
Motion Cueing Implementation for a Low

Cost 6 DOF Flight Simulator ⋆

Matheus Pena, Mauricio Becerra-Vargas ∗

∗ São Paulo State University (Unesp), Institute of Science and
Technology, Sorocaba, CEP 18087-180, Sorocaba, SP, Brazil (e-mail:

matheus.pena@unesp.br, mauricio.b.vargas@unesp.br).

Abstract: This paper presents the results of a study to implement a motion cueing algorithm
for a six DOF �ight simulator motion base. More speci�cally, getting speci�c forces and angular
velocity from X-Plane Simulator, communication between X-Plane and dSPACE board 1104,
and motion cueing parameter optimization. We evaluate the simulation realism by using an
objective performance indicator. The speci�c forces and angular velocities at the simulator are
measured by an inertial measurement unit (IMU). The experimental results revealed that the
motion base is capable of producing motion simulation quality comparable to that produced by
similar research simulator motion bases.

Keywords: Motion cueing motion; drive algorithm; �ight simulator; X-plane; Parallel Robot.

1. INTRODUCTION

Flight simulation has evolved so that all the training can
be performed in �ight simulators, reducing the cost of
training, the impact of aviation on the environment, and
the training risk (Allerton, 2010). Besides the training
bene�ts, �ight simulation plays a fundamental role in de-
veloping new aircraft systems, pilot-vehicle control system
analysis, and human perception research.

Pilot

Visual System,

Instrument display,

Sound System

Motion Drive

Algorithm

Equations of

Motion

Instrutor

Robot Controller

Control

Loading

Parallel robotMotion System

Fig. 1. Block diagram representation of a �ight simulator

A �ight simulator consists of various engineered subsys-
tems synchronized to provide the pilot in the simulator
with motion cues. Fig. 1 shows the main components of a
typical �ight simulator. The equations of motion determine
the actual aircraft motion taking the action of the pilot,
instructors inputs, aerodynamics, engine terms, etc. The
visual system provides real-time images derived from the
aircraft motion equations.

The motion system enhances the �delity of the simulation
by providing inertial cues. A simulator must have �mo-
tion" to achieve certain levels of training capabilities; the
regulations demand it for all Full Flight Simulator (FFS)

⋆ The author gratefully acknowledge the �nancial support provided
by grant 2017/14195-9, São Paulo Research Foundation (FAPESP).

levels (FAA, 2012). Flight simulator motion systems con-
sist basically of the motion-base (parallel robot), motion
controller, and motion drive algorithm (MDA), as shown
in Fig. 1. With the MDA, the trajectory from aircraft
motion equations are translated into feasible motion-base
trajectories regarding the limited motion envelope of the
motion-base.

Since the work published in Conrad and Schmidt (1970)
many works have been published on MDAs. Several varia-
tions of MDAs exist: classical algorithm (Grant and Reid,
1997; Asadi et al., 2015), adaptive-based algorithm (Nahon
et al., 1992), and optimal-based algorithms (Telban and
Cardullo, 2005; Dagdelen et al., 2009; Aminzadeh et al.,
2012; Aykent et al., 2014; Miunske et al., 2019).

However, no information was presented on the practical
implementation of these algorithms, precisely how speci�c
forces are calculated from the aircraft dynamics, how they
are sent to the MDA, and how to apply transformations
coordinates between the aircraft model, the MDA, and
the robot coordinate systems. Even studies related to
�ight simulators' development and implementation lack
this information (Freeman et al., 1995; Baarspul, 1986;
Reymond and Kemeny, 2000). This can be because most
�ight simulator implementation runs on a distributed
network where each computer (node) performs a dedicated
set of functions, typically with one computer for the �ight
model, another for the visual system, another for the
motion system, etc.(Allerton, 2009).

The �ight model computer runs mathematical models
consisting of an extensive set of nonlinear di�erential
equations with large aerodynamic data. The visual system
computer receives data from the �ight model computer,
which contains su�cient information to produce a video
signal for the projection system (Allerton, 2009).

