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Abstract: Bayesian Networks are a powerful tool to assess association relationships between
variables on a given observed system. Despite their usage on several areas, the task of obtaining
such structure exclusively from observational data is a well-documented NP-hard problem.
Physarum Learner is a method to obtain a Bayesian Network from a data set, based on
the foraging behaviour of the Physarum polycephalum, a member of the Myxomycetes class.
However, the original method overlook crucial characteristics of this combinatorial problem.
In the work here presented, we implement three changes to the Physarum Learner original
algorithm and apply this improved method on three well-known benchmark data sets. Our
results indicate a faster convergence point identification, while achieving good structures from
a scoring standpoint.
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Bio-inspired algorithm.

1. INTRODUCTION

Bayesian Networks (BNs) are a type of Probabilistic
Graphical Model that can be used to build models from
data or expert knowledge, and provide a robust and
mathematically coherent framework for the analysis of
several kind of problems (Uusitalo, 2007). This method
is becoming increasingly popular to model uncertain and
complex domains such as medicine (Shen et al., 2022),
traffic engineering (Wang et al., 2022), and risk assessment
(Ruiz-Tagle et al., 2022). This wide usage is mostly due to
its function to point at associations between a large set
of variables from the observed system, in an explainable
format.

Despite the usefulness of BNs in analysing complex sys-
tems, the construction of the structure which best com-
prehends the associations between a variables of a given
system, referred to as an optimal solution, is a well-known
NP-hard problem (Chickering et al., 2004). Most of the
algorithms proposed to build BNs from data fall into
three categories: constrain-based (CB) methods, search-
and-score (SS) methods, and hybrid methods.

The constrain-based (CB) methods employ conditional
independence (CI) tests to create their structure (Koller
and Friedman, 2009), which in one hand scale up better to
problems with many variables, but on the other provide a
structure with lower accuracy when compared to the next
two methods (Natori et al., 2015).

The score-and-search (SS) methods use any suitable scor-
ing function to rate a candidate Bayesian network, and
search for a structure that optimises said score through
adjustments on the elements of said network (Cooper and
Herskovits, 1992). Although the results with this approach
are usually more accurate for smaller networks, it becomes
unfeasible when dealing with a problem with many vari-
ables, due to the super-exponential increase on the number
of candidate structures that it would have to score (Gross
et al., 2019).

Lastly, hybrid methods such as the one presented in Dai
et al. (2018) make use of techniques from the CB approach
in order to reduce the search space, then use procedures
based on the SS approach to examine this constrained
search space and provide a solution. This class of methods
allow for a fast reduction of the search space, which is
then used as a small subset of structures to be scored and
searched upon.

The Physarum Learner algorithm employs a hybrid ap-
proach to provide a Bayesian Network exclusively from
data (Schön et al., 2014), based on a Physarum Autonomic
Optimisation (PAO) (Tero et al., 2007) methodology. Al-
though this algorithm provides good structures according
to a given score, as provided in the original article, the
procedure described there presents an approach that can
be improved in terms of score convergence, computational
time, and coverage of the evaluated structures.

As described in Chickering (2013), the procedure to build
a BN exclusively from fitting the structure to the data
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according to a given score function generates a family of
graphical structures with the same or very similar scores.
This family of structures is called an equivalence class,
where the most complete structure that encompasses all
possible graphs from the same equivalence class is referred
to as the super-structure for the association relationships
on that data set.

The original Physarum Learner performs an extensive
search on the space of possible structures given a starting
point, this initial configuration is then used throughout
all iterations of the method, which causes the search
procedure to be trapped in a local optima, a common issue
with heuristics with a single starting point for the solution
(Mao et al., 2021).

The exhaustive nature of the PAO approach on Physarum
Learner taken causes the algorithm to conduct the eval-
uating process for new candidate structures regardless on
whether or not the score has reached a plateau. Given
the nature of super-structures from the learning process
exclusively from data, one could interrupt the learning pro-
cess once small changes in the network provide a negligible
change in score, or none at all (Wang et al., 2021).

