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Abstract: Smart walkers were developed to assist users with residual locomotion capacities
providing physical support, health monitoring, and sensorial, cognitive, and navigational
assistance. Multimodal human-robot interaction strategies can enable higher levels of comfort
and safety when using the smart walker. Therefore, the functioning of smart walkers must be
explainable and transparent, thus reflecting on the acceptance and involvement of its users.
Behaviour trees are high-level language adopted in robotics due to its modularity and inherent
reactivity, since its architecture facilitates the inclusion of new behaviours seamlessly.This paper
proposes the use of artificial intelligence in the core of human-robot interaction strategies with
focus on smart walkers to guarantee user’s safety while providing locomotion assistance. The
proposed approach was experimentally validated and the results indicate that the implemented
behaviour tree correctly predicted unsafe scenarios whereas responding to user’s commands.
Such results motivate further studies upon the use of behavior trees for human-robot interaction,
a research field still largely unexplored.

Keywords: human-robot interaction, behaviour tree, smart walker, assistive robot, artificial
intelligence.

1. INTRODUCTION

Between the years of 2020 and 2050, 16 percent of
the global population are expected to be over 65 years
old, reaching a total of approximately 1.5 billion peo-
ple (United Nations, 2020). Ageing is associated with the
deterioration of neuromuscular and neurophysiological ac-
tivities manifesting on the balance control of the elderly’s
gait (Osoba et al., 2019). The risk of falling is high in this
population, affecting up to 85 percent of the individuals.
At the age of 60 years, 85 percent of the elderly have
normal gait, but this proportion is reduced to 18 percent
at the age of 85 years (Sudarsky, 2001).

The human gait requires attention and functions such as
the processing of internal and external information (Am-
boni et al., 2013). With ageing, health problems related to
physical and cognitive conditioning contribute to several
different gait disorders (Ghironzi et al., 2017). The fear of
falling increases the elderly’s attention during locomotion
and, consequently, in the control of balance, which can
harm and modify the biomechanics of locomotion (Sap-
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maz and Mujdeci, 2021). Due to the limitations of joint
movements and with the decrease of muscular strength,
cadence, speed and the spatio-temporal evolution of the
joints differs from the normal patterns of gait (Osoba
et al., 2019). Consequently, there is an interest in adopting
devices that assist the mobility of people with motor
disorders, offering mobility assistance and aiding in the
socialization and independence of its users (Sapmaz and
Mujdeci, 2021).

In this context, augmentative devices such as canes and
walkers, are developed for users who have residual motor
skills and are valuable options to improve the physical
and cognitive state of individuals, when compared to
alternative devices such as wheelchairs (Martins et al.,
2012). Walkers are also potential options to rehabilitate
pathological gait, and its main advantage is requiring
the user’s residual locomotion capacities to generate their
movement, making it possible to postpone or avoid the use
of wheelchairs in certain cases (Lacey and Dawson-Howe,
1997).

As an effort to leverage the benefits of conventional walkers
while minimizing their downsides, robotic walkers or smart
walkers (SW) have been developed by multiple research
groups over the last few decades. Such devices can provide
new or improved functionalities of physical support, health
monitoring, and sensorial, cognitive, and navigational as-
sistance (Martins et al., 2015). Considering the recent
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integration of cloud-based functionality in such devices,
SWs display several of the characteristics of other complex
cyber-physical systems (CPS) (Mello et al., 2019). When
making use of smart walkers, patients interact with robots
directly at both physical and cognitive levels. To support
locomotion, the robot must be able to infer human motion
intention and respond accordingly (Cifuentes et al., 2014;
Jiménez et al., 2019). Interaction strategies designed for
smart walkers are usually focused on human-robot inter-
action (HRI) and human-robot-environment interaction
(HREI) to offer features such as gait assistance, guidance,
and obstacle avoidance (Jiménez et al., 2019).

Control strategies for navigation often rely on information
coming from different sensors responsible for promoting
safe movement (Jimenez et al., 2021). Ideally, the user
should play an active role in navigating and controlling
the walker, while the device works as a guide. Thus, to
assure safety and proper interaction, the identification of
risky situations, such as an imminent fall and excessive
effort, is crucial. Due to the complexity associated with
the presence of several sensors and the need for the device
to react to user commands, it is pertinent to build a logic
that establishes priority criterion for actions.

