))− 2UTΦT (R− Fx(k))

+ UT
(
ΦTΦ+Rw

)
U. (12)

The optimal solution of (10), Uop, makes
∂J(Uop)

∂U = 0.
Replacing (10) into the derivative of (12) allows getting
Uop:

∂J(Uop)
∂U = 0 −→ Uop =

(
ΦTΦ+Rw

)−1
ΦT (R− Fx(k)) .

(13)

The receding horizon approach states that only the first
element of the optimized solution, i.e., µ(k) is used to
define the control law (i.e., the plant input). Hence:

µ(k) = [1 0 . . . 0]︸ ︷︷ ︸
nc elements

(
ΦTΦ+Rw

)−1
ΦT (R− Fx(k))︸ ︷︷ ︸

Uop

. (14)
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The GPC approach in Wang (2009) was designed to

track a step reference. Thus, R = [1 1 . . . 1]
T
. However,

polynomial and sinusoidal references change over time. For
that reason, the approaches in Cordero et al. (2021b),
and Cordero et al. (2022) use the tracking error e(k)
as the prediction model output due to the desired value
(i.e., the reference) of an error is always zero. Hence

R = [0 0 . . . 0]
T

in Cordero et al. (2021b) and Cordero
et al. (2022). In those cases:

µ(k) = − [1 0 . . . 0]
(
ΦTΦ+Rw

)−1
ΦTFx(k), (15)

R = [0 0 . . . 0]
T
.

According to Table 1, µ(k) depends on past and present
values of the input plant u(k). Hence, u(k) can be deduced
from the definition of µ(k) and using (14).

The Hessian matrix H is defined as follows (Wang, 2009):

H =
(
ΦTΦ+Rw

)−1
. (16)

The Hessian exists if ΦTΦ+Rw is non-singular.

2.2 Singular Value Decomposition and Ill-Conditioned
Problems

Let A ∈ ℜn×n. The matrix ATA ∈ ℜn×n is positive def-
inite. Hence, each eigenvalue of ATA,denoted by λj , j =
1, . . . , n is real and non-negative (Chen, 1999):

0 ≤ λj , j = 1, . . . , n. (17)

The singular values of A, σj , j = 1, . . . , n, are the square
root of the eigenvalues of ATA (Chen, 1999):

σj = λ0.5
j , j = 1, . . . , n. (18)

Any matrix A ∈ ℜn×n can be decomposed as follows:

A = USV T . (19)

where the columns of U are the orthonormalized eigenvec-
tors of AAT , the columns of V are the orthonormalized
eigenvectors of ATA, while S is a diagonal matrix whose
diagonal is composed of the singular values of A:

S=


σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σn

, σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0. (20)

where the singular values in the diagonal of S are arranged
in decreasing order. The inverse of A can be expressed in
terms of U , V and S (Strang, 1988):

A−1 = V S†UT , (21)

where

S† = S−1 =


1/σ1 0 . . . 0
0 1/σ2 . . . 0
...

...
. . .

...
0 0 . . . 1/σn

 . (22)

Let’s consider the following linear equation

yeq = Axeq, (23)

where xeq is the solution to be found. Equations (21) shows
that A−1 exists if all the singular values of A are nonzero.
In that case:

xeq = A−1yeq. (24)

However, if a singular value σ is near zero, then 1/σ tends
to be infinite. In that case, A is ill-conditioned : the matrix
A is almost singular and small variations in the parameters
of yeq will produce a large variation in the solution xeq

(Strang, 1988). That variations can be produced by noise
in the signal yeq, rounding process, or working with a
limited number of bits to perform arithmetical operations.

Let σmax and σmin be the largest and the smallest singular
value of A, respectively. The condition number of A,
denoted by cA is (Strang, 1988):

cA =
σmax

σmin
=

σ1

σn
. (25)

The matrix A is ill-conditioned if its conditioning number
(cA) is too large. Equation (25) allows deducing that small
singular values produce ill-conditioned inversion problems.
A common technique to eliminate the ill-conditioned prob-
lem is to redefine the matrix S† in (21):

S† = diag(z1, z2, . . . , zn), (26)

zi =

{
1/σi if σi > σthr;

0 otherwise
, i = 1, . . . , n.

where σthr is a threshold. Equation (26) allows eliminating
the effect of the small singular values of A. A procedure
used to solve ill-conditioned problems is called regulariza-
tion. Thus, the following regularized inverse of A in (27)
is well-conditioned (with small condition number):

A−1 ≈ V diag(z1, z2, . . . , zn)U
T . (27)