In this paper we present a modified version of the
Physarum Learner algorithm, which is comprised of three
new steps in order to tackle some of the perceived issues
on the original method. First, our approach is to abort
the search procedure once the score has stagnated for
a number of iterations. Second, as the main goal is to
minimise a given score, we include one step to change the
direction or presence of edges after each iteration, to cover
a larger search space for a suitable super-structure. Third,
in order to minimise the issue of premature convergence to
a local optima, our approach uses different starting points
across iterations, which helps to create diverse starting
points to the subsequent search-and-score steps.

Our method is shown to achieve promising results on
small and medium benchmark data sets, with a fast
convergence and sound structures when compared to the
expected result. We also provide our code for our improved
implementation of the Physarum Learner using Python in
an open-source approach, as well as the data sets used for
the testing and validation of the method.

Section 2 summarises the theoretical background on
Bayesian networks, and presents the relevant basis on the
original Physarum Learner method, as well as the descrip-
tion of the data sets used. Section 3 contains the algorithm
description and the improvements made when compared
to the original version. Section 4 shows the results of the
algorithm applied to the previously mentioned data sets
and the pertinent discussion. Finally, Section 5 contains
the conclusions achieved from the presented results.

2. THEORY

2.1 Bayesian Network

Formally, the function of a Bayesian Network (BN) is to
estimate a joint probability distribution (JPD) based on n
discrete random variables, from a data set D taken from
the observed system (Koller and Friedman, 2009).

A BN B = (G,Θ) is defined by a Directed Acyclic Graph
(DAG) G, and a set of conditional probability tables Θ.
These structures are referred to as BN’s qualitative and
quantitative parts, respectively (Neapolitan, 2004).

For the qualitative part of a BN, let G be a DAG comprised
of a set of vertices V = {vi}i=1,2,...,n, and a set of
directed edges E = {eij}i,j=1,2,...,n;i̸=j . Each vi represents
a random variable from the data set D, and each eij ∈
{0, 1} indicates the absence or presence of a directed edge
pointing from the vertex vi to the vertex vj .

For the quantitative part, Θ = {θi}i=1,2,...,n is the set of
conditional probability distributions for each one of the
n observed variables. As such, θi = p(vi|Pi), where Pi

denotes the set of k vertices where eki = 1 from the
aforementioned graph G, also known as the parents’ set
of the vertex vi on the graph.

Figure 1 represents a Bayesian Network of a toy problem
known as the “Sprinkler Network”, presented in Murphy
(1998). Each vertex represents a binary variable of inter-
est, the edges illustrate associations among the variables,
and every conditional probability table for every random
variable is explicitly presented.

Cloudy

RainSprinkler

WetGrass

Cloudy = F Cloudy = T

0.5 0.5

Cloudy Rain = F Rain = T

F 0.8 0.2

T 0.2 0.8

Cloudy Sprinkler = F Sprinkler = T

F 0.5 0.5

T 0.9 0.1

Sprinkler Rain WetGrass = F WetGrass = T

F F 1.0 0.0

T F 0.1 0.9

F T 0.1 0.9

T T 0.01 0.99

Figure 1. Bayesian Network for the “Sprinkler” data set,
adapted from Murphy (1998). The fact that all four
variables are binary allow for a representation of false
(F) or true (T) for the occurrence of each one. Every
variable on this system has a conditional probability
table associated with them, which represents the
chance of a given outcome taking into account the
variables associated with the one being observed and
their outcomes, defined on the main text as p(vi|Pi).

Given both the qualitative and quantitative parts of the
network, the joint probability distribution of the variables
on B can be estimated through the Bayes’ chain rule,
defined as follows:

p(v1, v2, ..., vn) =
n∏

i=1

p(vi|Pi) (1)

The main task of an algorithm designed to create a BN
from data revolves around an optimisation problem: find
a structure B whose joint probability distribution best fits
the one from the given data set D provided.