It is not simple to build a distributed system running a
�ight model and a visual system managing synchronized

Sociedade Brasileira de Automática (SBA)
XXIV Congresso Brasileiro de Automática - CBA 2022, 16 a 19 de outubro de 2022

ISSN: 2525-8311 2401 DOI: 10.20906/CBA2022/3501

sets of data, especially for the capacities of a low-cost
simulator. Thus, it is a viable option to use a third-party
�ight simulator software (X-Plane) and integrate it with
the other subsystems.

In this context, the subject of this work is the integration of
X�Plane into the motion system of a low-cost motion-base
�ight simulator. We implemented the real-time control
system of the motion-base in a dSPACE DS1104 controller
board with ControlDesk, Matlab, and Simulink interfaces.

The remainder of the paper is organized as follows: Section
2 brie�y describes the parallel robot topology and inverse
kinematics. Section 3 describes X-plane inertial and body-
aircraft reference frames. Section 4 explains the X-plane's
basic plug-in structure to get the X-plane aircraft's speci�c
forces and angular velocity. Section 5 brie�y describes the
classical motion drive algorithm and its reference frames.
Section 6 explains the communication between X-Plane
and Dspace 1104 hardware using serial communication.
Section 7 describes the con�guration and block diagram
of the experimental setup and the MDA Simulink con�gu-
ration and explains the optimization of the MDA param-
eters. Section 8 describes the experimental results using
an objective performance indicator to measure the �ight
simulator �delity. Finally, conclusions are addressed in
Section 9.

2. MOTION-BASE - ROBOT TOPOLOGY

The 6-UPRU-type parallel robot (Fig. 2) consists of a
moving platform linked to the �xed base by six extensible
legs. Each leg is connected to the base platform by a
universal joint and to the moving platform by a universal
joint and revolute joint. A prismatic joint allows the
change of the lengths of the legs. An electromechanical
linear actuator drives each prismatic joint.

Fig. 2. 6-UPUR-type Stewart platform

2.1 Inverse Kinematics

The main goal is to control the moving platform in task
space while its actuators operate in joint space. Therefore,
the desired Cartesian coordinates are transformed to joint
space coordinates by inverse kinematic transformation.

To describe the inverse kinematics of the moving platform,
we de�ne frame {Bs} �xed with the base and frame {Ps}
�xed with the moving platform as shown in Fig. 3. The
leg vector S with respect to frame {B} can be written as:

S = ℜp+ t− b, (1)

Fig. 3. Kinematic Analysis of One Leg (Becerra-Vargas
and Belo, 2015)

where b is the position vector of the base leg point with
respect to frame {B}, p is the position vector of the
moving platform leg point with respect to frame {P}, t,
is the translation vector of the moving platform centroid
with respect to frame {B}, and, ℜ, represents the relative
orientation of frame {P} to frame {B} by using Euler
angle rotations (body-�xed Z, X, Y sequence) leading to:

ℜ =

[
CψCϕ+SψSθSϕ CψSϕ−CϕSθSψ −CθSψ

−CθSψ CϕCθ −Sθ
CϕSψ−CψSθSϕ CψCϕSθ+SψSϕ CθCψ

]
, (2)

where S(.)means sen(.) and C(.)means cos(.) and where ψ
(heading), θ (pitch) and ϕ (roll) are the angles of rotation
around the Z-axis, X-axis and Y-axis, respectively.

Equation (1) represents the inverse kinematics problem in
the sense one can compute the legs' lengths, i.e., ∥S∥, from
the given position, t, and orientation, ℜ, of the moving
platform.

3. X-PLANE REFERENCE FRAMES

X-Plane is a �ight simulator for personal computers and
has a very realistic �ight model. It has received certi�-
cation from the FAA and �can provide credit towards a
private pilot's license, recurrence training, hours towards
instrument training, and even hours towards an Airline
Transport Certi�cate" (X-Plane, 2021a).