The regularization process based on using only the largest
singular values of a matrix is called Truncated SVD
(Strang, 1988). Let ns be the number of singular values
greater than σthr:

σi > σthr, i = 1, 2, . . . , ns. (28)

Considering only the most significant singular values de-
fined in (28), the decomposition of any matrix can be done
as follows:

A ≈ AT = UTSTV
T
T , (29)

UT = U(1 : nc, 1 : ns) ∈ ℜnc×ns ,

ST = S(1 : ns, 1 : ns) ∈ ℜns×ns ,

VT = V (1 : nc, 1 : ns) ∈ ℜnc×ns ,

where UT is composed by the firsts ns columns of U , while
VT is composed by the firsts ns columns of V . In that case,
the condition number of AT is

cAT
=

σ1

σns

. (30)

As σns>σn then cAT
<cA. Applying (21) into (29), yields:

A−1
T = VTS

−1
T UT

T . (31)

The inverses of A using (27) and (31) are equal.

3. APPLICATION OF SVD IN THE
REGULARIZATION OF THE GPC CONTROL LAW

Equation (13) can be rewritten according to (24):

Uop︸︷︷︸
xeq

=
(
ΦTΦ+Rw

)−1︸ ︷︷ ︸
A

ΦT (R− Fx(k))︸ ︷︷ ︸
yeq

. (32)
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Note that A =
(
ΦTΦ+Rw

)−1
in (32) is the Hessian

matrix in (16), whose value depends on the matrices that
compose the augmented model (A, B and C) and the GPC
parameters (np, nc and rw). Depending of those values,(
ΦTΦ+Rw

)
may be ill-conditioned. Besides, note that

ΦT (R− Fx(k)) depends on the plant state variables (as
indicated in Table 1). Hence, noise during the acquisition
of the plant state variables or quantization effect may
produce an undesirable variation in the estimation of
Uop, when the GPC algorithm is implemented in digital
processors.

This work proposes using SVD to estimate the Hessian
matrix in (16). Equation (9) allows proving that ΦTΦ +
Rw is a nc × nc matrix, so it has nc singular values
σ1H , . . . , σncH . Thus, according to (19), the matrix ΦTΦ+
Rw can be decomposed as follows:

ΦTΦ+Rw = UHSHV T
H , (33)

SH =


σ1H 0 . . . 0
0 σ2H . . . 0
...

...
. . .

...
0 0 . . . σncH

 . (34)

The Hessian matrix can be estimated applying (26) and
(27) into (33):

H = VHdiag(z1H , z2H , . . . , zncH)UT
H , (35)

ziH =

{
1/σiH if σiH > σthr;

0 otherwise
, i = 1, . . . , nc.

Equation (30) allows the relationship between the condi-
tion number and the number of the largest singular values
used to get the inverse of ΦTΦ+Rw, as shown in Figure 1.
This relationship can be used to set the adequate number
of singular values for regularized matrix inversion. How-
ever, selecting the truncation range (i.e., the number of the
most significant singular values) is essential in SVD-related
applications. Much information about the matrix inverse
(the Hessian matrix in this case) may be lost or distorted
if the few most significant singular values are selected.
However, selecting a large number of singular values may
produce an inverse matrix that is still ill-conditioned (i.e.,
a Hessian matrix would still be unstable and sensitive
to noise and parameter variations) (Gavish and Donoho,
2014). For that reason, the following subsection explains
a methodology to select the adequate number of singular
values for the regularization procedure.

Figure 1. Condition number in function of the number of
the largest singular values used in regularization.

3.1 Selection of Optimal Number of Singular Values

Many methods are proposed for selecting the optimal trun-
cation point (i.e., selecting the adequate singular values
used in regularization). Some techniques include identi-
fying “knees” in the distribution curve of the condition
numbers (see Figure 1). Such techniques, although showing
some effectiveness, are very heuristic.