Ref. Broom et al. (2012) shows that one approach to
this optimisation problem is to find the DAG which best
represents the association relationships between variables
present on the data set. The adequacy of a given graphi-
cal structure can be estimated through a fitness function
that associates a candidate graph with the provided data
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set. Examples of fitness functions for this scoring proce-
dure include the Bayesian Information Criterion (BIC)
(Schwarz, 1978), and the Bayesian Dirichlet equivalence
with uniform prior metric (BDeu) (Buntine, 1991).

2.2 Physarum Learner

Physarum polycephalum (“multi-headed slime mould”) be-
longs to the Amoebozoa group, in the class Myxomycetes
(Stephenson and Stempen, 2000). During the active veg-
etative stage of its life cycle, called “plasmodium”, it can
extend for up to 30x30cm2, and move to a maximum speed
of 4cm per hour, as a multi-nuclear unicellular being (Vogel
and Dussutour, 2016).

The seminal work in Nakagaki et al. (2000) presented
the ability of the Physarum polycephalum in consistently
finding the shortest path between two sources of food
in a maze, during its plasmodium stage. This behaviour
kindled the interest of researchers on several areas into
analyse, understand, and model the behaviour of this
brainless being (Oettmeier et al., 2020). A survey on the
subject can be found in Gao et al. (2018).

One particular area that benefited from the maze-solving
experiment was mathematical modelling and route opti-
misation. Physarum Solver is an adaptive mathematical
model which simulates the foraging behaviour of the P.
polycephalum as presented in Nakagaki et al. (2000), and
it is first proposed in Tero et al. (2006).

Physarum Solver ’s original purpose is to find the optimal
path between two vertices on a weighted undirected graph,
similar to the classical Dijkstra’s algorithm, and was
proven to provide the optimal solution for a graph on a
Riemannian surface (Miyaji and Ohnishi, 2008). As the
work in Nakagaki et al. (2000) describes the behaviour of
the P. polycephalum on a maze, the weighted undirected
graph used on the Physarum Solver algorithm is referred
to as Physarum maze, and the initial and final vertices on
the path-finding problem are called source and sink nodes,
respectively.

Physarum Learner (Schön et al., 2014) is an algorithm
which employs the Physarum Solver modelling as an
auxiliary structure to build a BN from a data set. Figure
2 presents a flow chart for the original Physarum Learner
algorithm, containing its main steps.

Given a data set containing n variables, the Physarum
Learner algorithm starts by creating two graph structures:
a fully-connected undirected graph, which will act as the
“maze” for the Physarum Solver computations, and a
directed graph, upon which the BN will be built on. Both
structures contain n nodes each.

For the initial set up of the Physarum maze, the pa-
rameters for the edges on the Physarum maze are set to
standard values. This structure will serve as an “external
memory” for the creation of the BN, and its parameters
will be updated accordingly on the next steps.

As for the directed graph, the algorithm creates edges
connecting every pair of nodes, on a random direction.
This decision presents no issues from a structural stand-
point, given that the structure will be rebuilt after the first
iteration of the algorithm.

Begin create
structures

initialise
structures

create
pairs list

is pairs
list

empty?

reached
stop

criteria?

perform
PhySolv
iteration

register
best BN

End

evaluate
PhyMaze

perform
local
search

has the
score

stagnated?

Begin

create
list with
best edges

attempt
to insert
best edge
on digraph

provide
feedback
to edge

more
edges that
improve
the score?

feedback to
all edges

End

evaluate PhyMaze

yes

no

yes

no

yes
no

yes

no

Figure 2. Flow chart depicting the Physarum Learner
(Schön et al., 2014) algorithmic structure, with im-
provements presented in this article. On the left, the
main structure is presented. The internal structure
for the “evaluate PhyMaze” block is expanded on
the right, as this block comprehends the interactions
between the PhyMaze – an undirected graph – with
the Bayesian Network been built. The boxes in blue
are from the original algorithm, while the boxes in
cyan show where the improvements from this work
were made.