X-Plane employs a local (OpenGL) Cartesian 3D coordi-
nate system for all 3D objects with origin on the earth at
sea level at some �reference point�X-Plane (2021c). The
positive X-axis points east from the reference point, the
positive Y -axis points straight up away from the center of
the earth at the reference point, and the positive Z-axis
points south from the reference point, as shown in Fig. 4.

The X-Plane aircraft body-�xed coordinate frame has its
origin at the center of mass with positive X-axis points
to the right side, the positive Y -axis points up, and the
positive Z-axis points to the tail of the aircraft, as shown
in Fig. 4.

Using Euler angle rotations (body-�xed Y, X, Z sequence),
aircraft kinematics expressed in the aircraft body-�xed
frame can be expressed in the local frame by the following
rotation matrix:

Sociedade Brasileira de Automática (SBA)
XXIV Congresso Brasileiro de Automática - CBA 2022, 16 a 19 de outubro de 2022

ISSN: 2525-8311 2402 DOI: 10.20906/CBA2022/3501

Fig. 4. Xplane OpenGL and aircraft reference frames

ℜ =

[
CψCθ CψSθSϕ−CϕSψ CψCϕSθ+SψSϕ

CθSψ CψCϕ+SψSθSϕ CϕSψSθ−CψSϕ
−Sθ CθSϕ CθCϕ

]
, (3)

where S(.)means sen(.) and C(.)means cos(.) and where ψ
(heading), θ (pitch) and ϕ (roll) are the angles of rotation
around the Y-axis, X-axis and Z-axis, respectively.

4. GETTING SPECIFIC FORCES AND ANGULAR
VELOCITY FROM X-PLANE

Plug-in structure

Callback
Functions

Required

Callbacks

Registered

Callback

X-plane SDK
header files

Declaration of
Variables

Fig. 5. Basic Plug-in Structure

X-Plane allows accessing �ight data by using the X-Plane
Plug-in software developer kit (Plug-in SDK) (X-Plane,
2021b). Plug-ins run inside X-plane and can read real-
time �ight dynamics data and send them over di�erent
communication protocols and can be written in various
programming languages, e.g., C and C++.

Developing plug-ins in C++ requires a basic structure, as
shown in Fig. 5. Plug-ins do not communicate directly with
X-plane; instead, it communicates with X-Plane Plug-
in Manager (XPLM) by calling functions in the XPLM
to read data, create a user interface, etc. These calling
functions are de�ned in the header �les that start with
XPLM as follow:

//SDK header f i l e s
#inc lude "XPLMPlugin . h" '
#inc lude "XPLMDataAccess . h"
#inc lude "XPLMProcessing . h"

APIs de�ned in XPLMDataAccess and XPLMProcessing
are used to read data and call registered callbacks during
the �ight loop, respectively. Global variables must be
declared as data reference type (dataref) to read data

from X-Plane through the XPLMDataAccesslibrary. For
example:

// Dec la ra t i on o f data r e f e r e n c e v a r i a b l e s
s t a t i c XPLMDataRef accx_dataref ;
s t a t i c XPLMDataRef r o l l_da t a r e f ;
s t a t i c XPLMDataRef p_dataref ;

In this work are declared nine variables: the three linear
accelerations relative to the aircraft's center of gravity,
the Euler angles, and the three angular velocities of the
aircraft. To send these data over the network are used
registered callbacks running during the �ight loop.

A callback is a function (inside the plug-in) that the XPLM
calls to notify the plug-in of events or requirements, e.g.,
starting the plug-in and accessing the simulator data.
There are �ve required callbacks that a plug-in must
implement and that are called by the XLPM :

PLUGIN_API i n t XPluginStart () { . . . }
PLUGIN_API void XPluginStop () { . . . }
PLUGIN_API void XPluginDisable () { . . . }
PLUGIN_API i n t XPluginEnable () { . . . }
PLUGIN_API void XPluginReceiveMessage () { . . . }

Once identi�ed a dataref in the declaration of data refer-
ence variables, they need to be found when the plug-in is
�rst loaded (API XPluginStart) as follows:

accx_dataref = XPLMFindDataRef ("sim/ f l i gh tmode l /
po s i t i o n / local_ax ") ;

Then, inside the registered callback (serial communica-
tion), the value of that dataref can be read:

f l o a t accx = XPLMGetDataf(accx_dataref) ;

In this case, XPLMGetDataf only applies to �oat-type
datarefs.