Gavish and Donoho (2014) propose a more analytical
technique to select the singular values. This technique
estimates a value τ , the optimal location for the hard
thresholding of singular values. For matrices with known
noise amplitude, the estimation of τ is presented in (36):

τ∗ = λ(β)
√
n ∗ σ, (36)

where σ is the noise amplitude, β is the relation of the
matrix dimensions, i.e. β = m/n, and λ(β) is the optimal
hard threshold coefficient. However, the noise level of the
(ΦTΦ+Rw) matrix, i.e., the inverse of the Hessian matrix,
is unknown. Hence, for data with an unknown noise level,
(37) can be applied:

τ̂∗ = ω(β) ∗ ymed, (37)

Where ω(β) is the optimal hard threshold coefficient for σ
unknown, and ymed is the median value of singular values
of the matrix in question. Nevertheless, as the Hessian
matrix is ever squared, as a result of the term ϕTϕ. Thus,
β = 1, and the value referent to ω(1) is tabled and set as
2.852. Thus, according to Gavish and Donoho (2014), the
optimal truncation of the inverse of the Hessian matrix
used in this paper is defined as in (38):

τ̂∗ = 2.8582 ∗ ymed. (38)

4. RESULTS

Simulation tests were performed to prove the advantages
of the proposed application of SVD to get a robust GPC
control law. The plant used in the test has the transfer

function G(s)= 1.418×106s+3.637×108

s3+2179s2+2.273×106s+7.274×108 . This plant
was discretized using a sample time of ts = 0.5 ms. Thus
the matrix of the discrete-time plant model are A =[
0.413 0.454 0
−0.240 0.788 0
−0.437 0.422 0.774

]
, B =

[
0.1331
0.4528
0.1273

]
and C = [0 0 1]. The

proposed approach was applied in the GPC-based resonant
controller described in (Cordero et al., 2022). Table 2 lists
the GPC parameters, and the number of singular values
used in regularization (according to (38)) applied in the
tests. Figure 2 shows the sinusoidal reference (50 Hz) of
the plant.

The tests were done using 16-bits fixed-point number
representation, using eight fractional bits. Besides, white
noise (zero mean, power spectral density of 0.00001) was
added to the plant state variables. Noise and the reduced
number of bits for arithmetic operations are problems in
embedded systems, mainly when the controller is based
on an ill-conditioned system. These test conditions were

Table 2. GPC and SVD Parameters

Configuration np nc rw Number of singular values

1 20 10 0.01 4
2 100 50 0.001 22
3 100 80 0.1 25
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considered to show how the proposed approach allows for
more robust GPC controllers.

Figures 3 to 8 show the simulation results for the tracking
error, with/without using SVD and with/without adding
noise to the plant state variables. The settling time in-
creases (in the tests without noise), while the noise effect
is greater when SVD is not used. These results result from
using an ill-conditioned Hessian matrix to set the GPC
control law. On the other hand, the proposed SVD-based
approach allows getting a more robust control response,
while the tracking errors tend to zero when SVD is applied.

Figure 2. Control system reference.
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Figure 3. Simulation test: Error for np = 20, nc = 10 and
rw = 0.01, without adding noise. (a) Without using
SVD. (b) Using SVD.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Time (s)

(a)

-4

-2

0

2

4

E
rr

o
r 

w
it
h
o
u
t 
S

V
D

 (
V

)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Time (s)

(b)

-4

-2

0

2

4

E
rr

o
r 

w
it
h
 S

V
D

 (
V

)

Figure 4. Simulation test: Error for np = 20, nc = 10 and
rw = 0.01, adding noise. (a) Without using SVD. (b)
Using SVD.
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Figure 5. Simulation test: Error for np = 100, nc = 50 and
rw = 0.001, without adding noise. (a) Without using
SVD. (b) Using SVD.
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Figure 6. Simulation test: Error for np = 100, nc = 50 and
rw = 0.001, adding noise. (a) Without using SVD. (b)
Using SVD.
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Figure 7. Simulation test: Error for np = 100, nc = 80 and
rw = 0.1, without adding noise. (a) Without using
SVD. (b) Using SVD.
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Figure 8. Simulation test: Error for np = 100, nc = 80 and
rw = 0.1, adding noise. (a) Without using SVD. (b)
Using SVD.

Table 3 shows each test’s root mean square error (RMSE)
and the settling time (ST). Note that the RMSE and the
ST are smaller for the proposed approach.

Figures 9 to 14 show the control laws for each test. The
application of SVD allows getting more stable control laws
with robustness against noise and the effect of using few
bits for representing numbers, as SVD allows getting a
well-conditioned Hessian matrix. Besides, the results using
SVD are similar to those obtained using 64-bit arithmetic
operations.

The proposed GPC controller was implemented in the
FPGA kit DE115 of ALTERA and tested through FPGA
in-the-loop strategy: the controller (implemented in the
FPGA) controls a plant designed in SIMULINK program
executed in a PC. The FPGA and PC communication
is done through an ethernet cable. Figure 15 shows the
experimental setup. Figure 16 shows the experimental
results for np = 100, nc = 50 and rw = 0.001. Note that
SVD allows getting a more stable response.