The original Physarum Solver algorithm finds the optimal
path between a pair of variables on an undirected graph.
For this reason, the Physarum Learner algorithm creates a
list of every pair of nodes contained on its Physarum maze.
This ensures that every pair of nodes and, consequently,
every pair of variables, will be evaluated during execution.

One pair is chosen at random to represent the input
source/sink nodes for the Physarum Solver algorithm.
The parameters on the edges on the Physarum maze
will be updated, reflecting the attempt to find the best
path between this pair. The edge directly connecting the
pair taken as source/sink from the previous step has its
parameter set above a threshold value, even if the result
of the Physarum Solver iteration did not set it as such.
This ensures that all the edges will be considered at least
once to be part of the BN on the next step.

Once the Physarum Solver iteration ends, the algorithm
performs an evaluation on the resulting maze. This is
the step which represents the interfacing between the
undirected graph and the Directed Acyclic Graph (DAG),
representing the BN.

The evaluation of the maze consists of creating a list
containing every edge from the Physarum maze whose
parameters surpasses the given threshold. All the other
edges that don’t comply with this criteria based on the
Physarum maze are removed from the BN, if present.
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For every edge present on the edges list, the algorithm
attempts to insert the same edge on the DAG. Considering
both directions for the edge, if the inclusion of it does not
result in a cycle on the graph, and there is an improvement
on the score from inserting this edge on given direction,
this edge is considered as candidate to be permanently set
on the DAG. Once the best connection is found among
all the edges on the list, this connection is removed from
the list, and an edge is set on the DAG considering the
direction which provides the best improvement.

If a connection that provides the best improvement is
found, then a feedback is applied to this edge on the
Physarum maze. This feedback ensures that this edge will
be obtained for the next evaluation step, and will not be
removed from the DAG structure.

Finally, when there are no more edges on the list that
provide a score improvement for the BN, a feedback
function is applied to all of them, lowering their parameters
in order to prevent the Physarum Solver algorithm to
include those edges on the shortest path for the next
iteration.

One iteration of the algorithm is defined by the list of every
pair of nodes on the Physarum maze being depleted. Once
an iteration has end, the Physarum maze as the “external
memory” will contain the best edges found so far on the
BN, coded on the parameter values for its edges. For the
next iteration a new pairs list is created, and this time
the learning process take into account the edges already
identified as “best” for the BN from the previous iteration.

Let T be the total number of iterations on the Physarum
Learner algorithm. Considering one time unit as the time
for the algorithm to compute all the steps for a single pair
of nodes on the complete pairs list, one can describe the
time complexity for the algorithm O(n) as:

O(n) ≈ T · n2

O(n) ∝ n2
(2)

As the algorithm performs all T iterations over the entire
pairs list, the best case is the same as the worst case, as is
the average case.

3. MATERIAL AND METHOD

3.1 Improved Physarum Learner

The original Physarum Learner algorithm exhibits good
performance to build a Bayesian Network (BN) from a
data set. Nevertheless, some of its presented features lead
to excessive time consumption to perform the task at hand,
as can be observed from the time complexity estimated on
Equation 2.

The blocks coloured in cyan on Figure 2 represent steps
modified from the original or entirely new blocks, on the
algorithm here named Improved Physarum Learner

First, the evaluation step on the original article assumes a
“greedy” approach to build a BN based on the Physarum
maze, as it considers the best edge one at a time to include
on the DAG. This procedure, although similar to the
classical algorithm K2, does not contemplate the fact that,

according to Equation 1, the joint probability is function
of every parent for every variable on the network.

This definition implies that, once a new set of edges is
inserted onto the graphical structure, a local search should
be performed over the obtained graph. This extra step
is required to determine the best direction for each edge,
given that all the other edges are already present on the
directed graph.