Nevertheless, HRI strategies presented in the literature are
usually static and tailored to a certain configuration of the
device. This hampers modularity, the integration of new
features and the reuse of successful HRI strategies by other
research groups. In this paper, we argue that leveraging
artificial intelligence (AI) techniques to create high-level
HRI strategies can allow for improved modularity and re-
activity, which could foster and accelerate the development
of complex systems.

Behaviour Trees (BTs) are designed based on goals that
represents how a high-level target can be decomposed into
lower levels ones in a tree structure manner (Flórez-Puga
et al., 2009). Besides providing a highly modular and reac-
tive system, BTs are also intuitive and easy to understand
given its visual representation (Ögren, 2020). This can
be particularly interesting in SWs, where therapists and
patients should be able to understand the system and its
underlying behaviour. Ultimately, if HRI is intuitive and
can be understood, it can foster increased confidence in
using the walker and improve the outcome of walker-aided
therapies.

We propose placing AI in the core of HRI strategies, with
particular focus on SWs. In this work, we discuss how BTs
can be used to explore reactivity and modularity while its
architecture facilitates the inclusion of new behaviours in
a transparent way. This decouples SW configuration from
the control strategy in action, and has the potential to
enable complex HRIs that advance the state-of-the-art in
SWs. We present the UFES CloudWalker, a cloud-enabled
SW having multiple interaction modes, and validate the
use of BTs in the system by performing a set of experi-
ments in which the HRI is governed by a safety-focused
BT.

2. BACKGROUND AND RELATED WORKS

In SWs, HRI is either based on physical or cognitive
interaction - or both (Martins et al., 2012). Physical in-

teraction happens when there is direct contact between
the human and the robot, while cognitive interaction ex-
plores high-level functions performed by the human brain,
such as memory and planning. Multimodal HRI strategies
integrate multiple interfaces to overcome limitations and
provide higher levels of comfort and safety when using SWs
(Cifuentes and Frizera, 2016). Furthermore, multimodal
interaction allows for exploring patterns specific to certain
diseases and conditions, widening the scope of the popula-
tion that can benefit from walkers. Nevertheless, the more
tailored to a given use an HRI strategy is, the harder it is
to leverage the strategy in other systems.

2.1 Complex HRI in SWs

SWs are devices designed to promote locomotion while
performing several functionalities, such as gait assistance,
partial body weight support, health monitoring and envi-
ronment interaction (Martins et al., 2012). These func-
tionalities are mostly implemented through multimodal
HRI and HREI strategies. The SW presented by Wachaja
et al. (2017) detects obstacles and sends haptic feedback
warnings via vibration belt and motors on the handles.
Alternatively, the AGoRA walker, presented by Sierra M
et al. (2019), de-emphasizes users’ commands once its
sensors detect an obstacle, forcing the device to reduce
its velocity. SWs can also be designed for a specific tar-
get population that depends on special HRI features to
navigate safely. As an example, the Guido SW targets
visually impaired patients (Lacey and Rodriguez-Losada,
2008), the i-Walker is adequate for elders who suffer from
stroke (Morone et al., 2016) or Parkinson’s disease (Balles-
teros et al., 2017), and the CPWalker was developed for
patients with cerebral palsy (Cifuentes et al., 2016).

To establish the supervision of the basic conditions for
the safe motion of SWs, there is an interest in decision-
making methods that are complex, but at the same time
modular. By adopting such techniques, the robotic plat-
form intelligently processes its own parameters and of the
environment and autonomously makes decisions about its
actions, improving its control capacity (Oliff et al., 2020).
Currently in the SW literature there is no indication of
use of a formal methodology for decision-making, as the
control techniques applied tend to rely on specific config-
urations of the device to achieve its goals.