5. CLASSICAL MOTION DRIVE ALGORITHM

The classical MDA, initially developed by Conrad and
Schmidt (1970) and later modi�ed by Reid and Nahon
(1985), has been widely used as the basis for the MDA in
commercial simulators (Hodge et al., 2015). The input sig-
nals are the aircraft speci�c forces and angular velocities,
and the output signal is the position and orientation of the
parallel robot moving platform.

MDA is divided into three parallel channels, as shown in
Fig. 6. The translation and rotational channel �lter speci�c
forces and angular velocities, maintaining the moving plat-
form inside its workspace. The tilt coordination channel
�lters speci�c forces and transforms them into tilt angles.
By tilting slowly, the moving platform creates an illusion
of sustained acceleration.

5.1 Reference frames

In describing the implementation of the MDA, it is
adopted the conventional body-�xed aircraft coordinate
system. Reference frames are de�ned below and are shown
in Fig. 7.

Frame {A} is an aircraft body-�xed frame and has its
origin at the center of gravity with a positive Y -axis

Sociedade Brasileira de Automática (SBA)
XXIV Congresso Brasileiro de Automática - CBA 2022, 16 a 19 de outubro de 2022

ISSN: 2525-8311 2403 DOI: 10.20906/CBA2022/3501

f scale
HP

 Filter
1
s
__

2

QT

QTilt

f a Â

Qd

g

+HP
 Filter

1
s
__Âwscale

wa

LP
 Filter

Tilt
Coordination

Rate
Limit

Â

Â

Tilt Coord channel

Rotational channel

td
Moving Platform

Position

Moving Platform
Orientation

Translational channel

Specific
forces

Angular
Velocities

PRODUCED BY AN AUTODESK STUDENT VERSION

P
R

O
D

U
C

E
D

 B
Y

 A
N

 A
U

T
O

D
E

S
K

 S
T

U
D

E
N

T
 V

E
R

S
IO

N

PRODUCED BY AN AUTODESK STUDENT VERSION

P
R

O
D

U
C

E
D

 B
Y

 A
N

 A
U

T
O

D
E

S
K

 S
T

U
D

E
N

T
 V

E
R

S
IO

N

Fig. 6. Classical Motion Drive Algorithm

pointing to the aircraft's right side, the positive Z-axis
pointing down, and the positive X-axis pointing to the
nose. The transformation from X-plane aircraft frame to
conventional aircraft frame is given by:

ℜA
Axplane

=

(
0 0 −1
1 0 0
0 −1 0

)
(4)

The aircraft body-�xed frame {Pa} has the same orien-
tation with respect frame {A}. It is located in the same
relative cockpit location (pilot station) as the simulator
reference frame {Ps}.
In the X-Plane-based simulation, the aircraft dynamics is
calculated relative to aircraft's center of gravity. Then,
total acceleration at the pilot station is given by:

ap = aCG + αa ×Pa +ωa × (ωa ×Pa), (5)

where ωa and αa are the angular velocity and angular
acceleration of the aircraft, respectively.

The simulator reference frame {Ps} is �xed to the robot
moving platform, and it is located at the centroid of the
moving platform and has the same orientation with respect
frame {Pa}, i.e., the positive X-axis points forward, the
positive Y -axis points toward the simulator pilot right
hand and the positive Z-axis points downward. Frame
{Bs} is the inertial reference frame �xed to the �xed-base
platform of the parallel robot.

