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Abstract: Inverted pendulums are an important class of underactuated systems. This paper
presents a flywheel inverted pendulum (FIP) design to evaluate the performance of Swing-
up and Balance control algorithms. The Swing-up algorithms evaluated are based on Energy
Control strategies. The rise time and an estimation of the energy spent on this task were used
as assessment metrics. Two closed loops with PID controllers were implemented to perform the
Balance control of the FIP. The analyses were carried out based on the data generated from
simulations and experiments. The results showed that the Maximum Energy algorithm was able
to perform the swing-up with less time and lower energy consumption. Additionally, it resulted
in lower errors during the execution of the Balance control, since the system conditions provided
by this swing-up strategy contributed to the robustness of the system.
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1. INTRODUCTION

By definition, an inverted pendulum is a mechanical sys-
tem which its center of mass is located above the pivot
point. In order to drive and keep the system at the equi-
librium position, it is necessary to add energy accordingly
to the system. This mechanism is extensively studied due
to its applications in many engineering areas, including
Robotics (Dai et al., 2015), Oil and Gas technologies (Ka-
reem, 1983) and Aerospace Engineering (Ferrante, 2017).
Additionally, due to the simplicity on their operating
principles, it is a remarkable underactuated non-linear
system commonly used as case study for control techniques
analysis for academic purposes. One of the most exploited
designs in the literature is called the Flywheel Inverted
Pendulum (FIP). This mechanism is based on a motor
attached to a flywheel, located at the end of the rod, that
uses the physical principle of conservation of mechanical
energy to control the system properly.

The standard operation of a flywheel inverted pendulum
is mainly based on two stages: the Swing-up control and
the Balance control (Srinivas and Behera, 2008). The
Swing-up control consists in taking the pendulum from
the downright to the upright position. When the pendulum
reaches certain conditions (normally, when a small angle
around of the vertical position is achieved) it is possible to
switch to the Balance control, which is responsible to keep
the pendulum in the vertical position as long as possible.

The behavior of the working stages are strictly related
to the physical parameters of the FIP. Therefore, there
are several works in the literature that uses the analyti-
cal model of the plant to design a satisfactory controller
to meet the project requirements. Olivares and Albertos
(2013) presented a balance control architecture based on
a simplified linear model derived from a prototype, that

utilizes two control loops in order to reach a good per-
formance. Nguyen and Huynh (2016) combined Olivares’
approach to a current control method to obtain even better
results regarding the balance control of a FIP.

Balance control was explored in different ways by the
authors. Many works have presented solutions with non-
linear controllers (Spong et al., 2001), (Teja et al., 2020),
(Trentin et al., 2020). However, these implementations
tend to be complex and may require the use of more sensors
in the system. On the other hand, using simpler linear
control architectures, such as PID controllers, proved to be
quite effective for various scenarios(Olivares and Albertos,
2013),(Vasconcelos et al., 2019),(Almada et al., 2020).

Regarding the Swing-up, strategies based on Energy Con-
trol (EC) are widely present in related works. One of its
main features is to control the energy of the system instead
of directly controlling its position or velocity (Åström and
Furuta, 2000). Many authors focused on proposing solu-
tions for enhancing the Swing-up performance in compari-
son with Energy control implementations. Åström and Fu-
ruta (2000) presented a comparison between these strate-
gies and minimum time solutions. Srinivas and Behera
(2008) introduced two novel strategies and compared their
performance with Energy control based algorithms.

This work aims to analyze the behavior of two Swing-up
strategies based on Energy Control. A Balance Control
algorithm will also be implemented. Experiments will be
carried out in a simulation environment and in a real
FIP. The Swing-up rise time, an estimation of the energy
demanded by each strategy and the integration of the error
during the Balance Control will be used as metrics for
assessing the experiments.

This paper is organized as follows. Section 2 contains the
deduction of a analytical model of a FIP and presents
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technical details about the FIP built for this work. Section
3 describes the system identification method applied, the
strategies proposed for Swing-up and Balance control algo-
rithms. Section 4 shows the main results accomplished by
the analysis and a brief discussion of them. The conclusions
are presented in Section 5.

