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Abstract: This work presents the first robust model predictive control approach for controlling an
Electric Submersible Pump (ESP) lifted oil well system considering its benefits and operational
envelope constraints. The proposed scheme is based on a robust infinite horizon model predictive
controller (RIHMPC) with multi-model formulation as the uncertainty description and zone
control scheme to explicitly consider the time-varying ESP (downthrust and upthrust) envelope
constraints. The proposed control strategy is tested through simulation for the disturbances
commonly found in the oil wells with ESP installations and (nonlinear) plant/model mismatch
scenarios. Results show an applicable formulation capable of accommodating nonlinearities in
the form of uncertainties and a low computational cost, with characteristics suitable for real-
time applications.
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1. INTRODUCTION

The second most widely used artificial lift method is the
Electric Submersible Pump, which increases the flow rate
of oil wells, being a method that can yield the highest
oil production (Zhu and Zhang, 2018). Its operation must
satisfy the operational envelope, a phase portrait formed
by downthrust and upthrust constraints, through the ad-
justment of the pump rotational speed and the opening of
the production choke valve (Fontes et al., 2020).

Some development in control techniques for ESP-lift sys-
tems can be observed in the literature, mainly focused
on model predictive control (MPC), which systematically
handle typical system constraints. Pavlov et al. (2014)
proposed an MPC controller for an ESP-lifted oil well
facility to track the ESP intake pressure and minimize
the power consumption by applying a target to the choke
valve opening. Their formulation also considered the en-
velope operation constraints. In a similar formulation,
Binder et al. (2014) proposed an embedded MPC on a
programmable logic controller with hardware-in-the-loop
simulations to track the flow rate and indirectly minimize
the ESP power consumption by regulation of the motor
current. They did not consider the envelope constraints.
Another MPC application was proposed in Krishnamoor-
thy et al. (2016), based on the same control objectives of
Pavlov et al. (2014), but with a linearized model from a
high fidelity ESP simulator with heavy viscous crude oil.
The robustness of the control application was evaluated,
and it was able to deal even with fluid viscosity changes.

Patel et al. (2018) presented the first practical implemen-
tation of MPC in a real oilfield with multiple ESP-lifted
systems resulting in power savings form 10% to 20%. Their
control law considered the flow rate set-point tracking and
practical ESP constraints, using the rotational speed, the
choke valve opening, and the ESP voltage as manipulated
variables. Binder et al. (2019) include feed-forward action
to previous works (Pavlov et al., 2014; Binder et al., 2014)
considering measured disturbances, such as reservoir pres-
sure of the ESP-lifted oil well system, in order to evaluate
the improvement of the control performance.

The aforementioned works presented conventional formu-
lations of MPC, focused on the region of operation for
which they were proposed. Delou et al. (2019a) extended
the control operation range and robustness of predictive
controllers using an adaptive formulation based on a linear
combination of two models, without explicitly considering
the upthrust and downthrust constraints. After that, De-
lou et al. (2019b) proposed an adaptive multiple-model
formulation, where the model of the state estimator is also
updated, forming a robust approach for losing measure-
ments of state variables. Delou et al. (2020) compared two
switch strategies of interpolations for the state estimation
with equivalent results.

Furthermore, Fontes et al. (2020) presented the first ap-
plication of stabilizing MPC in an ESP-lifted oil well
system, using a zone approach to deal with envelope con-
straints, with economic targets and guaranteed feasibility,
but limited to a single linear model. Santana et al. (2021b)
extended this work through successive linearizations of
the model, forming an adaptive formulation applied to
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the zone MPC with guaranteed feasibility. Santana et al.
(2021a) presented another extension of Fontes et al. (2020),
being the first work to embed this zone MPC formulation
on a low-cost and low memory microcontroller focusing on
an ESP-lifted oil system.