Pa

Y

X

Z

CG
{H}

Y

X

Z

{A}

Y

X

Z

{Pa}
Y

X

Z

{Hs}

Y

X

Z

{Ps}

Y

X

Z

{Bs}

Ra

S

Rs

Simulator

Aircraft

P
R

O
D

U
C

E
D

 B
Y

 A
N

 A
U

T
O

D
E

S
K

 S
T

U
D

E
N

T
 V

E
R

S
IO

N

PRODUCED BY AN AUTODESK STUDENT VERSION

P
R

O
D

U
C

E
D

 B
Y

 A
N

 A
U

T
O

D
E

S
K

 S
T

U
D

E
N

T
 V

E
R

S
IO

N

PRODUCED BY AN AUTODESK STUDENT VERSION

Fig. 7. Simulator reference frames

6. COMMUNICATION BETWEEN X-PLANE AND
DSPACE BOARD 1104

The easiest way to get data from X-plane is using The Data
Input & Output screen interface (X-Plane, 2021a) that
enable sending data through the UDP network protocol
to the address assigned for the user. Nevertheless, DS1104
does not support communication via UDP socket. The
DS1104 I/O connector panel only contains connectors
for Serial Interfacing. Therefore, we decided to use serial
communication.

The implementation of serial communication is part of
registered callbacks (Fig. 5), and it is declared as a function
prototype:

f l o a t Ser ia lComunicat ion (f l o a t , f l o a t , int , void
*) ;

We de�ned serial communication parameters inside of
XPluginStart required callback. To call the serial commu-
nication function (registered callback) once every �ight
loop cycle, we used the following statement (inside of
XPluginStart):

XPLMRegisterFlightLoopCallback (Ser ia lComunicat ion
, =1.0 , NULL) ;

To send the data via serial communication, we adopted to
convert a �oating-point data (getting by XPLMGetDataf)
into an array of characters (char data type) as follows:

f l o a t Ser ia lComunicat ion (f l o a t , f l o a t , int , void
*)

{
char l pBu f f e r [8 1] ; // 72+9=81
char AccxFinal [8] ;
f l o a t accx = XPLMGetDataf(accx_dataref) ;
s n p r i n t f (AccxFinal , s i z e o f (AccxFinal) , "%f" , accx) ;
}

All variables are grouped in a bu�er char array (lpBu�er)
through a for loop statement. Identi�er letters ranging
from A to I are included between each variable.

dSPACE RTI block library provides Simulink Serial block
for graphical con�guration: The DS1104SER_SETUP
block sets the serial connection parameter (Table 1), and
the DS1104SER_RX block reads bytes from the serial
interface, and its parameters are shown in Table 2.

Table 1. DS1104SER_SETUP block parame-
ters

Baud Rate 115200 Block size 81 bytes
Data Bits 8 FIFO size 1024 bytes
Stop bits 1 Copy after reception 14 bytes
Parity Even Overwrite Replace old data

Table 2. DS1104SER_RX block parameters

Number of bytes to be received 81 bytes
Reception mode Skip read operation

A Matlab routine is developed to unpack the byte streams
transmitted by serial communication into separate vari-
ables. The size of each variable is 9 bytes (char type):
the �rst byte is the id letter and the remaining 8 bytes
correspond to the data itself.

Sociedade Brasileira de Automática (SBA)
XXIV Congresso Brasileiro de Automática - CBA 2022, 16 a 19 de outubro de 2022

ISSN: 2525-8311 2404 DOI: 10.20906/CBA2022/3501

(a) Con�guration

X-Plane

Connector
Panel

MDA Controllers
Inverse

Kinematics

Aircraft’s velocity
and acceleration

Euler Angles

Serial
Communication

Position and
Orientation -

moving platform

Connector
Panel

Actuators
Lengths

Control Desk / Simulink

Potentiometer
Feedback

Motor Signal

(b) Block diagram

Fig. 8. The experimental setup

In writing the code routine, we highlighted the following
points: if the number is negative, the sign byte is the
second byte and from the third to the ninth byte is the
numerical value; if the number is positive, the second to
the eighth byte is the numerical value, and the ninth byte
is �lled with a NULL byte. The decimal-point character
(ASCII �.� character, Dec 46) must be identi�ed in
converting char to numeric value.

