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Abstract: This paper proposes a model for Lithium-Polymer batteries with diffusion dynamics
through a lumped parameter approach in conjunction with an electrical model. A comparison
of the performance of several optimization approaches to identify the model parameters from
experimental tests is also conducted. Constant and pulsed current discharge experiments were
performed on a set of three battery cells using a programmable DC load. The resulting data
sets were used to obtain several model parameters using different optimization approaches.
The predicted outputs of a discrete battery model using the parameters estimated by each
algorithm were compared against the experimental data. The resulting models had an overall
good performance, proving that the chosen modelling approach is applicable to Lithium-Polymer
batteries, and that the choice of algorithm to identify the system parameters must be made with
care.
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1. INTRODUCTION

Lithium-ion (Li-ion) and Lithium polymer (LiPo) batteries
have become a common choice for energy storage solutions
in applications such as electrical vehicles, portable elec-
tronic devices and renewable energy power plants, due to
their high energy density, small size and prolonged lifetime.
As such, obtaining accurate models for these devices is
paramount for these applications, as the power source
tends to be a critical component of any system (Valladolid
et al. (2019)). The model for lithium polymer batteries was
formulated by Doyle et al. (1993), where electrochemical
differential equations where used to describe the behavior
of the relevant physical variables.

Since then, other models have been proposed, aiming to
provide less computationally intensive solutions (Schmidt
et al. (2010)) or to model effects such as battery aging
(Daigle and Kulkarni (2013)). In Rakhmatov and Vrudhula
(2001) a model for the diffusion dynamics of a Li-ion
battery was defined using a lumped parameter approach,
proving itself able to predict battery discharge times at
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a low computational cost, and further work was done by
Neves et al. (2016) to represent this model by means of
the Laplace transform.

Considering that the battery behavior is nonlinear, either
experiments must be performed such that they can be
identified by means of an optimization algorithm (Cipin
et al. (2019)), or the system parameters must be previ-
ously known in the case of electrochemical models. As the
available battery models differ significantly, the estimation
problem itself is of research interest (Peng et al. (2018)),
since several questions must be answered to obtain a reli-
able model: which experiments need to be performed, how
accurate is the resulting model and what is the relative
performance between different optimization techniques.

Within this scope of research, this paper presents the
following contributions:

• A model for a Lithium-Polymer battery using the
Rakhmatov-Vrudhula diffusion dynamics along with
an electrical model is proposed, and its performance
is verified against experimental results.

• An experimental demonstration that the diffusion
coefficient for the Rakhmatov-Vrudhula model needs
to be re-estimated to properly model the recovery
effect of the battery.
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• A comparison between the performance of different
numerical approaches for the estimation of the pa-
rameters of the proposed model.

This paper is organized as follows: a brief literature review
is provided in Section 2, the battery model is described in
Section 3, the experimental results and model behavior are
presented in Section 4, and a conclusion indicating future
research avenues can be found in Section 5.

2. RELATED WORKS

The model proposed in Doyle et al. (1993) uses a dis-
tributed parameter approach to model the electrochem-
ical and transport phenomena inside of a lithium-polymer
battery (Mazumder and Zhang (2013)), admitting mul-
tiple chemical compositions for the battery construction.
However, the model results in a set of coupled differen-
tial equations, which demand a computationally intensive
numerical solution, while also needing the knowledge of
several of the constructive parameters of the battery.

These factors lead to limitations in the applicability of
the model, which were explored by previous authors. In
works such as Mazumder and Zhang (2013), Schmidt et al.
(2010) and Daigle and Kulkarni (2013) models which try
to capture the intricate electrochemical phenomena while
being feasible for real-time applications are proposed.
In Lee et al. (2018), Afshari et al. (2018) and Wang
et al. (2020) the authors are not necessarily interested in
modelling the internal dynamics of the battery, instead
aiming to provide accurate predictions of the battery state
of charge and voltage, for use in state estimation in control
applications in vehicles and other systems.

