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Abstract: This work presents a comprehensive analysis of a three-bus power system regarding
voltage stability concerning operational limits and their influence in the region of safe operation.
Specifically, this paper describes the effect of reactive power limits both in the distance to collapse
and in the occurrence of saddle-node or limit-induced bifurcations. We also describe how the
bifurcation surface changes with respect to reactive power limits, as well as the effect of voltage
limits. The use of static analyses to assess voltage stability is supported by dynamic simulations.
The studies performed for this test system can be easily extended to analyze real power systems.
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1. INTRODUCTION

Voltage stability is a fundamental field of study regarding
electric power systems security. The main goal of voltage
stability assessment is to judge if the power system, for
a specific operating point, is prone to a voltage collapse,
being vulnerable to a sudden and uncontrollable variation
on voltage levels. Even though this problem has been
discussed thoroughly in the literature (for example, Taylor
(1994); Van Cutsem and Vournas (1998)), this paper
presents some insights that may support voltage stability
analyses.

Some contributions of this paper are:

• We investigate how reactive power limits influence not
only the type of the occurring bifurcation but also the
distance to this bifurcation.
• We present a clear correspondence between static and

dynamic analyses in relation to voltage stability.
• We provide the quantitative and qualitative distinc-

tion of the mechanisms involved in voltage collapse in
relation to saddle-node bifurcations and limit-induced
bifurcations.

To present the voltage instability problem in a clear way,
a small three-bus power system is studied. Albeit simple,
this small system presents the main issues of large power
systems in relation to voltage stability, such as:

• the inability of the generation and transmission sys-
tems to meet the power demanded by the load;
• the voltage collapse due to the loss of an equilibrium

point when parameters are slowly varied.
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Fig. 1. The three-bus system.

2. THE STUDIED TEST-SYSTEM

In this paper, the three-bus power system shown in Figure
1 is analyzed, which is composed of one infinite bus (bus
1), one generation bus (bus 2) and one load bus (bus 3).
Both transmission lines shown in Figure 1 have a series
resistance of 0.2 pu, a series reactance of 1 pu and a
(total) shunt susceptance of 0.02pu. The voltage at bus
1 is maintained at 1 pu.

In our study, the traditional steady-state generator model
is used for bus 2. More precisely, this bus is modelled as a
“PV” bus while its reactive power is within limits, and the
bus is modelled as a “PQ” bus when reactive power limits
are reached. The voltage setpoint value for this generator
is 1 pu, and different values of reactive power limits are
used throughout the paper. This generator is working as a
synchronous condenser, i.e., it does not inject active power
in the system.

We also consider that the load connected to bus 3 satisfy
a power-restoration dynamics. This means that the load
steady-state model, governed by its equilibrium equations,
can be approximated by a constant power model. Hence,
bus 3 can be treated as a “PQ” bus. This approximation
is valid for loads such as induction motors, loads fed by
LTC transformers or thermostatic loads (Van Cutsem and
Vournas (1998)).

When appropriate, a quasi-steady-state (QSS) simulation
is performed, where the only dynamics involved refer to
the load-restoration dynamics. In these simulations, the
differential equations describing these dynamics are:
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dG

dt
= Pspec − Pload , (1a)

dB

dt
= Qload −Qspec , (1b)

where Y = G + jB is the admittance associated with
the load power connected to bus 3. Pspec + jQspec is the
complex specified power for the load bus, while Pload +
jQload is the actual power demanded by the load. These
equations follow a simple logic: to increase the active power
P3, one needs to increase the conductance G3; to increase
the (demanded) reactive power Q3, one needs to decrease
the susceptance B3. The equilibrium is reached when the
power demanded by the load (given by Pload + jQload)
matches the specified value (given by Pspec + jQspec).

Our main goal is to analyze the voltage profiles of the
system with the variation of the load connected to bus 3.
For certain values of power, the power flow solution for this
three-bus system disappears. When this happens, the load
dynamics described by equation (1) will lead the system
to a collapse.

