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∗∗ Instituto Tecnológico de Aeronáutica, São José dos Campos, SP,
(e-mail: leonardolrr2@fab.mil.br)

Abstract: Real-time fault detection and isolation capability has become a competitive differential
for modern, complex systems due to the increasing demand for higher levels of both reliability
and safety. The use of health monitoring algorithms can be considered a powerful decision
tool and a key enabler for new maintenance and logistic strategies in which decisions are
made based on the estimated health condition of the systems under consideration. This paper
presents the study of a fault detection and isolation (FDI) algorithm for non-linear systems
based on a multiple-model architecture. The Extended Kalman Filter (EKF) is used as residual
generation tool while the Autonomous Multiple Models (AMM) algorithm is used for residual
evaluation. Numerical experiments are conducted to assess the performance and the limitations
of the algorithm. The study covers an assessment of the algorithm sensitivity to different failure
intensities and also its response to failures not initially considered in the fault detection and
isolation architecture.
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1. INTRODUCTION

As systems continue to become more complex and auto-
mated, the demand for high levels of performance, reliabil-
ity, and availability keeps pushing the advent of new health
monitoring technologies and paradigm changes regarding
maintenance and logistics strategies (Goebel et al., 2017).

In a highly globalized and competitive world, performance
standards rise every day and systems must deliver the ex-
pected performance with high reliability levels. Therefore,
the ability to detect and predict failures using real-time
embedded systems is a competitive differential that has
drawn attention to the development of Prognostic and
Health Monitoring (PHM) techniques in several industry
sectors such as aeronautical (Verhulst et al., 2022)(Pollock
et al., 2021), automotive (Choi and Lee, 2022), and nuclear
power (Shi et al., 2018). Monitored systems present in-
creased safety and robustness, avoiding catastrophic con-
sequences that may originate from an undetected faults.
In addition, PHM technologies come as key enablers for
concepts such as Condition-Based Maintenance (CBM) (Li
et al., 2020), Performance-Based Logistics (PBL), mainte-
nance scheduling, and spare parts management (Rodrigues
and Yoneyama, 2020).

In this context, Fault Detection and Isolation (FDI) is a
key concept that consists in detecting that the monitored
system is performing outside the defined tolerances (fault
detection) and identifying, amongst a set of candidate
failure modes, which one is the root cause of the erratic
behavior (isolation) (Ding, 2008). The techniques applied
to implement the FDI capability are commonly classi-

fied as model-based or data-driven approaches (Thiru-
marimurugan et al., 2016). Model-based approaches use
the knowledge of the plant (mathematical or empirical)
to build a model and compare the system current state
with the expected state based on the model to detect
faults, whereas data-driven approaches rely on collected
measurement data to identify healthy and faulty patterns.

A common approach used in FDI systems is to build a
models bank containing models that represent the behav-
ior of the monitored system in the presence of a set of
failure modes of interest. A model that represents the
healthy behavior of the system is also included in the bank.
This FDI architecture isolates the failure mode by com-
paring the residuals between the system output and the
output of each model belonging to the model bank. This
approach is referred to as Multiple-Models Algorithms
(MMA) (Magill, 1965).

The literature contains different generations of MMAs.
The differences among these generations are associated
with the type of interactions among the models belonging
to the model bank. In this paper, a first generation MMA
is used in a model-based FDI architecture applied to a
non-linear system.

This paper aims at contributing to the literature on first
generation MMA-based FDI methods by implementing
and investigating the performance of a first generation
MMA. Numerical experiments were conducted to assess
the behavior of the algorithm considering the gradual evo-
lution of failure modes. Also, the behavior of the algorithm
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when the monitored system is subjected to a failure mode
not included in the model bank is investigated.

The remaining sections of this paper are organized as
follows. Section 2 describes the Model-Based Fault De-
tection concept. Section 3 presents a brief description of
the Kalman Filter algorithm. Section 4 discusses the use
a multiple model strategy for FDI purposes. Section 5
presents the different generations of multiple-model algo-
rithms. Section 6 presents the case study considered in
this paper to evaluate the performance of the proposed
FDI strategy. Section 7 shows the results obtained in the
numerical experiments. Concluding remarks are given in
section 8.