Robotic systems are sometimes complex and hard to un-
derstand for its users, in a way that may affect the ac-
ceptance and usage of the technology. Thus, it is par-
ticularly important for autonomous intelligent systems,
such as SWs, to be explainable and transparent (De Graaf
et al., 2021). Furthermore, the adoption of visual and user-
friendly interfaces can simplify both task representation
and execution (Han et al., 2021). Therefore, both patient
and therapist can benefit from such concepts, since the
risk of incorrectly representing the system is minor and
the probability of patient under-trust - or over-trust - of
the robot is also reduced.

2.2 BTs for Explainable Complex HRI

Behavior trees (BTs) is a hierarchical modular structure
for switching between different controllers. BTs were first
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created by computer game programmers (Flórez-Puga
et al., 2009; Isla, 2005) in an effort to increase the mod-
ularity of the AI they created using finite state machines,
but are now receiving an increasing attention in the AI
and robotics communities (Bagnell et al., 2012), with over
150 papers cited in recent surveys (Iovino et al., 2020).
From a theoretical standpoint, BTs have been shown to be
optimally modular (Biggar et al., 2020), while at the same
time being intuitive for robotic end-users (Paxton et al.,
2018). It is well known that modularity is a key factor
in handling complexity, as it allows developers to design,
test and replace different components without having to
take the entire system into account. We believe that these
features together is a strong motivation for exploring the
use of BTs in SWs.

An example of the use of BTs in HRI can be seen
in the work by Paxton et al. (2018), where users were
able to create effective and perception-driven task plans
for collaborative robots using the Behaviour Tree-based
CoSTAR system, but many challenges still remain in this
area.

Although there is no evidence of BTs being used in
mobility aids or rehabilitation devices, its application
in SW can be advantageous to explore reactivity and
modularity, in addition to allowing the generation of
behaviours to coordinate navigation according to human-
robot interactions.

3. THE UFES CLOUDWALKER

The UFES CloudWalker is a cloud-enabled smart walker
that possesses multiple interaction channels with the user,
such as force sensors, cameras and Laser Range Finders
(LRFs) (see Fig. 1) (Mello et al., 2019). This allows com-
plex multimodal HRI and HREI. An embedded industrial
computer based on the Raspberry Pi processes sensor data
and manages control algorithms, whereas part of the high-
level computation (e.g., machine learning algorithms and
image processing) is aided by a cloud platform. To achieve
the desired HRI and HREI, the control over the walker
must be shared by the user and a navigation system.
The overall system can be divided into six main modules,
as illustrated in Fig. 2. We briefly explain the modules
represented in the figure:

Human-Robot Interfaces: three interaction channels
are used to extract information regarding the user’s move-
ment intentions: (i) a force feedback subsystem, based on
data extracted by the force sensors mounted on the fore-
arms supporting platforms (e.g. (Jiménez et al., 2019)); (ii)
a leg-tracking subsystem, based on laser scan readings of
the user’s lower limbs, and; (iii) a face-tracking subsystem,
to allow for steering commands based on face orientation
(e.g. (Scheidegger et al., 2019)).

Movement Intent Extraction: using multiple interac-
tion channels allows for flexible multimodal HRI tech-
niques to accommodate patients with different impairment
characteristics. This module infers the user’s movement
intentions according to a strategy configured by the thera-
pist. Depending on the ideal configuration for each patient,
a subset of the human-robot interfaces present in the robot
are activated.

Fig. 1. The UFES CloudWalker: mechanical frame and a
subset of available sensors.

Fig. 2. General overview of the UFES CloudWalker sys-
tem.

Robot-Environment Interfaces: three interfaces are
used to extract information regarding the surrounding
environment: (i) a localization subsystem outputs the
SW’s position; (ii) an obstacle detection subsystem detects
the position of surrounding obstacles, and; (iii) a visual
semantic subsystem outputs the pose of humans and
objects.

Social Navigation: The existence (or absence) of a
navigational goal is a main factor in the SW navigation. In
case there is a goal position to be reached, a path must be
generated; pre-programmed paths can also be set by the
therapist to explore specific therapy routines (e.g., Jiménez
et al. (2020)). In the absence of navigational goals, social
navigation is executed to shape HRI if a person or object
is detected within given proxemic zones (Jimenez et al.,
2021).