Other authors are concerned with different effects that
might affect the battery performance. This is the case
in Barcellona and Piegari (2021), Valladolid et al. (2019)
and Muratori et al. (2010), which explore how the effects
and modelling of the temperature of LiPo batteries during
discharge. In Guo et al. (2019), Chen et al. (2019) and
Junhuathon et al. (2020) the authors are concerned with
the effects of aging as the battery cells are discharged and
recharged over time.

The model proposed in this paper combines the diffusion
model of Rakhmatov and Vrudhula (2001) with an electri-
cal model. The coupling of an electrical model to a model
that gives an estimation of the state of charge is a widely
used strategy in battery modelling, as can be seen in Lee
et al. (2018), Valladolid et al. (2019) and Wang et al.
(2022).

The Rakhmatov-Vrudhula diffusion model has been used
to model the diffusion dynamics of Li-ion batteries in
works such as Wang et al. (2022), Neves et al. (2016) and
Spohn et al. (2008), and provides an accurate solution
to the state of charge estimation problem coupled with
a very low computational cost. The resulting model is a
solution for the differential equations that describe the
diffusion that’s dependent solely on the knowledge of the
total battery capacity and the diffusion coefficient. Upon
studying the mechanisms of LiPo batteries described in
Doyle et al. (1993), and used in other models for these
types of batteries, it was verified that the Rakhmatov-
Vrudhula model employs a similar physical description

of the diffusion phenomenon that acts as the transport
mechanism for the lithium ions inside the battery. This
led to the hypothesis that the Rakhmatov-Vrudhula model
lumped parameter solution can also be used to model the
diffusion in LiPo batteries.

3. MODEL OF A LITHIUM-POLYMER BATTERY

In this section, the battery model used in this work
is presented, being constituted by the combination of a
diffusion model (Rakhmatov and Vrudhula (2001) and
Neves et al. (2016)) and an electrical model. A discrete-
time version of this battery model used in the parameter
identification process is also shown. The proposed model
combination intends to provide an accurate reproduction
of the effects of the internal battery dynamics over the
battery voltage and state of charge, while also being
computationally efficient and identifiable from a series of
relatively simple experiments.

3.1 Diffusion model

The diffusion model is described in (1) and (2), where α is
the total battery capacity in C, β is the diffusion coefficient
in s−

1
2 and is a value between 0 and 1, ib is the battery

current in A, and σ is the spent charge in C. In (1) it is
presumed that the applied battery current ib is such that
the battery voltage vb reaches the cut-off value vc at the
total discharge time L, indicating a full discharge.

The consumed charge is represented in both (1) and (2)
by the sum of two terms: the integral of the current
signal, and a second term which gives the unavailable
charge due to the formation of a charge gradient in the
battery electrolyte as a result of the diffusion dynamics.
This happens in the presence of a discharge current, and
after it stops, the battery starts the recovery effect, where
the gradient vanishes and the apparent charge of the
battery increases. The diffusion model should be expected
to accurately model this behavior.

α =

∫ L

0

ib(τ)dτ + 2
∞∑

m=1

∫ L

0

ib(τ)e
−β2m2(L−τ)dτ (1)

σ(t) =

∫ t

0

ib(τ)dτ + 2
∞∑

m=1

∫ t

0

ib(τ)e
−β2m2(L−τ)dτ (2)

The battery state of charge A can then be defined as (3).
Additionally, a steady-state solution for a constant current
I can be obtained for(1)(Luiz et al. (2022)), resulting
in (4). The diffusion model parameters α and β can be
estimated using the steady-state solution by performing
multiple constant current discharge experiments, a process
which will be detailed in Section 4.

A(t) = 100

(
α− σ(t)

α

)
% (3)

α = IL+
π2

3β2
I (4)
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Fig. 1. Block diagram of the discrete battery model implementation.

