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Abstract: We propose new convex conditions, formulated in terms of linear matrix inequalities,
allowing the design of robust state feedback controllers for time-varying discrete-time systems
under saturating actuators. We consider the case where the actuators can be saturated on
both magnitude and rate, which leads to more complex but realistic conditions. Because of
the nonlinearities, the regional input-to-state stability is employed, handling energy-bounded
disturbance signals. The feasibility of the proposed conditions allows computing safe estimates
of the initial conditions sets depending on the disturbance energy. Two numerical examples
illustrate the proposal’s application and serve to establish numerical comparisons with other
approaches from the literature.
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1. INTRODUCTION

Limitations in the actuators are a constant concern in
practical control systems, which has been thoroughly stud-
ied in the past years. Practical applications often require
magnitude or rate constraints on actuators due to oper-
ational security conditions, available energy, or physical
limitations. Such constraints may degenerate performance,
include spurious equilibrium points, and even yield unsta-
ble behavior (Tarbouriech et al., 2011, pp. 5). Although
most of the literature’s works only discuss magnitude
constraints, the neglected effects of actuators rate satu-
ration may cause severe accidents, like the meltdown that
occurred in the Chernobyl power plant (Stein, 2003) or
pilot-induced oscillation (PIO) resulting in aircraft crashes
(Klyde et al., 1997; Duda, 1997).

Two main approaches can be identified among the few
works dealing with both magnitude and rate stabilization.
In the first one, the controller is designed to embed the
nonlinear actuator model, not allowing the control signal
to violate the magnitude and rate limits of the actuator
(Kapila et al., 1999; Pan and Kapila, 2001; Gomes da
Silva Jr. et al., 2007). In the second approach, a first-
order system with a saturating input signal (describing the
magnitude saturation) and the rate saturation modeled
as the actuator state’s constraint is employed, leading
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to a particular case of nested saturations (Tarbouriech
et al., 2006; Bateman and Lin, 2003; Zhou, 2013). Such
an approach is also used in this work and has been
recently employed by Palmeira et al. (2016) to address
the stability analysis of magnitude and rate saturating
sampled-data control in the continuous-time framework.
Oliveira et al. (2022) use the second approach to explore
regional polyquadratic stabilization for discrete-time LPV
systems. However, even some works dealing with time-
varying systems, none of them cover uncertain systems
subject to disturbances in the discrete-time framework.

In this work, we consider the robust stability of parameter-
varying uncertain systems under disturbance perturba-
tions. Among early works, we highlight (Geromel et al.,
1991), where a numerically tractable formulation is pro-
vided for the robust stability analysis and state feedback
control design. The approach uses a quadratic (parameter-
independent) Lyapunov candidate function for (uncertain)
continuous and discrete time-varying systems. Therefore,
some works were developed taking into account the rates of
variation of the parameters, aiming to relax the quadratic
approach, such as (Kaminer et al., 1993; Peres et al., 1994).
However, even if the parameters have limited variation
rates, the quadratic stability approach considers the worst-
case scenario, i.e., arbitrarily fast variation, which may
lead to high conservative solutions. To mitigate the con-
servatism associated with the parameters’ independence,
some authors have proposed using parameter-dependent
Lyapunov functions. In (Daafouz and Bernussou, 2001),
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the authors propose the robust polyquadratic stability of
discrete-time systems regardless of parameter variation
in a polytope, certified by an affine parameter-dependent
Lyapunov function. Leite and Peres (2004) have addressed
the robust stabilization of linear discrete-time systems
with uncertain parameters with piecewise Lyapunov ma-
trices. Later, Lee (2006) have investigated the charac-
terization of discrete-time systems with arbitrary time-
varying parameters stability increasing a set of LMI con-
ditions through path-dependent Lyapunov functions. Us-
ing polynomial homogeneous Lyapunov functions, Oliveira
and Peres (2009) have considered the robust stabilization
in the discrete-time framework by modeling the time-
varying parameters in a polytopic domain and assuming
that the bounds on their rate of variation are known.
Other advances in robust control in the last decade are
the use of Lyapunov functions with non-monotonic terms
(Lacerda and Seiler, 2017) and the expression of time-
varying parameters in discrete-time as solutions of a linear
difference equation (Palma et al., 2020). Other methods
relying polyhedral Lyapunov functions can be found for
instance on (Ernesto et al., 2021). Despite the great de-
velopment found in linear parameter varying systems, the
robust control approach still plays a relevant role in real-
world applications because access to systems’ parameters
is not always available. Recent works dealing with robust
controllers with (magnitude) saturating actuators can be
found in (Boeff et al., 2019; Saifia et al., 2020).

The regional stability must be preserved because we are
dealing with nonlinear systems. Therefore, considering the
presence of exogenous signals is a required task to deliver
theoretical results to practical applications. Therefore, an
alternative is to define a set of admissible signals limited
in energy (Tarbouriech et al., 2011, pp. 26) to which the
closed-loop system remains stable. This characterization
can be made through the Input-to-State Stability (ISS)
design (Sontag, 2008).