Shared Control: This module integrates the information
provided by the Movement Intent and Social Navigation
modules to allow the user to control the SW, depending
on their commands and the surrounding environment. An
admittance-based controller interprets the commands as
virtual forces and uses it to control the HRI and the walker
displacement. The admittance controller dynamics can be
tuned online by the therapist to achieve desired responses
or to increase the patient’s comfort.
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Safety Supervisor: This module overtakes control of the
SW if an unsafe situation is detected, which triggers a
correction behaviour. A remote control subsystem allows
the therapist to overtake control whenever necessary (e.g.,
to stop the walker). A fall detection subsystem identifies
possible dangerous human states which may result in falls
and accidents (e.g., lower limbs moving away from the
walker). Finally, a collision avoidance subsystem makes
sure that the SW does not move closer to obstacles than
an allowed safety distance.

The integration of all these modules to generate proper
HRI is complex, as there are many variables and conditions
that must be observed while several computing tasks are
conducted in parallel. When proposing a novel controller
or HRI strategy, one may either deal with the complexities
of integrating it properly with the whole system - which
may not always be possible - or replace already-available
features with the new feature. This limitation can be
observed throughout the SW literature, affecting most -
if not all - research groups. We argue that adopting mod-
ular practices enables an easier integration of innovative
solutions without compromising other features, further
promoting the development of SWs. Furthermore, it also
enables the use of AI techniques to manage the HRI and
the desired responses from the SW.

4. INTRODUCING BEHAVIOUR TREES INTO
SMART WALKERS

BTs are composed by execution nodes and control nodes;
signals called ticks are periodically sent from the root node
down through the tree to probe nodes response - usually
success, failure, or running (Ghzouli et al., 2020). Execu-
tion nodes can be either conditions checkers (which return
success or failure after being called) or actions (which
represent the actual behaviours and can be executed for
longer periods of time) (Iovino et al., 2020). In diagram
representation, a condition node is indicated by an oval
shape whereas an action node is represented by a box;
in both cases, a descriptive text lies within the symbol.
Control flow nodes can be of three different categories:
Sequence, Fallback and Parallel. Sequences are used when
children are executed in order and are represented by an
arrow inside a box. Fallbacks nodes are applied when chil-
dren are executed in order until any child returns success
or running, and are represented by a question mark. When
children are executed simultaneously, the Parallel control
flow node must be used, represented by double arrows. An
example BT is shown in Fig. 3.

The BT presented in Fig. 3 comprises one condition node
(”Is someone using the walker?”), and two action nodes
(”Follow user’s motion intention” and ”Wait for user”).
A Fallback control flow node is the root of the tree and
verifies the return status of its leftmost child (the Sequence
node). If the condition is satisfied, the action below the
Sequence node is executed, allowing the navigation of the
SW using a given HRI strategy. In case the condition
fails, the Sequence returns the failure to the Fallback node,
triggering the rightmost action, which ensures the SW is
stationary.

Safety concerns during SW usage can either be extrinsic
(e.g., colliding with an obstacle) or intrinsic (e.g., falling)

Fig. 3. Example of a simple BT diagram for a SW; the
robot may only move if someone is interacting with
it.

Fig. 4. HRI managed by BT in the UFES CloudWalker;
safety conditions are verified to enable the use of the
walker. The same colour scheme is used in Fig. 5.

to the HRI. Regarding the latter, there are two main
factors that must be observed: proper use of the weight
support structures and correct posture (Jiménez et al.,
2019). By monitoring the interaction forces and the dis-
tance between the user’s lower limbs and the structure
of the walker, one might infer the stability of the user’s
posture and mitigate the risk of falling.

Thus, in our first implementation of BTs in the UFES
CloudWalker, we designed a tree to substitute the Safety
Overseer module previously used. The BT developed su-
pervises the safety conditions to prevent fall risks and
other accidents by predicting dangerous states from the
HRI. Fig. 4 illustrates the implemented tree in its classical
formulation; the BT verifies basic conditions to assert the
presence of a user in the correct position and posture
before allowing the user to move the walker. During design,
we considered a backward chaining approach to prioritize
safety conditions and achieve coherent global interaction
considering disturbance rejection (Ögren, 2020).