To validate the data received by serial communication, a
code was written in the X-Plane plug-in to send the data
to a text �le (Data.txt) as follows:

#inc lude "XPLMUtil it ies . h"
s t a t i c FILE * gOutputFile ;
PLUGIN_API i n t XPluginStart () {
char outputPath [2 5 5] ;
XPLMGetSystemPath(outputPath) ;
s t r c a t (outputPath , "Data . txt ") ;
gOutputFile = fopen (outputPath , "w") ; }
f l o a t Ser ia lComunicat ion () {
f p r i n t f (gOutputFile , "Time=%f , ax=%f , \n " , time

, accx) ; }

7. EXPERIMENTAL SETUP

The experimental setup is shown in Fig. 8. The system
consists of a parallel manipulator (1) driven by electrome-
chanical actuators, motor drives box(2), dSPACE Connec-
tor Panel (6), and dSPACE DS1104 R&D controller board
(7). The experimental setup is implemented utilizing a PC
equipped with a dSPACE DS1104 R&D controller board
inserted in one PCI slot of the CPU. Simulink/Dspace
Control Desk real-time program is used to executed the
proposed algorithms in real-time. Analog voltage signals
obtained from the potentiometers are sent via A/D con-
verter (connector panel) to PC, where they are processed,
and the control signals for the actuators motors are sent
through D/A converter.

You can �nd more practical details about implementing
the independent-joint control scheme in Gonçalves et al.
(2019). We designed and implemented two independent-
joint control schemes: a PID control strategy and an
observer-based pole placement controller. The observer-
based controller presented better performance and a better
performance indicator (Eq. (7)).

7.1 MDA con�guration

The MDA simulink implementation is shown in Fig. 9.
Inputs to the MDA are scaled to keep the moving platform
inside the parallel robot workspace. This produces the
desired acceleration vector of the moving platform, which
is �ltered to extract only its high-frequency component
to assure that the simulator will remain near its neutral
position. Finally, acceleration is integrated twice to obtain
the required displacements of the platform. We choose a
high-pass �lter of the translational channel as a second-
order �lter.

The rotational channel (bottom channel) is similar to the
translational channel but acts upon angular velocities. We
choose a low-pass �lter of this channel as a second-order
�lter.

The central channel represents tilt coordination. It receives
the scaled speci�c forces, which �lter to extract low-
frequency components that are then transformed into tilt
angles. Finally, tilt angles are passed through a rate limiter
to ensure that the tilt coordination will occur slowly
enough to prevent the sensation of the angular rotation
rate associated with the tilting. We choose a high-pass
�lter of this channel as a �rst-order �lter.

MDA Tuning We optimized the algorithm parameters
to �nd the most suitable parameters while respecting mov-
ing platform physical limitations and minimizing human
perception error between the actual and simulator pilots.
In this work, the optimization problem is written as:

min f(x) such that c(x) ≤ 0, (6)

where the cost function, f(x), is a function of the following
performance indicator:

F =
λf
amax

+
λω
ωmax

, (7)

where

λf =
1

N

N∑
i=1

√
efi , (8)

and

Sociedade Brasileira de Automática (SBA)
XXIV Congresso Brasileiro de Automática - CBA 2022, 16 a 19 de outubro de 2022

ISSN: 2525-8311 2405 DOI: 10.20906/CBA2022/3501

Fig. 9. MDA simulink con�guration

efi =
(
fxi − fsimxi

)2
+
(
fyi − fsimyi

)2
+
(
fzi − fsimzi

)2
, (9)

and where

λω =
1

N

N∑
i=1

√
eωi , (10)

and

eωi =
(
ωxi − ωsimxi

)2
+
(
ωyi − ωsimyi

)2
+
(
ωzi − ωsimzi

)2
,

(11)

and where, f is the desired speci�c forces (aircraft), and
fsim, is the achieved speci�c forces at the simulator. In
the same way, ω is the desired angular velocity (aircraft),
and ωsim, is the achieved speci�c forces at the simulator.

The constraint function, c(x), is used to place bounds on
minimum and maximum actuator length of the parallel
robot.