3. UNLIMITED REACTIVE POWER RESERVE

Firstly, consider that the synchronous condenser can main-
tain the voltage at bus 2 at its setpoint value despite the
reactive power output of the machine. In this situation,
the power flow equations are:

P∞ − P12(E1, E2) = 0 , (2a)

Q∞ −Q12(E1, E2) = 0 , (2b)

Pgen − P21(E1, E2)− P23(E2, E3) = 0 , (2c)

Qgen −Q21(E1, E2)−Q23(E2, E3) = 0 , (2d)

−Pload − P32(E2, E3) = 0 , (2e)

−Qload −Q32(E2, E3) = 0 , (2f)

E1 − E∞ = 0 , (2g)

|E2| − Vspec = 0 , (2h)

where:

• E1, E2 and E3 are the complex voltages at buses 1, 2
and 3, respectivelly.
• P12 + jQ12 and P21 + jQ21 are the complex power

flowing through both sides of the transmission line
connecting buses 1 and 2, computed from variables
E1 and E2, besides the line parameters. Similarly,
P23+jQ23 and P32+jQ32 represent the power flowing
through the other transmission line.
• P∞ + jQ∞ is the complex power injected by the

infinite bus in the system.
• Pgen + jQgen is the complex power injected at bus 2

by the generator. From Section 2, Pgen = 0.
• Pload+jQload is the power demanded at the load bus.

This is the same variable as in (1).
• E∞ is the specified voltage for the infinite bus. From

Section 2, E∞ = 1 + j0.
• Vspec is the setpoint voltage for the synchronous

condenser. From Section 2, Vspec = 1.

This set of 9 real equations (recall that (2g) is a complex
equation) and 9 real variables (variables E1, E2 and E3

are complex, while variables P∞, Q∞ and Qgen are real)
can be solved given the power Pload + jQload at the load
bus. For example, when Pload+jQload = 0, one power flow
solution is:
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Fig. 2. Nose curve for bus 3.

E1 = 1 + j0 ,

E2 ≈ 1 −0.00496◦ ,

E3 ≈ 1.02− j0.00425 ,

P∞ + jQ∞ ≈ 8.33× 10−5 − j0.0200 ,

Qgen ≈ −0.0604 .

Note that the voltage at bus 3 is larger than 1 pu, due to
the shunt elements of the transmission lines.

Now, consider that the load connected to bus 3 gradually
increases following the pattern given by:

Pload + jQload = (0.8 + j0.6)λ . (3)

For this pattern, the power flow solution can be tracked
with the variation of λ (this procedure is usually referred to
as continuation power flow (Iba et al. (1991); Ajjarapu and
Christy (1992); Canizares and Alvarado (1993); Chiang
et al. (1995))). The so-called “nose curves” present a
graphical visualization of how the solution point varies
with λ. A nose curve for bus 3 is shown in Figure 2.

Observe that there is a maximum value for λ (given by
λmax ≈ 0.286) for which the power flow equations have
a solution. After this value, the power system dynamic
model (the QSS model, which combines equations (1) and
(2)) do not have an equilibrium point. The point where
the system loses the equilibrium is known as a saddle-
node bifurcation point (Seydel (2010)). At the SNB point,
the Jacobian matrix of the power flow equations becomes
singular.

For an example of a stable loading variation, assume that
the load suddenly increases from λ = 0 to λ = 0.2.
Starting from the equilibrium for λ = 0, the solution of
the differential-algebraic equations (DAE) when Pspec +
jQspec = 0.2× (0.8+j0.6) is shown in Figure 3 and Figure
4.

An unstable loading variation occurs if λ becomes greater
than λmax, despite how small this variation is. Starting
from the equilibrium for λ = 0.28621 < λmax, the solu-
tion of the differential-algebraic equations when Pspec +
jQspec = 0.28622 × (0.8 + j0.6) (where 0.28622 > λmax)
is shown in Figure 5 and Figure 6. Note that, in spite of
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Fig. 3. Power demanded at the load bus.
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Fig. 4. Voltage at the load bus.
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Fig. 5. Power demanded at the load bus.

the form of Figures 5 and 6, this is an unstable situation
because the values of G and B (of (1)) grow indefinitely.

The small variation from λ = 0.28621 to λ = 0.28622
was sufficient to cause a voltage collapse, as shown in
Figure 6. Even though the fast voltage decrease only occurs
after t = 3000 s, the unstable situation was present from
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Fig. 6. Voltage collapse.
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Fig. 7. Bifurcation surface.

the very beginning. The difference from a slow and fast
dynamics in this unstable trajectory is due to the fact that
the initial point is near the SNB point shown in Figure
2 (Dobson and Chiang (1989)). Note that the values of
Pload(t) and Qload(t) are always less than the specified
values Pspec and Qspec, despite how close they are to Pspec

and Qspec for t ≤ 3000 s.