2. MODEL-BASED FAULT DETECTION

The model-based fault detection concept is very intuitive.
If a model that describes the monitored system is available,
as well as the measurement of the system input and output,
the model output can be computed and compared with the
measured output. The difference between the measured
output and the output computed with the model is called
residual (Ding, 2008). Considering an ideal scenario in
which there are no disturbances and the model is a perfect
representation of the monitored system, the residual will
be zero while the system is healthy. When the monitored
system starts to behave differently from the expected, the
residual will then become different from zero. Therefore,
by monitoring the residual the faults can be detected.

Despite the simplicity of the model-based fault detection
concept, the uncertainties observed in real applications
make it a real engineering challenge. The model used
to represent the monitored system may have limitations
that are related to model complexity. The model fidelity
may need to be compromised to guarantee a limited com-
putational power, especially when dealing with real-time
applications. In addition, the fault detection architecture
will be subjected to disturbances such as process noise
w(t) and measurement noise v(t), which will interfere in
the relationship between the system input u(t) and the
observed output z(t). Therefore, the residual generated
will never be zero, even when the system is in its healthy
state.

Besides the plant model, the residual-based FDI architec-
ture contains a residual generator and a residual evaluator.
In order to make the architecture more robust to the
uncertainties, filters or estimators can be used as residual
generators (Venkateswaran et al., 2022). Additionally, to
achieve successful and robust residual evaluation, statisti-
cal methods are commonly used (Zhou and Zhu, 2021).

3. RESIDUAL GENERATION USING KALMAN
FILTER

A well-known technique used as a robust residual generator
is the Kalman Filter (Kalman, 1960). The Kalman Filter is
a predictor-corrector estimator which provides an optimal
solution for linear dynamic systems corrupted with white
noise. Therefore, its application as a residual generator
uses the disturbance characteristics, which shall be Gaus-
sian noise so that the Kalman Filter output minimizes the
error covariance of the system state estimate.

On the FDI architecture, the plant model is replaced
with a Kalman Filter built based on the plant model.
The innovation sequence (differences between the filter
prediction and the measured output) is used as residue, as
shown in Figure 1. In order to determine the system health
state, the innovation sequence properties are analyzed. If
the system and model dynamics match, the innovation
sequence will have the properties of white Gaussian noise.

Plantu(t) z(t)

w(t) v(t)

+

+

+

+
y(t)

Kalman 
Filter

Innovation 
Sequence 
(Residual)

+

-

Figure 1. Model-based residual generation using a Kalman
Filter.

The application of the classical Kalman Filter is restricted
to linear dynamic systems which are subjected to Gaussian
noise. Variations of the method and alternatives were de-
veloped to address these limitations such as the Extended
Kalman Filter (EKF) (Jazwinski, 1970), the Unscented
Kalman Filter (UKF) (Julier and Uhlmann, 1997), and
the Particle Filter (PF) (Gordon et al., 1993).

The EKF is a variation of the Kalman Filter based on
the linearization of the model equations to be applied
to non-linear systems. The EKF linearizes a non-linear
state transition function fk(.) and a measurement function
gk(.) around the mean of the current state estimate. At
each time step, the linearization is performed locally using
Taylor series expansion (Anderson and Moore, 1979). The
EKF uses the same recursive process as the classical
Kalman Filter, only with adaptations to project the state
and error covariance ahead and to compute the Kalman
gain.

4. FDI USING MULTIPLE MODELS

If only one model of the system representing its healthy
behavior is used, it is possible to detect deviations of
the plant behavior from the expected dynamics, but it is
not possible to identify which failure mode is causing the
degraded behavior. However, if a set of different models
representing several possible system failure modes is used,
the plant current condition can be isolated by evaluating
the residual generated by each model, assuming that one
of the models contemplates the plant current condition.

In order to build a multiple-model FDI architecture, a set
of models is assembled containing a model for the healthy
condition and one additional model for each faulty state
that shall be monitored. The residuals generated by each
model are computed simultaneously, and the model that
generates the smallest residual is chosen as best candidate
to represent the system current state.

Using Kalman Filters or EKFs as the residual generation
tool, a filter bank can be built based on the models
bank, and the innovation sequence that most resembles
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a Gaussian noise will indicate the system state. Figure 2
shows the model-based FDI architecture using the EKF as
a residual generation tool considered in this paper.
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Figure 2. Model-based FDI architecture using EKF.