Table 3. Results of The Simulation Tests

Configuration Noise SVD RMSE ST

1 No No 0.2978 47.5 ms
1 No Yes 0.2077 22.5 ms
1 Yes No 0.5229 59.5 ms
1 Yes Yes 0.3112 15.0 ms
2 No No 0.8015 > 200 ms
2 No Yes 0.2394 16.5 ms
2 Yes No 1.3692 > 200 ms
2 Yes Yes 0.4032 30.0 ms
3 No No 0.2383 20.0 ms
3 No Yes 0.2127 17.0 ms
3 Yes No 0.3719 32.5 ms
3 Yes Yes 0.3181 22.5 ms

• Configuration 1:np = 20, nc = 10 And rw = 0.01
• Configuration 2:np = 100, nc = 50 And rw = 0.001
• Configuration 3:np = 100, nc = 80 And rw = 0.1
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Figure 9. Simulation test: Control law for np = 20, nc = 10
and rw = 0.01, without adding noise. (a) Without
using SVD. (b) Using SVD.
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Figure 10. Simulation test: Control law for np = 20,
nc = 10 and rw = 0.01, adding noise. (a) Without
using SVD. (b) Using SVD.
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Figure 11. Simulation test: Control law for np = 100,
nc = 50 and rw = 0.001, without adding noise. (a)
Without using SVD. (b) Using SVD.
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Figure 12. Simulation test: Control law for np = 100,
nc = 50 and rw = 0.001, adding noise. (a) Without
using SVD. (b) Using SVD
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Figure 13. Simulation test: Control law for np = 100,
nc = 80 and rw = 0.1, without adding noise. (a)
Without using SVD. (b) Using SVD.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Time (s)

(a)

-10

0

10

C
o
n
tr

o
l 
L
a
w

 w
it
h
o
u
t 
S

V
D

 (
V

)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Time (s)

(b)

-10

0

10

C
o
n
tr

o
l 
L
a
w

w
it
h
 S

V
D

 (
V

)

Figure 14. Simulation test: Control law for np = 100,
nc = 80 and rw = 0.1, adding noise. (a) Without
using SVD. (b) Using SVD.

Figure 15. Experimental setup.
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Figure 16. Experimental test for np = 100, nc = 50 and
rw = 0.001. (a) Reference, (b) Without using SVD.
(c) Using SVD.

5. DISCUSSION

The application of SVD to get the Hessian matrix that
defines the GPC control law allows getting a more stable
controller for different values of np, rc, and rw as proved
through simulation and experimental tests. However, the
structures of the augmented model, the cost function,
the prediction formula in (7) and the GPC control law
in (15) are not affected by the regularization technique
(only their numerical values). Hence, applying restrictions
and adapting the controller for MIMO (Multiple-Inputs
Multiple-Output) plants is possible through the techniques
explained in Wang (2009). Improvements in the design of
restrictions in GPC isbeyond the objective of this work.
However, he uses of restrictions will be done in future
researches.

It is difficult to define an analytic relationship between
the number of singular values used in regularization with
the robustness against noise. In general, the influence of
np, rc, and rw in the close-loop dynamics is difficult to
analyze. As regularization affects the Hessian matrix’s
value, the number of singular values τ̂∗ should also be
considered in the tuning of the predictive controller. A
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Differential Evolution (DE) or a Genetic Algorithm (GA)
could be used to define the values of np, rc, rw and τ̂∗.
Many strategies exist to define the optimal SVD truncation
according to the desired control performance. The fitness
function used in a DE or a GA can be defined to evaluate
that performance and look for the best regularization.

6. CONCLUSIONS

This paper proposes the application of Singular Value
Decomposition (SVD) in estimating the GPC control law.
When the Hessian matrix is ill-conditioned, i.e., when
it has a large condition number, the GPC control law
becomes sensitive to noise and quantification errors pro-
duced by using few bits for arithmetic operations. SVD
regularization procedure and the proposed methodology
to define the number of the largest singular values used
in regularization allow a more robust (well-conditioned)
Hessian matrix. The number of singular values depends
on the applications. In many cases, a more robust control
response can be obtained by reducing the response speed
of the control system. However, simulations show that
the proposed approach allows a faster and more robust
response compared to the ill-conditioned GPC systems.
The transient response depends on the GPC parameters
(np, nc and rw), but also on the number of singular values
used in regularization (τ̂∗). Further research should be
done to select those parameters. Future works will explore
the application of the proposed approach considering re-
strictions and MIMO systems.
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