Up to this point, we have analyzed voltage stability con-
strained to a pattern of load variation shown in (3).
However, parameters Pspec and Qspec do not necessar-
ily vary together. In general, parameters are indepen-
dent from each other, and for each loading variation
pattern (similar to the one in (3)), one specific value of
λmax is calculated and a corresponding bifurcation point
(Pspec(λmax), Qspec(λmax)) is obtained.

By changing the direction of load variation in equation
(3) and computing their respective bifurcation points, one
obtains the curve shown in Figure 7. This is a (one-
dimensional) curve because the system has two parame-
ters, namely Pspec and Qspec. In general, however, when
we have n parameters, the set of bifurcation points is a
(n− 1)-dimensional surface.

(Pspec, Qspec) points below the curve in Figure 7 admit
a power flow solution, while this solution disappears on
the curve. By further analyses, we verify that no Hopf
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bifurcation occurs in this system, which indicates that the
equilibrium point at Pspec + jQspec = 0 remains stable
when these parameters are varied.

4. LIMITED REACTIVE POWER RESERVE

In practice, generators can only control its voltage as long
as the limits in the machine’s capability curve are satisfied.
When these limits are reached, the generator loses the
ability to control the voltage, and its reactive power is
fixed at the reached limit.

The upper limit is reached when the system is demanding
more reactive power. The generator loses the ability to
control the voltage when there is a shortage of reactive
power, and since the transmission system is mainly induc-
tive, voltages are expected to drop. On the other hand,
the violation of the lower bound means that there is a
surplus of reactive power in the system, so voltages are
expected to rise near the generator. This discussion justify
the following steady-state generator model:

Q = Qmax, if V < Vspec ,

Qmin ≤ Q ≤ Qmax, if V = Vspec ,

Q = Qmin, if V > Vspec .

(4)

Previously, the generator was modelled by (2h). When
reactive power limits are included, (2h) is replaced by
(4), while the other equations remain the same. Note that
V = |E2| and Q = Qgen when the model (4) is included to
the power flow equations in (2).

For illustration purposes, consider that Qmin = 0.1 and
Qmax = 0.2. The pattern in (3) is used again to generate
the nose curve shown in Figure 8. This figure shows three
situations with the increase of λ:

• Initially, when the load is small, the reactive power of
the generator is held at the lower limit. As a result, its
voltage is larger than Vspec = 1, in accordance with
(4).
• With the increase of the load, the generator voltage

decreases, until it finally reaches the specified value.
Starting at this point, the generator starts to regulate
its voltage, while its reactive power starts to increase.
• By further increasing λ, the upper limit of reactive

power is reached, and the generator voltage starts
decreasing again, according to (4). λ continues to
increase, and a SNB point occurs when the generator
is modelled as Q = Qmax

Dynamic simulations by integrating the QSS model are
similar to the previous section. In this case, however,
one may expect cusp points in the simulation due to the
change in model due to (4). For example, when suddenly
increasing λ from 0 to 0.2, Figure 8 shows that the
generator model changes fromQ = Qmin to V = Vspec. The
dynamic simulation for Pspec + jQspec = 0.2× (0.8 + j0.6)
starting from the equilibrium point for Pspec + jQspec = 0
is depicted in Figure 9, which shows that the change in the
generator model occurs at t ≈ 2.27 s.

Now, consider Qmax = 0.45, which generates the nose
curve in Figure 10. Note that the generator can regulate its
terminal voltage for longer in comparison with Figure 8.
However, the equilibrium point disappears as soon as the
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Fig. 8. Nose curve for bus 2.
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Fig. 9. Change in the generator model.
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Fig. 10. Occurrence of a Limit-Induced Bifurcation.

generator model changes from V = Vspec to Q = Qmax.
When the equilibrium point disappears at the moment
that a device reaches its limit, we say that the system
undergoes a limit-induced bifurcation (LIB) (Dobson and
Lu (1992)).
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Fig. 11. Voltage profile after a LIB.
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Fig. 12. Distance to collapse as a function of the upper
reactive power limit.