2. FLYWHEEL INVERTED PENDULUM

2.1 Analytical Model

Modelling a FIP combines the characteristic parameters
of the actuator with the physical laws that rules the
system behavior. In this work, a DC motor is considered
as actuator and it can be described as:

Figure 1. DC Motor - physical model.

where vt is the input voltage, Ra and La are the armature
resistance and inductance, respectively, eb is the back
electromotive force and φ is the rotor angle. Neglecting the
armature inductance and applying the Kirchhoff’s voltage
law, we have:

Raia + eb = vt (1)

The armature current and the back electromotive force
can be expressed in terms of motor torque (τm) and motor
speed (φ̇), respectively.

eb =K1φ̇ (2)

τm =K2ia (3)

Substituting the equations (2) and (3) into (1), we obtain:

Ra

K2
τm +K1φ̇ = vt (4)

The torque developed by the motor is counterbalanced by
the flywheel moment of inertia. Neglecting the friction on
the motor shaft we have the following dynamic equations
of the motor:

τm = Jf φ̈ (5)

Replacing τm in (4) by (5), we have:

JfRa

K2
φ̈+K1φ̇ = vt (6)

Rearranging (6):

φ̈+
K1K2

RaJf
φ̇ =

K2

RaJf
vt (7)

The free body diagram of the FIP is presented in Figure
2. Table 1 shows the meaning of each term in the image.
Analyzing the free body diagram of the system, it is

possible to obtain an equation that express the relation
between reaction wheel rotation with the pendulum’s
kinetics properties.

Figure 2. Flywheel Inverted Pendulum - physical model.

(J − Jf )θ̈ = −T + (mrlr +mf lf )gsin(θ)− br θ̇ (8)

The torque shown in Figure 2, represents the torque acting
on the pendulum, which is the opposite of the torque
acting on the rotor. Noting that T = Jf φ̈ and assuming
sin(θ) ≈ θ for small pendulum oscillations around the
reference point, we get an approximate linear model for
the dynamics of the inverted pendulum dynamics:

(J − Jf )θ̈ + Jf φ̈−MLgθ + br θ̇ = 0 (9)

where ML = mrlr + mf lf . Around the natural position,
i.e., when the pendulum is hanging in the downward
equilibrium, there is an inversion on the sign of θ term
because sin(θ+180◦) = −sin(θ) ≈ −θ for small variations
of θ. Hence:

(J − Jf )θ̈ + Jf φ̈+MLgθ + br θ̇ = 0 (10)

Table 1. Description of terms of the FIP phys-
ical model.

Var Description

θ Pendulum angle
φ Flywheel angle
bm Viscous friction coefficient of the motor
br Viscous friction coefficient of the rod axis of rotation
g Gravity acceleration
mr Rod mass
mf Flywheel mass + motor mass
lr Distance from the rotation axis to rod center mass
lf Distance from the rotation axis to flywheel center mass
Jr Moment of inertia of the rod around its center mass
Jf Moment of inertia of the flywheel around its center mass
J Moment of inertia of the pendulum around O axis
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The transfer function for this model correlates the pendu-
lum angle (θ) with the voltage input (vt) in the frequency
domain. The Laplace transform of (6) and (10) were used
to obtain the transfer function of the system.

Θ(s)

Φ(s)
=

− Jf

J−Jf
s2

s2 + br
J−Jf

s+ MLg
J−Jf

(11)

Φ(s)

Vt(s)
=

K2

RaJf

s2 + K1K2

RaJf
s

(12)

Combining (11) and (12), we get to the linear transfer
function of the system in the natural position, described
as:

Θ (s)

Vt (s)natural

=
− K2

Ra(J−Jf )
s

s3 +Krms2 +
(
KrKm + MLg

J−Jf

)
s+ MLgKm

J−Jf

(13)

where:

Krm = Kr +Km

Kr =
br

J − Jf

Km =
K1K2

RaJf

2.2 State Space Representation

The state space representation used to model this system
was based on the linearized version of the FIP at the
upright position. To do so, the state variables were defined
as: x1 = θ, x2 = θ̇ and x3 = φ̇. Isolating the first
derivative of the state variables of equations (7) and (9),
we obtain the following equations:

ẋ1 = x2

ẋ2 =
MLg

J − Jf
x1 −Krx2 +

KmJf
J − Jf

x4 −
K2

Ra(J − Jf )
u

ẋ3 = −Kmx3 +
K2

RaJf
u

(14)