The implementation here proposed tries to change the
direction of every edge on the obtained BN, on a random
order, searching in the graph neighbourhood for a struc-
ture with a better score.

Second, the original algorithm ends an iteration only when
its pairs list is empty. This ensures that every one of the
approximately n2 edges is considered to be inserted on the
BN at least once. This approach does not take into account
that the best structure might have already been found
during previous computations, achieving a local optima
super-structure.

A procedure to check for the eventual structure stagnation
across several evaluation steps is to verify if the score
for the obtained structure is kept constant, or within an
error margin, for a given number of pairs analysed. The
Improved Physarum Learner contains a structure which
checks for this score stagnation. If the score is identified
as constant, or within an error margin, after a percentage
of pairs have been analysed, the current iteration is then
finished.

Third, the original algorithm relies on the analysis of nodes
on the pairs list in a random order, and both the external
memory and the obtained BN are kept constant across
iterations. The order in which the pairs are considered
during an iteration may result in a bias for both structures,
to be carried across iterations.

In order to lessen this eventual bias, and to enable new
structures to be found, Improved Physarum Learner resets
the Physarum maze as well as the BN structure to their
original conditions. The best BN found so far is stored on
a separate structure.

Lastly, the original algorithm proposes the edges on the
first DAG to be set between all pairs of nodes, in random
directions. The computational cost involved in creating all
those edges and picking a random direction for each one
is prohibitive, specially when dealing with networks with
larger number of nodes.

Improved Physarum Learner creates its DAG structures
containing only the nodes for the random variables, and
no edges connecting them. This is a valid approach due to
the structure been overridden at each evaluation step.

This version of the algorithm is implemented in the
Python3 language, due to its broad usage on scientific re-
search, as well as to its open-source licensing. The complete
code is readily available upon request.

3.2 Data sets

Here we describe the data sets used as benchmarks for the
testing of our improved method.
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Asia network This Bayesian Network is proposed in
Lauritzen and Spiegelhalter (1988), as a tool to illustrate
how the method on the original paper works. The original
structure is reproduced here as Figure 3a. The structure
consists of eight nodes, and eight edges. Each node codifies
a binary variable, which can only assume the values of True
or False.

We chose this structure as one of our benchmarks due to
its small number of nodes, and the fact that it is a weakly
connected graph, i. e. there is a path between every pair
of nodes if the direction of the edges is omitted.

Sachs network This BN is presented in Sachs et al.
(2005), where the authors study possible causal relation-
ships on a protein-signalling environment. The structure
obtained on the original article is reproduced here as
Figure 5a.

This structure is a good candidate to test the method
based on its relatively small size, and the fact that this
graph is not connected as the one presented in the Asia
structure. This is an interesting characteristic due to the
usage of a fully-connected undirected graph as an auxiliary
structure for the method.

Alarm network This network is presented in Beinlich
et al. (1989), and encodes a medical monitoring system,
built from the authors’ expertise and medical textbook
literature.

The graph contains thirty-seven nodes, each representing
one out of three category of variable: a diagnostic, a
measurement, or an intermediate variable. The values for
all nodes are represented as a discreet value, with two or
three levels each.

This is a particularly interesting network to be used as a
benchmark due to the expert knowledge that it encodes.
Each of the “diagnostic” type of variables is independent
from the others, and are supposed to have no parents
on the graphical structure, given the assumption that an
identified condition characterised by a diagnostic is the
cause of the variables associated to it. As the method
here presented deals primarily with a data set, this a
priori knowledge from the structure is omitted, being used
afterwards to analyse the obtained structure.

4. RESULTS AND DISCUSSION

This section is reserved to the presentation and discus-
sion of the results obtained from applying the Improved
Physarum Learner on the benchmark data sets already
presented. The learning process was undertaken on a desk-
top computer with Fedora OS, processor Intel® CoreTM

i7-4970 CPU at 3.60GHz, and 32GB of RAM at 1600MHz.