Regarding robust MPC formulations applied to ESP sys-
tem, only Delou et al. (2019b) and Delou et al. (2020)
proposed a called robust MPC approach associated with
lack of state variables measurements, not related with
model uncertainties. Therefore, this work presents the
extension of the zone MPC (González et al., 2009) to
the robust case by explicitly considering a description
of uncertainties formed by different models for a set of
operating conditions, taking into account the envelope
constraints in a zone control approach in a structure that
can be implemented in practice. Slack variables related to
the problem constraints guarantee the robust stabilizing
properties and feasibility of the optimization problem,
which is a fundamental property when envisioning future
embedded applications. This work can be considered the
first explicitly robust approach of MPC applied to an
ESP system, capable of dealing with a set of operating
conditions.

This work is organized as follows. Section 2 briefly de-
scribes the ESP-lifted oil well system and its dynamic
model. Section 3 presents the proposed robust control
scheme. Section 4 presents a case study of applying the
proposed control strategy for different disturbance scenar-
ios and plant/model mismatch of the ESP system. Finally,
Section 5 concludes the paper.

2. THE ESP MODEL

A typical ESP-lifted oil well system is presented in Figure
1, whose variables are described from the associated mass
and moment balance equations, summarized in (1). The
ESP operation is based on manipulating the pump rota-
tional frequency (f) and the opening of the production
choke valve (zc) to control the additional pressure applied
to the oil and forcing it to rise to the surface. The so-called
operational envelope comprises time-variant upthrust and
downthrust constraints, which rely on fluid properties, flow
type, the average flow rate in the production column (qp)
and ESP head (H) dynamics. In this work, we consider
the average flow of the production column as a measured
variable, thus, at each sampling interval, the maximum
(Hmax) and minimum (Hmin) head values are defined for
the current value of qp in the operational envelope curve.

The dynamic model of the ESP-lifted oil well proposed in
Pavlov et al. (2014) is used for the dynamic simulation
of the ESP-lifted oil well system and is described as
differential-algebraic equations as follows:

ṗwh = 1.54× 108 (qp − qc)
ṗbh = 0.8584 (pr − pbh)− 3.7× 108qp
q̇p = 5.02× 10−9

[
pbh − pwh − 6.30× 108q1.75p

+9.32× 103
(
H − 1× 103

)]
qc = 2× 10−3zc

√
pwh − pm

pin = pbh − 1.85× 108q1.75p − 1.9× 106

H = 0.2664f2 + 133.09f · qp − 1.41× 106q2p

(1)

Figure 1. Scheme of an ESP-lifted oil production system
(Fontes et al., 2020).

where pbh, pwh, pin, pm are the bottom hole, wellhead,
intake and manifold pressures, respectively; qc are the
production choke flow rates, respectively.

3. PROPOSED ROBUST MPC SCHEME FOR ESP

The robust control scheme proposed here is based on
a multi-model approach, in which a set of L possible
linear models of the ESP dynamic are specified for some
operational points. The Robust Infinite Horizon Model
Predictive Control (RIHMPC), firstly presented in Odloak
(2004) and extended to the zone approach in González
et al. (2009), enforces a non-increasing cost constraints for
each of the models of the set, but the cost function is
minimized solely for a selected nominal model (González
et al., 2009). The RIHMPC formulation achieves robust
stability with the feasibility of the optimization problem
by using slack variables (Odloak, 2004).

The RIHMPC with zone control aims to solve the following
optimization problem at each time step k:

Problem P1

min
∆uk,ysp,k(Θn=1,··· ,L),δy,k(Θn=1,··· ,L),δu,k

Vk(ΘN )

Vk(ΘN ) =
m∑
j=0

∥yN (k + j|k)− ysp,k(ΘN )− δy,k(ΘN )∥2Qy
+

+
∥∥xst

N (k +m|k)
∥∥2
Q̄(ΘN )

+
m−1∑
j=0

∥u(k + j|k)− utg,k − δu,k∥2Qu
+

+
m−1∑
j=0

∥∆u(k + j|k)∥2R + ∥δy,k(ΘN )∥2Sy
+ ∥δu,k∥2Su

,

subject to:

−∆umax ≤ ∆u(k + j|k) ≤ ∆umax, j = 0, . . . ,m− 1,
(2)

umin ≤ u(k + j|k) ≤ umax, j = 0, . . . ,m− 1, (3)

u(k +m− 1|k)− utg,k − δu,k = 0, (4)
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and, for each n = 1, · · · , L,

ymin,k ≤ ysp,k(Θn) ≤ ymax,k, (5)

xs
n(k +m|k)− ysp,k(Θn)− δy,k(Θn) = 0, (6)