Expressing the previous equations in the matrix form, the
state space representation of the FIP is given by:

[
ẋ1

ẋ2

ẋ3

]
=

 0 1 0
MLg
J−Jf

−Kr
KmJf

J−Jf

0 0 −Km

[
x1

x2

x3

]
+

 0
− K2

Ra(J−Jf )
K2

RaJf

u

(15)

y = [ 1 0 0 ]

[
x1

x2

x3

]
(16)

2.3 FIP Construction

The designed prototype for the experimental tests was
implemented using a DC motor (model: Chihai GM25-
370 2000rpm), powered with 12V, attached to a reaction
wheel manufactured in PLA plastic. The rod was also
made by 3D printing and its rotation axis is attached to an
angle sensor (Hall effect potentiometer, model P3022-V1-
CW360). An Arduino Uno board was used for data acqui-
sition, control and communication tasks. The mechanical
structure was built using aluminum and wood pieces. The
3D model and the real prototype are shown in Figures 3
and 4, respectively.

Figure 3. Flywheel Inverted Pendulum 3D model.

Figure 4. Flywheel Inverted Pendulum prototype.

3. METHODOLOGY

3.1 System Identification

In order to estimate the unknown parameters of the non-
linear model (6) and (8), experiments were carried out
to obtain the parameters of the linear transfer function
(13). The system identification method utilized in this
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paper was based on the steps described by Vasconcelos
et al. (2019). The transfer function exported by this
method is corresponding to the natural version because
the experiments were run when the FIP was around the
downright position. Once the unknown parameters have
been estimated, it is possible to determine all terms in the
transfer function of the pendulum at the inverted position
(17). This equation was obtained considering (9) instead of
(10) on transfer function deduction. Hence, the resulting
equation is:

Θ(s)

Vt(s) inverted

=
− K2

Ra(J−Jf )
s

s3 +Krms2 +
(
KrKm − MLg

J−Jf

)
s− MLgKm

J−Jf

(17)

Although the parameters involving masses and lengths can
be measured directly, it is still necessary to find the values
of the constants Kr, Km and J to have a full description
of the functions. To determine these terms, the system
identification methodology adopted was based on applying
a known input signal to the system at the natural position
and record the output data for a period of time. In our
case, a step function was applied as input signal and the
pendulum angle response was recorded. This experiment
was run five times and at each time, a different amplitude
for the step signal was utilized. All experiments had the
same time duration: 60 seconds, with sample frequency of
50Hz.

After collecting all the experimental data, the System
Identification Toolbox, of the Matlab software, was used to
estimate the candidate models. The search was constrained
in finding transfer functions containing 1 zero and 3
poles, as observed from the analytical model. The transfer
functions found with the best fits are shown in Table 2.

Table 2. Percentage accuracy of the models
obtained from the experiments.

Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Avg

G1(s) 77.74 76.88 59.26 71.14 69.08 70.82
G2(s) 72.14 83.85 70.67 84.37 83.49 78.90
G3(s) 58.62 70.52 87.69 76.91 78.67 74.48
G4(s) 67.23 80.95 77.40 89.22 90.95 81.15
G5(s) 65.49 79.77 78.37 88.93 91.42 80.80

The transfer function G4(s) had the best average percent-
age accuracy among all the candidates. Therefore, it was
chosen to drive the estimation for the unknown parameters
of (13) and (17).

G4(s) =
−1.511s+ 0.046

s3 + 7.359s2 + 66.09s+ 455
(18)

However, the equation (18) has some terms that does
not exist in the analytical model. Thus, these terms were
disregarded and the impact of this removal was assessed.
The adapted transfer function is expressed by:

G4mod(s) =
−1.511s

s3 + 7.359s2 + 66.09s+ 455
(19)

The adapted transfer function has been validated with the
experimental data collected previously, and it achieved

80.75% of accuracy on average. It preserved the good
results presented by the original equation, G3.

Comparing equations (13) and (19), we find:
Kr +Km = 7.359

KrKm + MLg
J−Jf

= 66.09
MLg
J−Jf

Km = 455

(20)

The masses and center of mass lengths of the pendulum
components were measured. The results of the measure-
ments were: mr = 0.0219kg, mf = 0.148kg, lf = 0.151m

and lr = 0.0737m, hence MLg = 0.2351kgm2/s2.