The Bayesian Networks (BNs) super-structures obtained
are presented here on their graphical structure, with edges
direction purposefully omitted. The colour scheme for the
colouring of the edges is as follows: a green edge represents
a correct edge, pointing in the correct direction; a blue
edge represents a correct edge, but pointing in the opposite
direction of the original; and a red edge represents an edge
that should not exist. This correctness is based on the
original graphical structures for each data set.

The justification for this representation is based primarily
on the works of Pearl and Mackenzie (2018) and Cox
Jr. (2018). Ref. Pearl and Mackenzie (2018) arguments
that a finite data set can never encompasses all of the
relationships of association from a system within itself.
This also includes the direction of the edges in the obtained
structure.

Furthermore, Cox Jr. (2018) argues that a Bayesian Net-
work when built exclusively from data should be used as
a starting point for an expert to analyse the system, as a
result of the data set insufficiency on incorporating all of
the correct associations.

4.1 Results for the Asia data set

Figure 3b presents the graph obtained for the Asia data
set. As the data set with the least variables, the method
was able to find all correct edges, on the correct directions,
with exception of the edge Smoking → Lung cancer, which
was found to be on the opposite direction.

The extra edge Asia → Either can be validated as an ex-
pected edge from the concept of “d-separation”. The same
reasoning can be applied to the extra edges Tuberculosis
→ Xray, and Lung cancer → Xray.

Ref. Koller and Friedman (2009) defines d-separation as
a collateral edge resulting from the setting of the middle
random variable on a association chain. Consider the chain
X → Y → Z, with X, Y, and Z random variables. As X
influences Y, and Y influences Z, if the variable Y has
its value fixed, the influence from X is “felt” by Z as a
collateral effect.

Although the extra edge Tuberculosis → Bronchitis can
not be directly explained using the concept of d-separation,
the association between these medical conditions is well
established on the medical literature (Martin et al., 1968).

For the fast convergence of the method, Figure 4 presents
the convergence of the BDeu score for the best BN struc-
ture obtained after each iteration of the algorithm, in
red, compared to the score for the original structure, in
blue. The convergence was obtained for a score lower
than the expected from the original after only three it-
erations, whereas the original algorithm would require at
least twenty-eight iterations to provide an answer for a
network with eight nodes. The structure learning process
for this structure took on average less than one minute
across several tests.

4.2 Results for the Sachs data set

Figure 5b presents the graphical structure obtained for
the Sachs data set. The Improved Physarum Learner
algorithm managed to find the same number of edges from
the original structure, although some edges were identified
in the wrong direction, compared to the original.

Despite the algorithm employing a fully-connected maze as
its external memory, it was able to allow the variables Plcg,
PIP3, and PIP2 to be disconnected from the remaining
graph, as the original structure requires.

Figure 6 present the score convergence for the best network
obtained after each iteration of the algorithm, in red. In
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(a) Original structure.
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(b) Obtained structure.

Figure 3. Bayesian networks for the Asia data set. On the left, the original structure as described in Lauritzen and
Spiegelhalter (1988). On the right, the structure found with the improved method. Although the obtained structure
has more edges than the original, the absolute value of its BDeu score is marginally lower (better) than the score
from the original structure, given the same data set.

Figure 4. Semi-log representation for the convergence
of the BDeu score absolute value for the Improved
Physarum Learner applied to the Asia data set, in
red. In blue, the score for the original structure,
applied to the same data set. The detail presents the
iteration after which the obtained structure presents
a score marginally better than the original.

blue, the score for the original network on the same data
set. After the thirty-seventh iteration, the score for both
structures were exactly the same. The original algorithm
requires at least fifty-five iterations to provide an answer
for this network. The structure learning process for this
structure took on average fifteen minutes across several
tests.

This result raises a question concerning the relevance of
the direction of the edges when obtaining a score for given
structure. From the super-structure approach, both the
structures are the best from a score standpoint, requiring
an expert in the modelled system to point out which
one is the structure which more accurately comprises the
associations observed in the real world.