As seen in Fig. 4, BTs are implemented according to the
verification of two conditions regarding HRI information.
Based on the values of force and distance registered during
the interaction between user and walker, it is possible to
predict if an unsafe condition is about to occur. By defining
a threshold value and an activation zone in the interface, it
is possible to identify if the user is losing physical contact
with the device or if the posture is unstable, increasing the
risk of falls.

In these terms, the condition ”Is the user away from
the walker” checks if there is weight-bearing, while ”Is
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the user far from the walker” checks if the user’s lower
limbs are placed within an expected zone. Thus, the first
condition verifies if the downward forces exerted upon the
walker are bigger than a given threshold, as expressed
by (FLZ

≤ δw) ∧ (FRZ
≤ δw), where FLZ

and FRZ
are

the downward forces measured in the left and right force
sensors, respectively, and δw is the threshold. The second
condition verifies if (dll ≤ γmin)∧(dll ≥ γmax), where dll is
the average distance of the user’s lower limbs from the ideal
posture and γmin and γmax are the thresholds defining the
adequate zone. Although both ”stop walker” behaviours
that result from each of these conditions merely stop the
walker and are effectively the same, they were separated
in the tree to make causality clear.

In case both conditions result in failure, the behaviour
”Follow user’s motion intention” is activated, and the
walker responds directly to user input. Thus, the walker
velocity is calculated using an admittance-based controller
to allow for proper interaction. Equations 1-4 govern this
controller, as suggested by Jimenez et al. (Jiménez et al.,
2019).

F (t) =
FLY

(t) + FRY
(t)

2
(1)

τ(t) =
(FLY

(t)− FRY
(t))d

2
(2)

v(t) =
F (t)−mv v̇(t)

bl
(3)

ω(t) =
F (t)−mωω̇(t)

ba
(4)

where FLY
and FRY

are the forces applied on the Y axis
of the left and right sensors (forward forces), d is the
distance separating the force sensors, bl and ba are the
linear and angular damping constants and mv and mω are
mass constants. This system was implemented using the
Robot System Operating (ROS) and py trees, a Python
framework for BT development.

4.1 Validation Experiments

We validate the proposed system by verifying the correct
behaviour selection and proper HRI in a set of experi-
ments. Our objective is to demonstrate the feasibility of
using BTs in SWs. We observed the interaction forces
the volunteer exerted upon the walker, the distance of
their lower limbs from the desired position, the controllers’
response and the SW behaviour.

Four volunteers (1 female, 3 males, 28.25±4) performed 5
trials each, freely conducting the SW inside a corridor in a
building hall. The volunteers present no gait impairments,
as our aim is observing the correct activation of the
behaviours implemented in the BT. The conditions for
behaviour activation were discussed with the volunteers
to explain the BT. Since the volunteers were aware of
the expected behaviours given the safety conditions, they
were asked to navigate freely and to choose when to
activate each behaviour. A trial would end after all three
behaviours were observed.

4.2 Results and Discussion

All trials were successfully performed by the volunteers
and each trial lasted 90 ± 10 seconds and each behaviour
was activated, in average, 2 times per trial. The volunteers
reported being able to understand the behaviour of the
SW, as it responded directly to their actions (e.g., remov-
ing their arms from the supporting platforms or distancing
themselves from the walker).

A representative result of the HRI during one of the trials
is shown in Fig. 5. By the beginning of the trial, the
volunteer is correctly positioned to use the walker and
thus the two conditions being verified return failure, thus
activating behaviour ”Follow user’s motion intention”
(referred to as B3 in the figure). This can be seen in
Fig. 5 during the first five seconds, where the measured
weight bearing is above the threshold (second graph, top
to bottom) and the distance of the user’s lower limbs
from the ideal position is within the desired zone (third
graph, top to bottom). Thus, behaviour B3 is activated
and the walker’s linear velocity commands (fourth graph,
top to bottom) are a direct response to the user’s forward
commands. Graphs for user-exerted torque and walker’s
angular velocity are omitted for the sake of simplicity, but
the effects are similar. Behaviour activation is indicated
in the bottom graph of Fig. 5 and the colours associated
to a given behaviour are used as background in the other
graphs.