3.2 Electrical model

The electrical model used is shown in Fig. 2. The battery
voltage vb is given by (5), where voc(t) is the open-circuit
voltage of the battery as a function of the state of charge
f(A(t)), rs is the series resistance. The voltage drop vrcj
for a given RC branch and is given by (6). These branches
model the fast dynamics at the electrode of the battery,
which aren’t covered by the typically slower response of
the diffusion model. This leads to the inclusion of these
additional parameters in the model, as otherwise there
would be non-modelled dynamics when comparing the
experimental data with the model response for the battery
voltage. The relationship between the open-circuit voltage
voc and the state of chargeA can be obtained through a low
discharge rate experiment, for which (7) can be assumed
as true.

Fig. 2. Electrical model for a LiPo battery.

vb(t) = voc(t)− rsib(t)−
n∑

j=1

vcj(t) (5)

ib(t) =
vcj(t)

rj
+ cj v̇cj(t) (6)

vb(t) ≈ voc(t) (7)

3.3 Discrete battery model

In order to apply an optimization algorithm to identify
the model parameters, a discrete version of the complete

battery model had to be implemented. The set of discrete
equations for a given sampling time ts using a trapezoidal
approximation can be seen in (8), where σd is the delivered
charge, σu is the unavailable charge and k is the discrete
time. This model is derived from the equations for the
diffusion and electrical models shown in Sections 3.1 and
3.2, respectively. A block diagram showing how the equa-
tions relate to one another is presented in Fig. 1 for added
clarity.

σd(k) =ib(k)ts + σd(k − 1)

σu(k) =2
M∑

m=1

(
e−β2m2tsσu(k − 1)− e−β2m2ts − 1

β2m2
ib(k)

)
σ(k) =σd(k) + σu(k)

A(k) =100
α− σ(k)

α
%

voc(k) =f(A(k))

vcj(k) =
rj

ts + rjcj
(ib(k)ts + cjvcj(k − 1))

vb(k) =voc(k)− rs(k)ib(k)−
n∑

j=1

vcj(k)

(8)

For the discrete model, the order M of the approximation
of the infinite sum for the discrete diffusion model must
be specified. In Neves et al. (2016) it was shown that for
M = 10 is sufficiently precise while keeping the simulation
cost as low as possible. In total, five constant parameters
must be properly identified to model a given battery, two
for the diffusion model and three for the electrical model,
along with an expression for the open-circuit voltage
as a function of the state of charge. As the involved
dynamics are nonlinear and there are constraints on the
parameter values, any optimization approach chosen for
the identification process must be able to solve nonlinear
constrained problems.

4. EXPERIMENTAL AND MODELLING RESULTS

This section describes the employed experimental setup
and the performed tests, while also showing the perfor-
mance of the identified models and of each of the opti-
mization algorithms that were used. The estimation error,
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calculated as shown in (9), will be used as a metric to eval-
uate the results, in addition to its mean and the maximum
values.

e = 100

∣∣∣∣xdata − xestimated

xdata

∣∣∣∣% (9)

4.1 Experimental setup

An EA-EL 9080-400 programmable DC load was used to
set the discharge rate for each experiment, and an OWON
XDM2041 digital multimeter was employed to measure
the voltage at the cell terminals during the discharges.
Both devices were connected to a computer through a
serial connection, through which the collected data was
transmitted. The resulting raw data files were exported to
Matlab. A diagram of the setup can be seen in Fig. 3.

Fig. 3. Experimental setup used to collect battery dis-
charge data.

The experimental data used for the model estimation was
collected from three 3.8V 32000mAh cells. The use of
multiple cells in the experimental stage helps to diminish
any outlying characteristics that might be present in a
single battery and also contributes to the generalization of
the modelling results.

4.2 Experiment design

In Section 3, the model parameters were listed and the
equations describing their behavior in the battery dynam-
ics where shown. Analyzing these expressions, the follow-
ing experiments were designed in order to estimate the
corresponding parameters:

• Constant current discharges to identify the diffusion
model constants α and β, starting at the nominal
current value of the cells of 32A, and then its multi-
ples 64A, 96A, 128A, 160A and 192A, given that the
maximum discharge current for these cells is 200A.