Vk(Θn) ≤ Ṽk(Θn), (7)

where ΘN represents the most likely model (or nominal)
of the set of L models, m is the control horizon, y(k+ j|k)
are the predictions of the controlled variables at time step
k+j given the information at time step k. ∆u(k+j|k) are
increments on manipulated variables, (umin, umax), ∆umax

are the bounds of manipulated variables and increments
on manipulated variables, respectively. (ymin, ymax) are
the zone specification for the controlled variables and
ysp,k are the output set-points within the zone control
scheme imposed by (5). xs

n(k + m|k) are the integrat-
ing states produced by the incremental form of inputs
in the state space for the L models. Qy and R are
the weighting matrices of (ny) controlled variables and
the increment of (nu) manipulated variables, respectively.
∆uk = [∆u⊤(k|k) . . .∆u⊤(k + m − 1|k)]T is the control
actions vector; δy,k ∈ Rny and δu,k ∈ Rnu are the slack
variables used to guarantee the feasibility of the optimiza-
tion Problem 1. Sy ∈ Rny×ny and Su ∈ Rnu×nu are the
weighting matrices of the slack variables. utg are input
targets and Qu is their weighting matrix. Vk(Θn) is the

actual cost function value for each model and Ṽk(Θn) is
the cost function obtained with a solution inherited from
Problem 1 at time step k−1 and translated to time k. More
details in Odloak (2004); González et al. (2009); Martins
and Odloak (2016).

The robust stability guarantee is associated with con-
straint (7), which imposes the cost contraction for all mod-
els. The prediction model is based on a canonical state-
space model formulation based on the analytical form of
the step response of the system (Odloak, 2004), which has
artificial integrating states to achieve offset-free tracking.
In this way, the terminal constraints (6) and (4) (softened
by slacks) must be part of the formulation to prevent the
cost from becoming unbounded.

Note that Problem 1 is a nonlinear optimization problem.
However, it is a convex problem and, therefore, less com-
putationally expensive than non-convex problems found
in nonlinear MPC formulations. Figure 2 shows the im-
plementation scheme of the RIHMPC in the ESP, where
the controlled variables are the intake pressure and pump
head (as zone approach with (Hmin, Hmax) limits defined
by operational envelope time-varying constraint function
of flow rate, as seen in Figure 1), considering the rotational
speed and choke valve opening as manipulated variables.

Since the prediction models have unmeasured states, it
is necessary to use L state estimators to infer the states
for each model from the measurements of the plant. In
this work, it was implemented linear Kalman filters as
estimators, as seen in Figure 2. Furthermore, since the
RIHMPC is based on the linear state-space models and the
ESP is represented by nonlinear model (1), it is necessary
to correct the mismatch effect, task also performed by the
Kalman filter.

RIHMPC

Kalman
Filter

Operational
Envelope

Economic
TargetConstraints

Figure 2. Scheme for application of the zone RIHMPC
controller in the ESP-lifted oil well.

4. SIMULATION RESULTS

This section presents the proposed zone RIHMPC strategy
in two scenarios of plant-model mismatch, with different
operating conditions in the nonlinear ESP-lifted oil well
system described as in (1). The control objectives adopted
to ESP under proposed RIHMPC:

(1) Tracking of set-point of the ESP intake pressure;
(2) Holding safe operation inside the ESP operational

envelope;
(3) Evaluating robustness to tackle disturbances and deal

with nonlinearities;
(4) Minimization of the power consumption of the ESP

motor.

In the control law of Problem 1, the RIHMPC is applied
to track and maintain the intake pressure reference and to
keep the pump head inside the operational envelope by the
manipulation of the rotational frequency and choke valve
opening. The first test scenario is focused on evaluation of
objectives (1), (2) and (3). Then, the second test analyzes
the objective (4) introducing the use of economic target in
the choke valve opening.