Figures 5 and 6 showed the impact of a SNB on the
power system. In comparison, Figure 11 highlights the
effect of a LIB. Note that the distinction of the “slow“
and “fast” dynamics are less clear in the case of a LIB
because, in the case of LIB, there is no slow (center)
manifold governing the unstable dynamics. The simulation
in Figure 11 shows the result of integrating the QSS model
for λ = 0.285 > λmax starting from the equilibrium for
λ = 0.284 < λmax.

When Qmax increased from 0.2 to 0.45, the value of λmax

in (3) increased, while the bifurcation type changed from
SNB to LIB. One may expect that further increasing Qmax

will continue to increase λmax (with a larger reactive power
reserve, the system can withstand bigger loads). Actually,
if Qmax is too large, the system will behave as if there
were no upper limit, which will result in the SNB shown
in Figure 2. We next investigate the value of λmax as a
function of Qmax and the transition from SNBs to LIBs
and vice-versa. The results are reported in Figure 12.

The transition point between a SNB and a LIB occurs
when the SNB point for the generation modelled as Q =
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Qmax = 0.45 pu
Qmax = 0.2 pu

Fig. 13. Influence of Q-limits on the bifurcation surface.

Qmax occurs exactly for V = Vspec. This occurs for Q̃ ≈
0.311 pu.

The transition point between a LIB and a SNB occurs
when the upper limit is never reached at all. This occurs
when Qmax is greater than the reactive power at the

bifurcation point of Figure 2, given by Q̂ ≈ 0.498 pu.

Lastly, we draw the bifurcation surface for the system
with limited reactive power reserve and compare it with
the original bifurcation surface (shown in Figure 7) in
Figure 13. This figure clearly shows how reactive power
limits have an impact on the distance to collapse, which
is intuitive: since less reactive power can be transferred by
the system, less reactive power can be demanded by the
load. Recall that points below the bifurcation surface are
feasible points, for which the DAE has a stable equilibrium
point.

Note that the bifurcation surface with no Q-limits and
the bifurcation surface with Qmax = 0.45 pu share some
bifurcation points. This occurs for load variation patterns
such that the generator reactive power never reaches 0.45
pu.

5. INFLUENCE OF VOLTAGE LIMITS

Next, voltage limits are included in the power flow model.
Together with the bifurcation surface, voltage limits de-
limit the region of safe operation for the power system. The
system does not become unstable when a voltage limit is
violated, but this limit can indirectly lead to an unstable
situation due to the protection system. For example, if
the voltage at a generator becomes unacceptably low, the
protection system might disconnect the generator from the
power system, and this sudden reduction in the power
transfer capability may lead to a voltage collapse.

To simplify the analysis, we consider only the upper bound
for the voltage at the load bus, given by 1.05 pu. Our goal
is to determine which values of Pspec + jQspec violate this
upper bound.
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Fig. 14. The region of safe operation for Pspec + jQspec.

With only one voltage limit, Pload + jQload can replace E3

as a complex variable in (2). We fix |E3| = 1.05 pu and we
compute the solution of (2) for different values of ^(E3).
The value of Pload + jQload in these solution points are, in
fact, the values of Pspec and Qspec for which |E3| = 1.05
pu.

As in the previous section, (2h) is replaced with (4), and
for this section the values Qmin = 0.1 pu and Qmax = 0.45
pu are adopted. The set of points (Pspec, Qspec) such that
|E3| = 1.05 pu is drawn together with the bifurcation
surface in Figure 14. The region between these two curves
is the region for which the power system admits a stable
solution point satisfying |E3| ≤ 1.05 pu. From this figure,
power system operators can examine how far the system
is from a collapse.

6. CONCLUSIONS

This paper presented an extensive voltage stability analy-
sis of a three-bus power system, explaining the mechanisms
that can lead the system to a voltage collapse.

This paper clearly presents the effects of reactive power
limits in voltage stability, regarding both the distance
to collapse and the possibility of SNBs and LIBs. The
influence of these limits on the bifurcation surface is also
studied. Moreover, static analyses are accompanied by
dynamic simulations that corroborate the use of static
tools to assess voltage stability.

Even though a small power system is analyzed, this paper
presents the methodologies used in model-based voltage
stability assessment of real, large power systems, providing
insights in the effects of operational limits in the search for
bifurcations.
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