8. EXPERIMENTAL RESULTS AND DISCUSSION

An objective performance indicator is used to measure
the �delity of the motion system. This indicator (Eq. (7))
is intended to yield a single numerical value describing
the average error between motion cues generated in the
aircraft and those produced in a simulator (Pouliot and
Gosselin, 1998).

The speci�c forces and angular velocities at the simulator,
fsim and ωsim, are measured by an inertial measurement
unit (IMU) located at centroid of the moving platform (
Fig 10). A transformation coordinates must be realized to
match the moving platform reference frame.

Fig. 10. MTi-700 - IMU

The inputs to the MDA are simulated from a takeo� rejec-
tion maneuver of a Boeing 747 performed in the X-plane
software. In this maneuver, the turbines are activated. The
brakes are disabled, allowing the aircraft to accelerate after
a short period, then remove the power of the turbines
and activate the brake to impose an acceleration in the
opposite direction until the plane is entirely stopped.

Fig. 11. Speci�c forcer before HP �lter

Figure 11 shows the speci�c forces (x, y, and z coordinates)
represented in the local moving platform reference frame
before the HP �lter. One observes a more signi�cant
component on the x-axis and a small value on the y-axis
due to the accelerations imposed by the takeo� maneuver.
An oscillation around the gravity value is observed on
the z-component. Because of the characteristics of the
maneuver, speci�c force on the x-axis has the typical shape
of a step input.

Fig. 12. Position of the moving platform after HP �lter

From Fig. 12, the MDA algorithm carefully brings back
the platform toward its neutral position without causing
sensory con�icts (it is known as �washout�).

Fig. 13. Euler Angles of the moving platform

Sociedade Brasileira de Automática (SBA)
XXIV Congresso Brasileiro de Automática - CBA 2022, 16 a 19 de outubro de 2022

ISSN: 2525-8311 2406 DOI: 10.20906/CBA2022/3501

We also observed from Fig. 13 that sustained forward
acceleration (x acceleration component) is represented
through tilt coordination (θ angle), and the tilt angular
velocity is limited to prevent the sensation of the angular
rotation rate associated with the tilting (3 deg/s).

The MDA parameter optimization guarantees that the
actuator stroke is kept inside the actuator stroke limits,
as shown in Fig. 14. The stroke of the actuator is 300 mm,
which corresponds to ± 150 mm from the middle position.

Fig. 14. Actuator Stroke

Finally, Fig. 15 shows the X-Plane's speci�c force and
angular velocity and the measurement from the inertial
sensor for the x-axis. The MDA parameter optimization
matches the aircraft's linear acceleration better than the
not optimized MDA.

Fig. 15. Simulator Fidelity

On the other hand, we get a performance indicator value
of F = %10, 098. Compared to smoothers simulation
maneuvers, that is an excellent result, as shown in Pouliot
and Gosselin (1998).

9. CONCLUSIONS

The proposed motion cueing implementation is a general
method and can be used in many simulators with di�erent
topologies: serial, parallel, or hybrid kinematic structure.
The investigation shows a third-party �ight simulator soft-
ware (X-Plane) integration with a �ight simulator motion
system using a simple serial communication. We suggest
a performance index to conveniently quantify the motion
system's e�ciency as the reference for �delity (realism)
and to optimize the motion cueing algorithm. We per-
formed practical tests, demonstrating that the proposed
motion cueing algorithm yields much more realistic motion
than the smoother simulation maneuvers in other research.

REFERENCES

Allerton, D. (2009). Principles of �ight simulation. John
Wiley & Sons.

Allerton, D. (2010). The impact of �ight simulation in
aerospace. Aeronautical Journal, 114(1162), 747�756.

Aminzadeh, M., Mahmoodi, A., and Sabzehparvar, M.
(2012). Optimal motion-cueing algorithm using motion
system kinematics. European Journal of Control, 18(4),
363�375.

Asadi, H., Mohamed, S., and Nahavandi, S. (2015). Incor-
porating human perception with the motion washout �l-
ter using fuzzy logic control. IEEE/ASME Transactions
on Mechatronics, 20(6), 3276�3284.