The multi-model set Θ is defined by linearization of the
ESP nonlinear model (1) for three different operating
points: fss,1 = 35.29 Hz, zcss,1 = 14.53 %; fss,2 =
55.44 Hz, zcss,2 = 31.58 %; fss,3 = 65 Hz, zcss,3 =
98.97 %. They are discretized with a sampling time of
2 seconds, forming L = 3 linear models in the canoni-
cal form. This amount of models map a wide operating
range to the system, representing probable operating con-
ditions of an ESP-lifted oil well system, and we sought to
choose the smallest number of models to avoid increas-
ing the computational burden. The tuning parameters of
the RIHMPC controller used in the following simulations
are: m = 4, Qy = diag([100, 1000]), Qu = diag([0, 0]),
R = diag([100, 0.0001]), Sy = diag([1, 0.01]) × 104, Su =
diag([0, 0]) and the ESP constraints: umin = [35 Hz, 0%],
umax = [65 Hz, 100%], ∆umax = [0.5 Hz/s, 0.5%/s].
The zone specification ymin(k) = [pin,sp(k), Hmin(k)] and
ymax(k) = [pin,sp(k), Hmax(k)], specifying set-point track-
ing for the intake pressure and min/max head from the
operational envelope. The typical tuning parameters of
the Kalman filters were defined as Qkf = 0.5 · I14 and
Rkf = diag([0.5, 0.5]).

In the first simulation scenario, we investigated the con-
troller performance under the conditions of reference track-
ing for intake pressure and unmeasured disturbance com-
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pensation when the plant is affected by a disturbance
related to a manifold pressure variation. To this end,
we introduced a decrease of 50% in manifold pressure
at 200 s, then an increase of 150% at 700 s, and finally
an increase of 40% at 1200 s. Also, we consider that the
plant is corrupted by measurement noises in the controlled
variables with Gaussian distribution N (0,W), and W =
diag

([
1.90 bar2, 23.81 m2

])
.

Figure 3 displays the dynamic behavior of the intake
pressure and shows that the controller is able to drive
this variable to the desired references, even under differ-
ent operating conditions. It is worth mentioning that the
nominal model of the controller (model 1) was linearized in
the region corresponding to the last set-point. Therefore,
it is clear that the RIHMPC controller preserves a good
performance for a wide operating range of the ESP sys-
tem, unlike the conventional IHMPC strategy with a sin-
gle nominal model, whose performance deteriorates when
moving away from the linearization region, as evidenced
in Santana et al. (2021b).

0 500 1000 1500

Time (s)

30

40

50

60

70

80

90

100

p
in
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b

a
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measurements

set-point

zone

disturbance

Figure 3. Dynamic of the intake pressure for RIHMPC
controller formulation.

With regard to the envelope constraints, Figure 4 shows
that this robust controller keeps the head within the zone
throughout the simulation. However, after the disturbance
input at instant 200 s, note that the system inevitably
operates outside the envelope during a short period, then
gradually returns to the zone. Also, note that the controller
evaluates the output set-point as the minimum value of the
zone - the upthrust constraint. This undoubtedly softens
the optimization problem and guarantees the feasibility of
the proposed zone RIHMPC scheme, unlike what would
happen, for example, if we were to directly restrict the
output predictions as it happens in classical MPC formu-
lations (it will not produce a solution). Figure 6 provides
another perspective on the system’s trajectory in terms
of the operational envelope, confirming that the controller
keeps the system outside the envelope for a short time after
the disturbance inputs.

The signal of manipulated variables produced by the
RIHMPC controller fulfills the input constraints and reacts
to compensate for the changes on input set-points and
disturbances exciting the system, as seen in Figure 5. As
the choke valve opening influences the nonlinearity of the
ESP-lifted system more strongly, note that the controller
made the system remains in a median region of zc, more
strongly associated with model 2. However, it maintained
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Time (s)
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400
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1000

1200

H
 (

m
)

measurements

setpoint

zone

200 250
850

900

950

Figure 4. Dynamic of the Head and envelope time-varying
constraint for RIHMPC controller formulation.

a robustly satisfactory performance considering model 1
as nominal.

0 500 1000 1500
30

40

50

60

70

f 
(H

z
)

0 500 1000 1500

Time (s)

0

50

100

z
c
 (

%
)

control effort

constraints

Figure 5. Signal of the manipulated variables.
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Figure 6. ESP operating envelop of the first simulation
scenario.