4.3 Results for the Alarm data set

For the Alarm data set, our method obtained twenty-four
correct edges with the right orientation, eighteen correct
edges with the wrong orientation, and eighteen edges that
are not present in the original structure. The fact that it
contains several extra edges reinforce the argument from
Pearl and Mackenzie (2018), considering the details from
this data set that were presented in Section 3.2.3. The

algorithm did not take into account the fact that, in the
real world, one diagnostic influences another diagnostic,
although the expert on this medical system presented
this constraint on the original article for the network, for
instance.

Several instances of wrong edges present on the obtained
structure could be dismissed from an expert on the system.
For instance, the associations obtained between different
diagnostics due to the knowledge that the events rep-
resented by these variables should not directly interact
with one another. On a similar manner, some instances
of wrong edges might be dismissed based on the concept
of d-separation presented before.

The obtained model did not encompass only four edges
present on the original network. To evaluate the correct-
ness of the structure missing these four edges, conditional
independence tests were run on each pair of variables,
given the values on the data set. For the four cases the
test pointed to independence between the variables within
a threshold, which illustrate the impact that the data can
have on the perceived best super-structure.

Figure 7 presents in red the score for the best structure
found after each iteration, compared to the score for the
original structure, presented in blue. As a result of the high
number of variables on this data set, the score achieved
several plateau levels during the execution. The structure
learning process took on average seventy-two hours for this
data set. This jump in computational time is expected
as the internal Physarum Solver algorithm takes on a
complete graph containing thirty-seven nodes, and the list
of source/sink pairs contains six hundred and sixty-six
different combinations.

The convergence test implemented was most valuable
for this data set. It allows for the reset of structures
after several iterations have passed with stagnated scores,
instead of waiting for the end of the pairs list, which may
take up to almost six hundred and seventy iterations.

5. CONCLUSION

In this paper we presented a version of the Physarum
Learner algorithm re-implemented and improved to tackle
computational weaknesses presented in the original method.

The Improved Physarum Learner achieved sound results
when obtaining the Bayesian Networks from benchmark
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Figure 5. Bayesian networks for the Sachs data set. On the left, the original structure as proposed in Sachs et al.
(2005). On the right, the structure found by us. Even with some of the edges on the opposite direction from the
original, both structures present equal BDeu score given the same data set. The method was also able to produce
a disconnected graph, in conformity to the original structure.

Figure 6. Semi-log representation for the convergence
of the BDeu score absolute value for the Improved
Physarum Learner applied to the Sachs data set,
in red. In blue, the score for the original structure,
applied to the same data set. The detail presents the
iteration after which the obtained structure presents
the exact same value for score as the original.

data sets, in a reasonable amount of iterations when
compared to the original method.

Our results also provides evidence for the intrinsic associ-
ation between the quality of a structure and the data set
used to learn it. Results in the Asia network show that
is possible to obtain a marginally better score with the
structure here presented when compared to the structure
on the original article. Results for the Alarm data set show
that a Bayesian Network is only as good as the data allows
it to be, given the perceived conditional independence on
a subset of variables that have an edge in the original
structure.

The results also corroborates the notion that multiple
directed acyclic graphs can represent the same association
structure from a scoring standpoint. In our case, both
the expected and obtained DAG are slightly different on
structure – direction of edges – but both present the exact
same score given the same data set.

Figure 7. Semi-log representation for the convergence
of the BDeu score absolute value for the Improved
Physarum Learner applied to the Alarm data set, in
red. In blue, the score for the original structure, ap-
plied to the same data set. The score for the obtained
structured become stable on several plateaus, before
becoming stable on a score slightly higher than the
score for the original structure.

As limitation of the presented method, and future works
within this context, we perceive a necessity for a mech-
anism that reduces the number of the nodes on the
Physarum maze for each iteration of the Physarum Solver,
as the total time required for this step across all iterations
is exponential according to the number of nodes on the
maze.
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