Each filter in the proposed architecture will result in an
individual prediction time series to be evaluated. In order
to combine the output of each filter in the filter bank into
an overall estimate of the current system state, a Multiple
Model Algorithm (MMA) strategy can be applied.

5. MULTIPLE-MODEL ALGORITHMS

The MMA consists of estimate-decision based algorithms
comprising the following steps (Pitre, 2004):

(1) Build the model bank with the possible candidates
for the system state;

(2) Run the set of filters, each based on a unique model;
(3) Combine the outputs of the filters into an overall

likelihood estimate for the system state.

The overall estimate will present the likelihood that the
system current state matches each candidate model. The
fundamental assumption of the algorithms is that the
true state of the system is represented in the model set.
The multiple-model algorithms are classified into three
generations (Bar-shalom and Blair, 2000), and there are
studies for the application of all generations on FDI
problems:

(1) First Generation - Autonomous: the models do not
use information from other models in the bank
(Coelho et al., 2019);

(2) Second Generation - Cooperative: the filters interact
with each other to provide a better estimate (Judalet
et al., 2015);

(3) Third Generation - Variable Structure: use a variable
structure model set (Ru and Li, 2008).

The first generation algorithms were introduced by Magill
(1965). Solutions that combine the outputs of elemen-
tal filters have been proposed for fault detection and
fault-tolerant control applications with promising results
(Coelho et al., 2019), (Kargar et al., 2014).

Motivated by the real-time target tracking problem for
abruptly changing systems, a second generation MMA

was developed by Blom (1984). This generation introduces
interactions among the elemental filters. The overall esti-
mate considers past information from all elemental filters
to achieve better performance. The Interactive Multiple
Model (IMM), a second generation MMA, is widely ap-
plied to target tracking applications (Vasuhi and Vaidehi,
2016) (Xie et al., 2018), as well as for fault detection
and isolation (Tudoroiu and Khorasani, 2005) (Zhang and
Chen, 2019).

The first two MMA generations assume that one of the
elemental filters in the bank represents the system true
mode. However, there are situations in which this assump-
tion does not hold. In order to address this limitation with
reduced computational cost, the third generation MMA
was introduced by Li (1994). These algorithms do not have
a fixed model bank. Instead, their structure adapts over
time. Therefore, unlike the fixed structure MMA, they
use the measurement information not only to calculate
the overall estimate but also to adjust the model set.
Applications of variable structure MMA for fault detection
and isolation have been proposed by Ru and Li (2008) and
Lu et al. (2015).

In this paper, a first generation MMA referred to as
Autonomous Multiple Model (AMM) is used. As a first
generation MMA, the AMM algorithm has two funda-
mental assumptions (Li and Jilkov, 2005): (i) the true
mode is time-invariant; and (ii) the true mode at any
time is identical to one of the models in the model set.
In order to compute the overall estimate, the filters run in
parallel independently from one another. The algorithm
fuses the individual output from the filters to calculate
the probability that the true mode matches each one of
the models in the model set.

The probability calculations are based on each model’s
likelihood. The model likelihood is updated in each time
step using information up to the current time step as
shown in Eq. (1).

L
(i)
k = p[zk|m(i), zk−1] = N (z̃

(i)
k ; 0;S

(i)
k ) (1)

where L
(i)
k is the likelihood function of model m(i) given

that m(i) ∈ M (models set), N (x;µ;σ2) is the Gaussian
probability density function of x with mean µ and stan-

dard deviation σ, z̃
(i)
k is the residual or prediction error

(innovation sequence). The mean µ is considered to be zero
and the standard deviation is given by the measurement

prediction error covariance S
(i)
k of model (i) at instant k.

The model probability µ
(i)
k given by Eq. (2) is calculated

based on the model likelihood and indicates the probability
of model m(i) be the true mode at time k. Equation (2)
is a weighted average using the models likelihood as the
weights and normalized to guarantee that the sum of all
probabilities will always be one.

µ
(i)
k =

µ
(i)
k−1L

(i)
k∑

j∈M
µ
(j)
k−1L

(j)
k

(2)
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The selection of the MMA generation to be used in
each application is a trade-off between performance and
complexity. This paper brings an assessment of the EKF-
AMM algorithm application and also aims at investigating
the algorithm response when its main assumptions are
not met, detailing a study of the algorithm sensitivity to
different failure intensities and also its response to failures
not initially considered in the model set.