As mentioned in section 3, slack variables play a crucial
role in ensuring the feasibility of the optimization problem
resulting from the RIHMPC control law. Figures 7 and 8
show that the output slack variables are necessary during
the transient periods for all models of the uncertainty
description set. However, they converge shortly after that.
Furthermore, the cost function decreases, even when there
is a plant-model mismatch. It is worth mentioning that the
slack variables of each model represent the model’s degree
of error, shown by the difference between each model slack
after disturbances and reference changes.
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Figure 7. Output slack variables for the L models.
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Figure 8. Cost function of the nominal model.

In this scenario, we evaluate the computational effort
needed to calculate the nonlinear optimization problem,
as described in Problem 1. The computational times of
MATLAB’s fmincon solver are presented in Figure 9,
which is obtained on a computer with an AMD Ryzen
7 3700U, 12 Gb of RAM, and Windows 10 operating
system. As can be seen, throughout the simulation, the
computational times of Problem 1 do not exceed the
sampling interval considered in this case study, namely
2 s, thus proving to be perfectly viable for real-time
implementation purposes. The worst-case execution time
observed was 0.53 s, while the average computational time
was only 0.22 s. We emphasize that this computational
performance is related to the format of Problem 1, which
despite being a nonlinear optimization, it is a convex
problem, therefore, less computationally expensive.
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Figure 9. Computation time of the optimization problem.

In the next scenario it is evaluated the RIHMPC with
active economic target utg = zc → 90%. For this,
the tuning parameters are modified to Qu = [0, 1] and
Su = [0, 1]. This situation corresponds to forcing the
system to work in the region of maximum productivity
operation, also associated with model 3, to minimize ESP
energy consumption. The nominal model was maintained
as the first model of Θ to simulate the worse situation for
robustness evaluation.

The comparison between the performance of the controller
with and without the use of the target in Figure 10 shows
an equivalent dynamic for intake pressure, as expected,
since this variable is prioritized in both cases. The targeton
controller worked with smaller rotational frequency of the
ESP motor, and the choke valve opening converged to
zc,tg as seen in Figure 11. The practical difference between
ON/OFF target formulations lies in the fact that the
ESP head reaches distinct steady-states, with different
trajectories on the operational envelope, as seen in Figure
12. The computational effort of this scenario also respected
the sampling interval, with a maximum time of 0.39 s for
the targeton formulation while the targetoff reaches 0.50 s.
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Figure 10. Intake pressure in the comparison of target
application.
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Figure 11. Manipulated variables of target comparison
scenarios.

In order to ensure the feasibility to apply an input target,
the constraint (4) is softened with the input slack so that
the search for the target can be achieved when it is possible
for the system operation, as seen in the Figure 13, showing
the aforementioned convergence.
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Figure 12. Envelope constraint of target comparison sce-
narios.
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Figure 13. Valve opening input slack of target scenario.

If one considers the ESP power consumption through P =

CpP0

(
f

f0

)3

, where Cp is the viscosity correction factor,

P0 and f0 are the reference power and frequency, it can
be shown that the targeton RIHMPC yields a reduction
of 9.47% in this index, while maintaining almost the same
oil production: 7.3049 m3 with target OFF and 7.2677 m3

with targeton, achieving the desired economic benefits.

5. CONCLUSION

This work presented an explicitly robust MPC formulation
that was not yet been explored in ESP oil production
process installations. The control law allows including a
set of system information, i.e., models, to form a robust
formulation even in restricted scenarios, with a mismatch,
nonlinearities, and disturbances. Also, accommodating the
guarantee of feasibility by using slacked terminal con-
straints and successfully respecting the downthrust and
upthrust ESP envelope operating constraints by incorpo-
rating artificial set-points of the zone control approach.

The results showed the benefits of the RIHMPC controller
to all the nonlinearity of the ESP-lifted system, achieving
satisfactory performance even outside the nominal region,
as expected in a robust control formulation. In addition,
the computational performance obtained shows that the
formulation is viable for embedded applications, even in
the case of a nonlinear optimization, which is the objective
of future work.
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