• A constant current discharge at 3.2A in order to
obtain a curve for the open circuit voltage voc.

• A pulsed current discharge, used at first to identify
the electrical model parameters rs, r1 and c1, and
in a second moment to re-estimate the diffusion
coefficient β. The pulses had an amplitude of 100A,
with a duration of 30s and a subsequent interval of 29
minutes and 30 seconds to allow for the regeneration
of the battery voltage, for a total cycle duration of 30
minutes. Each cell was subjected to 34 cycles.

The voltage data for all experiments was sampled at
0.1s, and the resulting raw data files were parsed and

interpolated so as to obtain a time vector with equally
spaced samples, since there are small variations in the
sampling time of the measuring equipment.

4.3 Diffusion model estimation

The optimization problem for estimating α and β is
described in (10), where Lestim is obtained from (4)
and Ldata is measured from constant current discharge
experiments. The resulting pairs of current and discharge
times from these experiments, along with the discharge
time estimates obtained after estimating the values of
α and β are shown in Fig. 4, with the corresponding
estimation errors shown in Fig. 5.

min
α,β

1

N

N∑
k=1

(Ldata(k)− Lestim(k))2

s.t. α ≥ 0

β ∈ [0, 1]

(10)
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Fig. 4. Comparison between experimental data and model
prediction for constant current discharge times.
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Fig. 5. Estimation error for constant current discharge
times.

It’s evident that the model is precise when it comes to
predicting the discharge time for a given constant cur-
rent, with the highest error among all cells being slightly
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over 2%. However, the prediction of the battery behavior
must also be satisfied for the regeneration regime, which
happens after the discharge ends and the charge gradient
fades. When the modelling process came to the stage of
verifying if this behavior was accurately represented, the
results were not satisfactory, as can be seen in Fig. 6.

Further investigation revealed that since the diffusion
coefficient had been estimated from a constant current
response during a discharge, it didn’t reflect the dynamics
of the regeneration regime. This led to the proposal of
estimating a new value for β from the pulsed current
experiment data set, as the regeneration regime is well
represented in that experiment.
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Fig. 6. Model response for the constant current estimated
β.

4.4 Open circuit voltage estimation

When establishing the relationship between the open cir-
cuit voltage and the state of charge, a low current exper-
iment may be performed. Since this current is constant,
the steady state solution shown in (4) is valid, and, fur-
thermore, the unavailable charge term can be considered
negligible for small discharge rates. Therefore, the state
of charge is approximately linear in this case. This is
important because the state of charge for this modelling
step can be obtained through the integration of the current
signal alone, since it was already shown that the diffusion
coefficient β obtained from the constant discharge experi-
ments is not reliable, and therefore should not be used to
estimate the state of charge for the open circuit voltage
experiments.

This leads to an optimization problem between the voltage
data measured during the experiment and the correspond-
ing state of charge estimate, described in (11), where vdatab
is the voltage measured during the low current experiment,
remembering that in this case (7) is a valid approximation.
In this case, a choice must be made regarding the expres-
sion of the open-circuit voltage as a function of the state
of charge f(A(k))). Three approaches were tested: a 9th

degree polynomial expression, a 7th order Fourier series
approximation and linear curve interpolation. The order
of the mathematical expressions was chosen as the lowest
order that gave a mean error under 1%, to avoid using high

order expressions unnecessarily. Due to the long discharge
times for a low current there are plenty of data points for
the interpolation, meaning that linear interpolation can
be chosen at no cost in modelling error instead of more
complex interpolation algorithms.

The experimental data and the corresponding voc model
curves for each cell can be seen in Figs. 7 to 9, as is
their estimation error. The corresponding estimation error
metrics for each cell are shown in Tables 1 to 3. It should
be noted that this conclusion is a consequence of the long
duration of this experiment, which generates an abundance
of data points between which the interpolation can be
calculated.

min
1

N

N∑
k=1

(vdatab (k)− f(A(k)))2 (11)
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Fig. 7. Open circuit voltage estimation results for cell 1.