Aykent, B., Merienne, F., Paillot, D., and Kemeny, A.
(2014). In�uence of a new discrete-time lqr-based
motion cueing on driving simulator. Optimal Control
Applications and Methods, 35(4), 454�467.

Baarspul, M. (1986). Flight simulation techniques with
emphasis on the generation of high �delity 6 dof motion
cues. Delft University of Technology, Department of
Aerospace Engineering, memorandum m-553.

Becerra-Vargas, M. and Belo, E. (2015). Dynamic mod-
eling of a 6 dof �ight simulator motion base. Jour-
nal of Computational and Nonlinear Dynamics (doi
10.1115/1.4030013). doi:10.1115/1.4030013. URL
http://dx.doi.org/10.1115/1.4030013.

Conrad, B. and Schmidt, S. (1970). Motion drive signals
for piloted �ight simulators. Technical report, USA.
NASA CR-1601.

Dagdelen, M., Reymond, G., Kemeny, A., Bordier, M.,
and Maïzi, N. (2009). Model-based predictive motion
cueing strategy for vehicle driving simulators. Control
Engineering Practice, 17(9), 995�1003.

FAA (2012). 14 CFR FAR Part 60. FAA-Federal Aviation
Administration, Washington D.C, US.

Freeman, J., Watson, G., Papelis, Y., Lin, T., Tayyab,
A., Romano, R., and Kuhl, J. (1995). The iowa driving
simulator: An implementation and application overview.
Technical report, SAE Technical Paper.

Gonçalves, A.H., Becerra-Vargas, M., and Silveira, M.
(2019). Estudo experimental do controle de movimento
de uma plataforma stewart do tipo 6- upur.

Grant, P. and Reid, L. (1997). Motion washout �lter
tuning: Rules and requirements. Journal of Aircraft,
34(2), 356�362.

Hodge, S.J., Manso, S., and White, M.D. (2015). Chal-
lenges in roll-sway motion cueing �delity: a view from
academia. In Conference on `Challenges in Flight Sim-
ulation, volume 9, 10.

Miunske, T., Pradipta, J., and Sawodny, O. (2019). Model
predictive motion cueing algorithm for an overdeter-
mined stewart platform. Journal of Dynamic Systems,
Measurement, and Control, 141(2), 021006.

Nahon, M., Reid, L., and Kirdeikis, J. (1992). Adaptive
simulator motion software with supervisory control.
Journal of Guidance, Control, and Dynamics, 15(2),
376�383.

Pouliot, N. and Gosselin, C. (1998). Motion simulation
capabilities of three degree of freedom �ight simulator.
Journal of Aircraft, 35(1), 9�17.

Reid, L. and Nahon, M. (1985). Flight simulation motio-
base drive algorithms: Part 1 - developing and testing
the equation. Technical report, University of Toronto -

Sociedade Brasileira de Automática (SBA)
XXIV Congresso Brasileiro de Automática - CBA 2022, 16 a 19 de outubro de 2022

ISSN: 2525-8311 2407 DOI: 10.20906/CBA2022/3501

UTIAS, Toronto-Canada. Report No. 296.
Reymond, G. and Kemeny, A. (2000). Motion cueing in
the renault driving simulator. Vehicle System Dynamics,
34(4), 249�259.

Telban, R. and Cardullo, F. (2005). Motion cueing algo-
rithm development human-centered linear and nonlinear
approaches. Technical report, NASA Langley Research
Center. Technical Report CR-2005-213747.

X-Plane (2021a). X-Plane 11 Desktop Manual. URL
https://www.x-plane.com/manuals/desktop/.

X-Plane (2021b). X-Plane SDK Documentation. URL
https://developer.x-plane.com/sdk/.

X-Plane (2021c). XPLMGraphics. URL
https://developer.x-plane.com/sdk/XPLMGraphics/.

Sociedade Brasileira de Automática (SBA)
XXIV Congresso Brasileiro de Automática - CBA 2022, 16 a 19 de outubro de 2022

ISSN: 2525-8311 2408 DOI: 10.20906/CBA2022/3501