6. CASE STUDY

A case study is presented to illustrate the application of the
presented method. The model considered in this case study
was built based on a laboratory bench presented in Jha
et al. (2016). This laboratory bench consists of an electro-
mechanical rotational system. The system comprises an
electric motor, a pulley and belt set, motor and load disks,
bearings, and a flexible shaft as illustrated in the block
diagram presented in Figure 3.

The non-linearity in the system consists of a non-linear
resistance representing the frictional torque over the motor
disk. This frictional torque, denoted by τMech, manifests
due to Coulomb friction and is calculated by multiplying
the frictional force fmech by the radius of the motor disk
rMd, as defined in Eq. (3). The frictional force fmech is
defined in Eq. (4) in terms of the friction coefficient β,
the suspended load mass M , the Earth’s gravitational
acceleration g, and the motor disk angular velocity ωMd

(Jha et al., 2016).

τMech = fmech × rMd (3)

fMech = βMg

(
ωMd

|ωMd|

)
(4)

The state transition model of the system is described in
Equations (5) to (8).

x1(k+ 1) =
([

−Ra

La
− n1

Jm
0 0

]
xk + uk

)
Ts+ x1(k) (5)

x2(k + 1) =
(n1

La
x1(k)−(

fm + n2
2

(
JLd + bMd + βMgrMd

x3(k)

|x3(k)|

) 1

JMd

)
x2(k)+

−n2

Cs
x3(k)

)
Ts+ x2(k)

(6)

x3(k + 1) =
([

0
n2

Jm
0 − 1

JLd

]
xk

)
Ts+ x3(k) (7)

x4(k + 1) =
([

0 0
1

Cs
− bLd

JLd

]
xk

)
Ts+ x4(k) (8)

Considering that there is a current sensor in the DC motor
and an angular speed sensor in the load bearing, these two
measured variables were defined as the system outputs.
They correspond to states x1 and x3, respectively. The

state-space equations were implemented in MATLAB®.
Table 1 presents the values used for the parameters.

6.1 Failure Modelling

Three failure modes are considered throughout this paper.
They are referred to as motor, bearing, and shaft failures.
The selection of the failure modes took into account the
separation of their effects on the system. There must
be enough separation so that they can be individually
identified.

(1) Rdeg1: represents an electrical motor failure;
(2) Rdeg2: represents an increased friction in the pulley

bearing;
(3) Cdeg: represents a change in the flexible shaft elastic-

ity;

For the case study, Rdeg1 is considered as an increase of
65% in Ra; Rdeg2 as an increase of 150% in bMd; and
Cdeg as a reduction of 50% in Cs. The severity of the
degradation levels were defined based on observations of
the system response in several simulations.

7. EVALUATION OF THE PROPOSED FDI
ALGORITHM

As mentioned earlier, the proposed FDI method uses the
EKF as a residual generation tool and the AMM algorithm
as a residual evaluation tool. The method implementation
comprises five steps, as illustrated in Figure 4. The algo-
rithm is executed at each time step individually for each
filter in the bank. The results are fused only in the last
step when the model probabilities are computed.

For the first part of the study, the candidate modes con-
sidered were: healthy system, system with motor failure,
system with bearing failure, and system with simultaneous
motor and bearing failures. Therefore, one model was built
for each candidate system mode to compose the model
bank. An EKF was built for each model and the archi-
tecture presented in Figure 2 was assembled. With the
algorithm presented in Figure 4, a single overall estimate
of the system current state can be computed at each time
step.

The architecture was implemented using MATLAB® and
a sampling time of 0.5 milliseconds was used, which was
defined based on the system dynamics and filters perfor-
mance. The input signal used was a sinusoidal wave with
amplitude 100V and period π. Additionally, the signal-
to-noise ratio considered was 20dB for both the measure-
ment and process noise. The results for the simulation
considering the healthy system are shown in Figure 5.
The algorithm converged very quickly (less than 0.01s)
to indicate 100% probability of the true mode being the
healthy system.