Solving the system of equations (20), we get Kr = 0.2712,
Km = 7.0878 and J − Jf = 0.0037kgm2. The relation K2

Ra

can be obtained from (13) and (19):

− K2

Ra(J − Jf )
= −1.511 ⇒ K2

Ra
= 0.0056

Jr = 0.0001672kgm2 and Jf = 0.0001564kgm2 were
estimated based on the physical properties of pendulum
components.

Using the parameters calculated on the system identifica-
tion, the state space representation becomes:

[
ẋ1

ẋ2

ẋ3

]
=

[
0 1 0

63.54 −0.2712 0.3
0 0 −7.0878

][
x1

x2

x3

]
+

[
0

−1.511
35.81

]
u

(21)

y = [ 1 0 0 ]

[
x1

x2

x3

]
(22)

Considering this analysis, the transfer function of the FIP
around the inverted position is given by:

G3inv =
−1.511s

s3 + 7.359s2 − 61.62s− 455
(23)

3.2 Swing-up

Two strategies of Swing-up were chosen and implemented
to the system. In order to evaluate the performance of
the strategies, two metrics were used: the time required
to reach the Balance control range and an estimate of the
amount of energy spent by the motor to implement this
task.

Energy Control The first strategy adopted in this work
is based on the Energy control. This approach provides a
solution using a control law that uses Lyapunov’s method
as guidance. Åström and Furuta (2000) presented an
implementation of this strategy utilizing two inverted
pendulums on a cart (IPCs) as case study. Due to the
intrinsic characteristics of this type of system, it was
possible to accomplish the upright swing in a few swings.
Nevertheless, for inertia wheel inverted pendulums, which
torque is generally much lower compared to IPCs, the
behavior of the system on swing-up takes too long to
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complete this task when applying the same control law
(Srinivas and Behera, 2008).

Lin et al. (2014) introduced a new control law, based on
Energy control, proper to systems with low torque, as
FIPs. The governing rule of this method is shown next:

v(t) = γ

(
1

2
Jθ̇2 −MLg(1 + cos(θ))

)
θ̇ (24)

where γ is a positive arbitrary constant. Assuming the
point of maximum potential energy equals to 0 and the
minimum, in the natural position, equals to −2MgL. For
the experiments, γ = 6500 was considered.

Maximum Energy Algorithm The maximum energy al-
gorithm consists of performing the swing-up movement
in the shortest possible time, exploiting the maximum
acceleration values of the actuator. Further detail about
this strategy can be found in Åström and Furuta (2000).

To design the input signal, it was necessary to find the
minimum number of swings the system is able to do to
reach the upright position. Our FIP accomplished it in
only two swings, switching the actuator three times. The
saturation power was the first value sent to the motor and
it was kept until the FIP reached the maximum amplitude.
Then, a 0 value was sent, for a short period of time, before
reversing the acceleration. At this moment, the motor is
activated with maximum power in the opposite direction
until the pendulum approaches the balance control region.
If it is possible to reach the equilibrium position in this
step, the input action is reduced aiming to reach the
vertical position with reduced speed, smoothing the initial
conditions for the balance control algorithm. Åström and
Furuta (2000) would call this algorithm as Double-swing
triple-switch behavior (DSTS).

3.3 Balance Control

PID controllers has been shown to be a satisfactory alter-
native to perform the Balance control of the FIP. Related
works stated that applying only a closed loop of position
control may not be enough to keep the system balanced
for a long period of time. It occurs because the speed of
the flywheel can progressively increase, taking the system
out of stability (Almada et al., 2020). To overcome this
undesired behavior, a feasible solution is to use two closed
loop controllers: one for the pendulum angle and the other
for the flywheel speed.

As the built FIP does not have a sensor to measure the
flywheel speed, our proposed solution consists in modifying
the second control loop to reduce the controller action to
zero.