Table 1. Open circuit voltage estimation error
metrics for cell 1.

Mean error (%) Maximum error (%)

Polynomial 0.149 6.031
Fourier 0.041 4.216

Interpolation 0.032 0.098

Table 2. Open circuit voltage estimation error
metrics for cell 2.

Mean error (%) Maximum error (%)

Polynomial 0.165 6.066
Fourier 0.076 4.250

Interpolation 0.046 0.172

Table 3. Open circuit voltage estimation error
metrics for cell 3.

Mean error (%) Maximum error (%)

Polynomial 0.173 5.845
Fourier 0.099 4.033

Interpolation 0.078 0.296

Analyzing the the error graphs in Fig. 7 to 9, it becomes
clear that the curve interpolation approach is the best
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Fig. 8. Open circuit voltage estimation results for cell 2.
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Fig. 9. Open circuit voltage estimation results for cell 3.

choice among the ones proposed, considering both the
mean and maximum estimation error under 1% for all
modelled cells. While all three approaches show a low
estimation error for the mid to high values of state of
charge, the polynomial and Fourier series expressions have
a significantly worse performance for in the low state of
charge band.

4.5 Electrical model and diffusion coefficient re-estimation

At this point, the pulsed current experiments are used to
estimate the remaining model parameters: the electrical
model constants and the diffusion coefficient β, which
needs to be recalculated. This is the most computationally
intensive step of the modelling process, due to the number
of variables that need to be estimated, the size of the data
set and the overall model complexity. The optimization
problem to identify these parameters is stated in (12), with
vdatab being measured from the pulsed current experiments
and vestimb being calculated from the discrete battery
model from (8).

The number of RC branches used in the model is a subject
of research unto itself (Ran et al. (2010)), but for our
purposes a single branch was deemed enough to model the
corresponding dynamics, as the addition of extra branches

resulted in the increase of the parameter identification
time at no significant increase in model precision. The
inclusion of extra branches is particularly costly, as the
related parameters do not have evident estimation bounds
and providing initial values for the optimization algo-
rithms demands previous system knowledge.

min
rs,r1,c1,β

1

N

N∑
k=1

(vdatab (k)− vestimb (k))2

s.t. rs ≥ 0

r1 ≥ 0

c1 ≥ 0

β ∈ [0, 1]

(12)

Five numerical approaches have been chosen to be eval-
uated in this step, all of them widely employed in the
scientific literature and capable of dealing with constrained
nonlinear optimization: interior point method, sequen-
tial quadratic programming (SQP), active set, genetic
algorithm with adaptive mutation and the Levenberg-
Marquadt algorithm. All of the algorithms had a step
tolerance of 10−6, with the same initial values being used
for the interior point, SQP, active set and Levenberg-
Marquadt cases. The genetic algorithm had a population
of 100 and a maximum number of generations of 1000 and
the same error tolerance. These hyperparameters where
chosen from a band between 20 and 200 for population and
500 to 2000 for number of generations, with the chosen
values yielding a result under the error tolerance while
being less time intensive than other higher values used.

The results for each of the three cells are presented in Figs.
10 to 12, with the estimation error mean and maximum
values for each case shown in Tables 4 to 6. An observation
must be made here, as the Levenberg-Marquadt results
are not shown in the graphs. This happened because this
algorithm had a very poor performance when compared
to the other alternatives. Since its inclusion would just
pollute the reading of the resulting graphs, a choice was
made to omit them from these figures, presenting only the
corresponding error metrics in the tables.
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Fig. 10. Model responses for cell 1.

When evaluating the performance of the obtained models
and the corresponding optimization algorithms, the most
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Table 4. Battery voltage estimation error met-
rics for cell 1.