The simulation was then repeated with the system in
each failure state considered in the model bank: motor
failure, bearing failure, and simultaneous bearing and
motor failure. For all simulations, the algorithm correctly
converged to indicate the true system state. For the motor
and bearing single failures the algorithm took longer to
converge when compared with the healthy system and
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Figure 3. Case study system diagram (adapted from Jha et al. (2016)).

Table 1. Parameter Values

Symbol Parameter Value Unit

Ra Armature Resistance 1.23 Ω
La Armature Inductance 1.34× 10−3 H
M Suspended Load Mass 0.5 Kg

n1 or km DC Motor Torque Constant 2.57 A / (N · m)
n2 or 1/kbelt Belt Constant 2.70 - - -

rMd Motor Disk Radius 0.1 m
β Friction Coefficient on Motor Disk 0.8 - - -

JMd Motor Disk Moment of Inertia 9.00× 10−2 Kg · m2 / rad
bMd Belt and Motor Disk Bearing Friction 4.22× 10−1 N · m · s / rad
Cs Flexible Shaft Elasticity 1.79× 10−1 N · m / rad
JLd Load Disk Moment of Inertia 6.70× 10−3 Kg · m2 / rad
bLd Load Disk Bearing Friction 5.10× 10−1 N · m · s / rad
fm Motor Friction 2.00× 10−1 N · m · s / rad
Jm Rotor Moment of Inertia 6.76× 10−3 Kg · m2 / rad

Time Update (predict)

Calculate Residue

Measurement Update (correct)

Calculate Model Likelihood

Calculate Model Probability

● Project the state ahead
● Project the error covariance ahead

● Compute the Kalman gain
● Update the state estimate
● Update the error covariance

● Calculates output prediction error 
(innovation sequence)

● Calculates each model likelihood 
based on the prediction error 
and prediction error covariance

Residual Generation
Extended Kalman 

Filter

Residual Evaluation
Autonomous 

Multiple Models 
Algorithm

Figure 4. Steps to implement the proposed FDI algorithm.

simultaneous failure simulations. Figure 6 shows the result
for a motor failure simulation.

In some simulations, it was observed that the algorithm
initially converged to the wrong mode, but over time the
estimate shifted to the correct state. Figure 7 illustrates
an example of a bearing failure simulation where the
algorithm initially indicated a motor failure. By analyzing
the filters estimate for this simulation, it is possible to see
in Figure 8 that for output y1 the separation between the
estimates is very subtle and for output y2 the motor failure
filter and bearing failure filter outputs are the closest ones.

Figure 8 shows another difference in the results when
compared with the linear system implementation pre-
sented in Coelho et al. (2019). For the linear system, the
Kalman Filter estimates for output y1 showed more sepa-
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Figure 5. Simulation result for the healthy system.
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Figure 6. Motor failure simulation result.

ration, contributing to a better system state identification.
Nonetheless, the algorithm was able to correctly isolate the
system state in all simulations with the non-linear system
and EKF.
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Figure 7. Simulation result in the presence of a bearing
failure.
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Figure 8. Filter estimate of a bearing failure simulation
(Note: signal sampling time was reduced to aid visu-
alization).

7.1 Algorithm Performance vs Failure Severity

The first set of simulations considered an ideal scenario
in which the system state matched exactly one of the
models in the model set. Even though this is one of the
assumptions of the AMM, this assumption may not hold
in real applications. Besides modeling approximations and
errors, a failure mode in real systems may evolve gradually,
with its severity increasing over time. For the motor
and bearing failures, the failure mode evolution could be
represented by a progressively change in the degradation
value. In order to assess the algorithm sensitivity to failure
severity, a set of simulations was conducted. For each
simulation, it was checked how quickly the algorithm was
capable of correctly identifying the failure. This time was
defined as the instant when the correct model probability
reached 90% and stayed above 90% until the end of the
simulation.

For the motor failure simulations, the failure severity range
used was from 0 up to an extra degradation of 100% of Ra,
with a step of 1%. Figure 9 shows the result of the analysis.
The x-axis represents the percentage of degradation in Ra

and the y-axis shows the time that the algorithm took to
correctly isolate the system state. A bold line marks the
0% degradation simulation (healthy system) and a dashed

line marks the standard degradation (65% of Ra). The
bars are plotted for each test case in which the failure was
correctly isolated. For degradation levels lower than 40%,
the algorithm was not able to detect the motor failure.
Figure 10 brings the equivalent result for the bearing
failure simulations. For degradation levels lower than 100%
of bMd, the algorithm was not able to detect the failure.
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Figure 9. Time until isolation versus degradation severity
for motor failure.
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Figure 10. Time until isolation versus degradation severity
for bearing failure.