In Fig. 5, after the mark of five seconds, the volunteer
distances herself from the walker, and her lower limbs
are detected outside of the preferred zone. This activates
behaviour ”Stop walker (risk of fall)” (B2 in the figure)
and the walker stops moving. As soon as the volunteer ap-
proaches the walker, behaviour B3 is activated. Behaviour
”Stop walker (no user)” is activated when incorrect con-
ditions for weight-bearing are verified. In Fig. 5, this can
be seen whenever one of the force sensors measurements
indicates that there is little force being applied or even
that the user is pulling the walker upwards (indicated by
a negative weight). It can be observed that during the part
of the trial represented in Fig. 5, the volunteer activated
the behaviours to stop the walker three times.

As discussed in Section 2.2, BTs are well suited for
handling hierarchical tasks. Based on the implemented
design, the force-associated condition has higher priority
than the other condition. When the leftmost branch of the
tree in Fig. 4 results in success (the user is away from
the walker) and the middle branch results in failure (the
user is not far from the walker), the user is in the correct
posture but not in physical contact with the walker. In
order to guarantee the correct position and user safety,
it is required that both arms are placed on the forearm
supports. The downward force graph in Fig. 5 (third
graph, top to bottom) shows the violation of this safety
condition at times 12 and 21 seconds. This feature can
be observed as the velocity is set to zero once there is a
switch from behaviour B3 to B1. Besides this, around 12
and 15 seconds there were switches between behaviours
B1 and B3, that can be avoided using control barrier
function (Ames et al., 2019), as suggested by Özkahraman

and Ögren (2020).
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Fig. 5. Representative results of HRI from one of the trials. From top to bottom, the graphs indicate (i) the total
forward force exerted by the user on the walker to control navigation; (ii) downward forces measured in each of the
forearms supporting platforms; (iii) the centroid of the lower limbs position with respect to an ideal posture (markers
indicate exceeded values for distance); (iv) linear velocity commands output by each behaviour internal controller,
and (v) current active behaviour (B1, B2, and B3 are in agreement to the order of the behaviours presented in
Fig. 4). Dashed black lines indicate associated thresholds, and background colours reinforce the indication of current
behaviour.

During the experiments, the volunteers evaluated their
interaction with the walker as intuitive in relation to the
BT’s behaviour activation and conditions verification. The
user considered that the HRI guaranteed their safety when
navigating with the UFES CloudWalker. The volunteers
also reported that the SW reacted directly to their choice
of movement, and we believe that the brief explanation
of the BT design was significant to the success of the
experiment. These are preliminary conclusions, and fur-
ther studies are necessary to evaluate the effectiveness of
the use of BTs upon user understanding of the resulting
interaction.

We intend to use this first BT implementation as a basis to
adapt the UFES CloudWalker’s HRI and HREI strategies.
We will incorporate previously developed strategies and
controllers, such as the work presented by Jimenez et al.
(2021), to integrate them in a single system that can
be easily tailored by therapists to specific patient needs.
This will enable us to introduce novel functionality into
an already complex system, in an intelligent, reactive,
modular and transparent way.

5. CONCLUSIONS

This paper explores the concept of AI-driven HRI by
introducing BTs into SWs. We implement a safety-focused
BT to allow for monitoring the state of the user during
interaction. Monitored parameters are used to identify
unsafe scenarios that could result in falls. Two condition
checkers were added to the BT to guarantee the correct
position and posture of the user. The system displayed
reactive and correct response to the HRI information,

stopping the walker whenever at least one of the high risk
conditions were met.

The advantages of AI integration in SWs are also related
to the ease of incorporating novel features into existing
trees. This preliminary study points to the feasibility of
employing BTs in SW systems and provides insight on
how one might migrate existing functionality into a tree
structure. We intend to conduct further research on AI-
driven HRI for SWs, and we believe that other research
groups could also benefit from such a modular and direct
approach, which could facilitate the adoption of features
and the re-use of code.
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