Mean error (%) Maximum error (%)

Interior point 0.120 3.962
SQP 0.119 3.954

Active set 0.290 4.624
Genetic algorithm 0.122 3.968

Levenberg-Marquadt 14.918 19.710
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Fig. 11. Model responses for cell 2.

Table 5. Battery voltage estimation error met-
rics for cell 2.

Mean error (%) Maximum error (%)

Interior point 0.111 4.050
SQP 0.108 4.033

Active set 0.310 5.051
Genetic algorithm 0.107 4.027

Levenberg-Marquadt 16.257 21.967
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Fig. 12. Model responses for cell 3.

important factor is how well the physical dynamics of
the battery were represented. Additionally, it’s desirable
for the modelling approach to be applicable to any LiPo
battery, provided that the necessary experimental data
is available. Keeping these factors in mind, it’s visible
that the active set approach was fair, but had the worst
performance among the other approaches.

Table 6. Battery voltage estimation error met-
rics for cell 3.

Mean error (%) Maximum error (%)

Interior point 0.150 4.277
SQP 0.325 5.380

Active set 0.324 5.375
Genetic algorithm 0.130 4.188

Levenberg-Marquadt 17.149 24.082

The interior point, SQP and genetic algorithm identified
models had a mostly similar behavior across all three
cells, presenting a mean estimation error under 1% and
a maximum estimation error of around 5% in the tran-
sient response. This shows that the combination of the
Rakhmatov-Vrudhula diffusion model and the electrical
model can accurately represent the behavior for these cells.

At a closer inspection, it can be seen that the SQP model
for Cell 3 had metrics similar to that of the active set alter-
native. This can be either due to a specific characteristic of
this cell manufacturing or to a particularity of the data set
which made the algorithm settle for a local minimum, but
since the interior point and genetic algorithm didn’t suffer
the same problem, they should be considered over the SQP
approach, so that the resulting model is less prone to error
due to such factors.

The choice between the interior point and genetic algo-
rithm can be guided by their metrics during the optimiza-
tion process, which can be seen in Table 7, which show
the time it took each algorithm the estimate the model
parameters. The genetic algorithm was by far the slowest,
taking more than 2 hours to run in some cases, while
the interior point approach ran under a minute with no
significant loss in model accuracy. However, the genetic
algorithm has the advantage of not needing an initial point
to be set. This is important because the choice of an initial
guess is critical for the interior point algorithm, and the
knowledge of what constitutes a good starting point for
the optimization demands either an iterative process or
previous knowledge of the system parameters. Therefore,
if during the modelling process a reasonable guess can be
made regarding the values of the parameters, the active
set algorithm should be used, with the genetic algorithm
being the choice otherwise, unless the long optimization
time is prohibitive for the intended application.

Table 7. Execution time for the optimization
algorithms.

Cell 1 Cell 2 Cell 3

Interior point 36.392s 44.559s 31.272s
SQP 16.486s 14.931s 6.832s

Active set 6.103s 6.042s 5.916s
Genetic algorithm 6882.383s 1468.587s 2332.450s

Levenberg-Marquadt 57.732s 59.074s 58.795s

5. CONCLUSION

A model for a LiPo battery was proposed and imple-
mented, modelling both the lithium diffusion and elec-
trode dynamics. The model was shown to be capable of
modelling these behaviors. Several modelling strategies
regarding the optimization process for the model parame-
ters identification were explored and the use of either an
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active set or a genetic algorithm coupled with a curve
interpolation for the open circuit voltage had the best
performance.

Future research avenues are possible by aiming to improve
model performance, particularly for the transient response,
and exploring the inclusion of effects such as temperature
and aging. As the developed model is not computationally
intensive, it’s also possible to study its inclusion to model-
in-the-loop approaches for embedded system designs, such
as applications in unmanned aerial vehicles and other
systems that typically use LiPo batteries as their power
source. Finally, there are models which use electrochemical
approaches in place of the electrical circuit used in this
paper, and a comparison between the behavior of these
alternatives might be of interest.
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