The results presented herein for both failure modes corre-
spond to a single set of simulations of a particular noise
seed. The simulation was repeated for several noise seeds
and the results obtained are slightly different for each run
but the overall behavior remains the same. When compar-
ing the results obtained with a similar analysis performed
with the linear system implementation in Coelho et al.
(2019), it can be observed that the threshold for the failure
detection with the non-linear system was higher.

The algorithm was capable of correctly isolating both
the motor and bearing failures in a considerable range of
degradation levels, demonstrating robustness to variations
on the failure severity and modeling errors. The range in
which the failure was not identified is also important and is
associated with the algorithm sensitivity. Algorithms with
high sensitivity can often result in high false alarm rates
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triggered by disturbances and uncertainties. In addition,
small degradation levels may not affect the system overall
performance and, therefore, do not require any immediate
maintenance actions. On the other hand, safety-critical
systems may require high sensitivity FDI methods de-
pending on the hazard of the failure mode. Therefore, the
application may require more sophisticated methods. The
FDI algorithm sensitivity choice is highly dependent on
the application.

7.2 Algorithm Response to a Failure not Modelled

Besides possible variations on the failure severity, another
scenario that affects the AMM assumptions is when the
system is subjected to a failure mode not considered
in the model bank. The model considered in this case
study has over 10 parameters and the motor and bearing
failures consider changes in only two of them. All system
parameters are prone to degradation, however, it may
not be feasible to model all of the possibilities since
this will directly affect the architecture complexity and,
consequently, the computational effort required to run the
algorithm.

In order to study the effects of a failure mode that was not
considered in the model bank, a third failure mode referred
to as shaft failure was considered. Using the architecture
presented in Figure 2, the simulation was carried out with
the system presenting a deviation of -50% in parameter
Cs. In this simulation, the algorithm converged to isolate
a simultaneous motor and bearing failure, indicating that
the simultaneous failure EKF was the one that produced
the lowest residual among all the models in the model
bank.

When the FDI architecture was updated to include the
shaft failure model in the model bank, the algorithm was
capable of correctly isolating the failure mode. The result
obtained with the updated model bank including the shaft
failure model is shown in Figure 11.
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Figure 11. Flexible shaft failure simulation (failure in-
cluded in model bank).

With this new failure mode, if desired to cover all multiple
failure scenarios, four new models have to be added to the
model bank. Therefore, in order to handle multiple failures
with the proposed FDI architecture, a significant increase
in the number of models is needed.

8. CONCLUSION

This paper presented the application of a model-based
FDI algorithm based on EKF and multiple models to
a case study of a generic electromechanical system. The
simulations were performed using MATLAB®. The algo-
rithm was capable of successfully detecting and isolating
all failure modes considered in the model bank, which
comprised single and dual failures. Due to the algorithm
limitations and assumptions, the selection of the models
to build the bank requires special attention to make sure
that the relevant failure modes are captured and to avoid
false positives.

Besides the performance of the algorithm under ideal con-
ditions, the paper also presented an analysis of the impacts
of degradation severity and failure modes not considered
in the model bank on the performance of the algorithm.
Both analyses provoke the algorithm assumption that one
of the elemental filters represents the system true mode.
The failure severity study also assessed the algorithm
sensitivity. It was concluded that for the case study the
algorithm demonstrated certain robustness to variations
on the failure severity and modeling errors. Safety-critical
systems that require high sensitivity FDI may require more
sophisticated methods. For the analysis of the algorithm
response to a failure not modeled, the failure was detected
but incorrectly isolated, as expected. When the new failure
mode was included on the model bank, the isolation was
also successful. The addition of new failure modes can
significantly increase the models bank size, especially if
handling multiple failures.

The main motivation of this paper is the application
of the studied model-based FDI for building powerful
decision-making tools. Future work would include later
generation multiple-model algorithms and implementation
of alternative architectures for handling multiple failures.
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