The gains used in the controllers were obtained combining
the tuning process present in the Control System Designer
toolbox, from Matlab software, and experimental tests.
Initially, it was obtained a set of parameters for the
FIP Angle Controller to a provide a satisfactory position
control, for a short period of time. Once determined,
the gains of the FIP Speed Controller were tuned. The
controllers gains used on FIP were KP1 = −550, KI1 =
−900 and KD1 = −5, for FIP Angle Controller, and

Figure 5. System control loops.

KP2 = −0.04, KI2 = −1.8 and KD2 = 0, for the flywheel
speed controller. According to these parameters, the action
of the angle control is much more dominant over the speed
control.

3.4 Switching between Swing-up and Balancing Algorithms

The proposed system operation mainly depends on two
control strategies: Swing-up and Balancing. To determine
which algorithm is active, a set of rules was defined based
on the spatial location of the FIP and according the
concept hysteresis. Three regions in space were marked
whose operation rules were previously determined, as can
be seen in Figure 6.

Figure 6. Algorithm selected by region.

When |θ| < |θbc| the Balance control mode is active, when
|θ| > |θsc| the Swing-up algorithm is active. The interme-
diate region maintains the last active state according to
the boundary angles.


Balance control if |θ| < |θbc|,
Swing-up control if |θ| > |θsc|,
keeps the last active control algorithm , otherwise.

For the implemented system, θbc = 0.35 rad and θsc =
1.00 rad were defined. The value of θbc was determined
based on the maximum stable deflection angle, which for
this FIP is approximately 0.44 rad. The purpose of making
θsc > θbc is to provide a wider range of control to the
Balance controller, as its performance depends on the
initial conditions of the FIP.
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Figure 7. Simulation Architecture Design.

3.5 Simulation Architecture

A simulation environment was designed on Simulink to
analyse the proposed strategies in this work. The non-
linear model of the FIP, described by equations (7) and
(8), was used to represent its behavior in the simulation
environment. It was defined to grant the evaluation of
the system throughout its full operating range (swing-up
and stabilization). This architecture allowed to check the
performance of the system when submitted to certain con-
ditions, to enhance system response applying a fine tuning
to controllers’ gains and to reach a better understanding
about the dynamics of the energy of the system. The
simulation environment was set to operate at a sampling
rate of 100Hz.

The Algorithm Switcher block, Figure 7, has the function
of selecting the active control algorithm, according to the
settings stated previously, and avoid error calculations
when the Balance control is disabled. This second feature
is extremely important to assure a suitable performance of
the PID controllers, mainly after the switching instant.

After preliminary tests, an adjustment was implemented
on the virtual model of the FIP. The parameters whose de-
termine the system gains were multiplied by 0.73 in order
to enhance the similarities with the real FIP response.

4. RESULTS AND DISCUSSIONS

4.1 Swing-up

Regarding the Swing-up strategies analyzed in this work,
the results obtained from the simulations and experimen-
tally are shown in Figure 8. The rise time of these ap-
proaches are compatible in booth strategies, indicating
that the non-linear model utilized on simulations has a
good agreement with the real FIP. The Maximum Energy
algorithm showed to be slightly faster then the Energy
Control method, taking 5.2% less time to reach θbc on
simulations and 7.5% less on experiments.

The control actions of each method obtained from simula-
tions and from experiments are presented in Figures 9 and
10, respectively. There are more divergence between the
signals mainly when the pendulum is reaching the position
control range. The Energy control algorithm performed an
undesired behavior in this region that consists in switching
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Figure 8. Swing up strategies.

the motor in a high frequency, which is not appropriate for
this type of electromechanical device.
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Figure 9. Swing up strategies energy comparison - Simu-
lation.

Seeking to assess the energy demanded by each method,
the area under the input signal was computed. It was used
as an alternative form to estimate the efficiency between
the strategies analyzed. In both cases, the Energy Control
algorithm consumed more energy and took longer to per-
form the swing-up. Figures 11 and 12 show the results of
this analysis and the vertical lines represent the switching
time between the Swing-up and the Balance control algo-
rithms. The Maximum Energy algorithm provided a better
solution for this system. Besides of the best performance,
the shape of the activation signal must also be considered
in the analysis.
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Figure 10. Swing up strategies energy comparison - Exper-
imental.
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Figure 11. Swing up cumulative power - Simulation.
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Figure 12. Swing up cumulative power - Experimental.

The speed developed by the pendulum regarding both
methods can be seen in Figure 13. The vertical lines are
used to mark the change of control strategies. The Energy
Control algorithm reached the Balance Control range with

a lower speed than the other method, such on simulations
and experimentally.

All the experiments were carried out considering a sam-
pling frequency of 100Hz. This frequency value was cho-
sen taking the natural frequency of the system and the
hardware capabilities into account.
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Figure 13. Swing up speed - Comparison.

The Swing-up algorithms were tested considering non-zero
initial conditions in order to evaluate the robustness of
the techniques. For this, the motor was activated with
20% of power for 2 second, then the Swing-up control
was enabled. This experiment was performed 5 times for
each algorithm. The Energy Control technique obtained
success in all trials, while the Maximum Energy algorithm
failed only once. Additional tests were performed providing
more energy to the system in order to move the pendulum
further away from the initial resting conditions. Therefore,
the motor was activated for a longer period (2s) and
turned off for 1s, before switching to its respective control
law. The results obtained in these experiments showed
that the Energy Control algorithm has a good ability
to withstand variations in the initial conditions of the
FIP. Furthermore, the Maximum Energy algorithm did
not present the same resilience, it was only successful when
very low perturbation was applied.

The analysis of the results reinforces that the closed-loop
technique showed greater robustness when starting the
operation with the FIP out of the rest conditions. Further
experiments can be performed to evaluate the limit values
of the initial conditions which will impact substantially on
the suitable system operation.

4.2 Balance Control

Figure 14 shows the FIP working for a period of 10
seconds, considering the Swing-up techniques analyzed in
this work. Although both methods stabilized the FIP at
the reference position, the Maximum Energy algorithm
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smoothed the initial conditions of Balance control and
reduced the oscillations of the FIP angle and the control
signal. This behavior might turn the system more robust
against disturbances.
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Figure 14. System behavior.

Calculating the cumulative error only at region where the
Balance control is active, we get EEC = 30.33 and EME =
29.77, to swing-up algorithms of Energy Control and
Maximum Energy, respectively. Although the magnitude
of the difference between these values is small, there is a
notable contrast on error trends.

Further experiments have demonstrated a suitable perfor-
mance of the FIP to resist around the equilibrium position
when small disturbances were applied to the system.

5. CONCLUSION

The study of underactuated systems is still a field of
research that has been extensively explored in engineering.
Inverted pendulums are an important case of this class of
systems. This work presented a flywheel inverted pendu-
lum design, capable of performing the Swing-up and the
Balance control.

A FIP prototype was built to perform the analysis of this
work. System Identification experiments were carried out
to obtain a transfer function to represent accordingly the
real system. The FIP modeling was performed considering
the voltage applied to the DC motor as the input parame-
ter of the transfer function. This choice allowed to obtain
a more reasonable model, providing greater reliability to
the analysis when compared with models that consider
torque as input signal, which is only valid under specific
conditions. From the function obtained experimentally, it
was possible to implement a FIP model in a simulation
environment with great similarity to the prototype.

Two energy-based Swing-up algorithms were analyzed ac-
cording to some specific metrics. The Maximum Energy
algorithm proved to be faster and consumed less energy
than the Energy Control algorithm, such on simulations
and on experiments. However, the Energy Control tech-
nique proved to be more resilient to guarantee the proper
functioning of the system even when the pendulum starts
from non-zero initial conditions.

Balance control was satisfactorily achieved through the im-
plementation of two PID control loops, regarding to both
swing-up strategies assessed in this work. It was evident
the impact of swing-up performance on determining the
initial conditions of the balancing stage. Switching algo-
rithms with suitable energy levels is essential to stabilize
faster and improve the robustness of the system. The
Maximum Energy algorithm was able to provide better
conditions to the Balance controller that resulted in a lower
steady-state error when compared to the Energy Control
algorithm.
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Åström, K. and Furuta, K. (2000). Swinging up a pendu-
lum by energy control. Automatica, 36(2), 287–295.

Sociedade Brasileira de Automática (SBA) 
XXIV Congresso Brasileiro de Automática - CBA 2022, 16 a 19 de outubro de 2022 

ISSN: 2525-8311 2614 DOI: 10.20906/CBA2022/3529