The main objective of this work is to develop a con-
vex method to design robust input-to-state stabilizing
controllers for discrete-time systems under magnitude
and rate saturating actuators and exogenous energy dis-
turbance signals. We consider the class of the above-
mentioned saturating uncertain time-varying discrete-time
systems under ℓ2 (quadratic summable) exogenous signals,
covering a key theoretical gap in such a class of systems.
This work extends the proposal in Oliveira et al. (2022) by
handling the exogenous disturbance signal and considering
the practical case of robust control, which is useful when-
ever the parameters are not available for online controller
tuning. We formulated the problem with nested saturation
functions employing generalized sector conditions and pa-
rameter dependent Lyapunov functions, which leads to the
well-known Lur’e type system. Two numerical examples
are presented to compare our approach with others from
the literature and illustrate our proposal’s efficacy.

Notation. The set of real numbers is denoted by R, while
M ∈ R

n×m and x ∈ R
n are, respectively, a matrix

with dimension n × m with real entries and the vector
with n positions and real entries. The M transpose is
represented by M⊤ and M(i) (Mii) denotes the i-th row

(diagonal element (i, i)) of the matrix M . M⊤
(i) stands for

(M(i))
⊤. The Euclidean norm of x is denoted by ‖x‖.

diag{M1,M2} is a block diagonal matrix composed by
M1 and M2. In square matrices, the symbol ⋆ represents
the symmetric transposed blocks. The matrices I and 0

denote, respectively, the identity and the null matrices of
appropriate dimensions.

2. PROBLEM FORMULATION

Consider the uncertain time-varying discrete-time system
subject to magnitude and rate saturating actuators and
energy disturbance signals:

xk+1 = A(αk)xk +B(αk)φk(uk) +Bw(αk)ωk,

yk = C(αk)xk,
(1)

where xk ∈ R
n is the state vector, uk ∈ R

nu is the control
signal vector, yk ∈ R

ny is the measurable output signal,
ωk ∈ R

nw is an ℓ2 signal at time k, i.e., ωk is a quadratically
summable perturbation signal belonging to

W = {ω ∈ R
nw : ‖ω‖22 ≤ δ−1}, (2)

with ‖ω‖2 =
√

∑∞

k=0 ω
⊤
k ωk and δ−1 ∈ R+ represents the

maximum energy of the disturbance signals. The uncertain
time-varying matrices A(αk) ∈ R

n×n, B(αk) ∈ R
n×nu ,

Bw(αk) ∈ R
n×nw , and C(αk) ∈ R

ny×n belong to a
polytopic domain given by the convex combination of N
known vertices as follows:

M(αk) =

N
∑

i=1

αk(i)Mi, (3)

withM replacing matrices A, B, Bw, and C where αk ∈ P
is a vector of uncertain time-varying parameters, and
belongs to the unit simplex:

P=
{

κ∈R
N :

N
∑

i=1

κ(i) = 1, κ(i) ≥ 0, i = 1, . . . , N
}

. (4)

This work does not consider constraints on the variation
of αk.

Figure 1 presents the discrete-time counterpart of the
position-type feedback model with speed limitation, which
models each actuator channel (Tyan and Bernstein, 1997).

uk(r)
ρM(r)

−ρM(r)

+ Λrr

ρR(r)

−ρR(r)
+ z−1

−

+

satR (v)(r)satM (v)(r)

φk(r)

φk+1(r)

Figure 1. Schematic diagram of the first-order nonlinear
discrete-time system used to model magnitude and
rate saturation.

Therefore, from such a figure, the output is given by
φk(·) : Rnu → R

nu and has the dynamics

x̄k+1(r) = x̄k(r) + satR (ΛsatM (uk)− Λx̄k)(r) , (5)

φk(uk) = x̄k, (6)

for r = 1, . . . , nu, where x̄k ∈ R
nu is the actuators’

state, Λ ∈ R
nu×nu is a diagonal matrix composed by the

actuators’ poles, and for a signal v ∈ R
nu the symmetric

saturation functions concerning the rate and magnitude
are given by satR (v)(r) = sign(v(r))min(|v(r)|, ρR(r)),
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and satM (v)(r) = sign(v(r))min(|v(r)|, ρM(r)), respectively,
with ρR ∈ R

nu and ρM ∈ R
nu denoting the respective sym-

metrical bounds. A state feedback control law, including
the actutor’s state, is selected to robustly stabilizes the
closed-loop system (1)–(6):

uk = K̂zk = Kxk + K̄x̄k, (7)

thus leading to zk =
[

x⊤k x̄⊤k
]⊤ ∈ R

n+nu , K ∈ R
nu×n,

K̄ ∈ R
nu×nu , and K̂ =

[

K K̄
]

.

Therefore, the closed-loop system (1)–(7), is given by:

xk+1 = A(αk)xk +B(αk)φk

(

K̂zk

)

+Bw(αk)ωk. (8)

Differently from (Oliveira et al., 2022), we take into
account the disturbance signals and assume that the
time-varying parameters αk are not available. Such a
difference requires robust controllers and has a practical
aspect as exogenous signals are concerned. Define the
dead-zone functions to handle the actuators’ nonlinearities
ψMk = satM (uk) − uk, ψRk = satR (ΛsatM (uk)−Λx̄k)−
(ΛsatM (uk)−Λx̄k), and using the control law (7), ψRk

can be rewritten as ψRk = satR

((

Λ̂ + ΛK̂
)

zk + ΛψMk

)

−
((

Λ̂ + ΛK̂
)

zk + ΛψMk

)

, where Λ̂ = [0 −Λ]. Therefore, we

can rewrite the closed-loop system as an augmented Lur’e
type system as:

zk+1 =
(

Â (αk) + B̄K̂
)

zk+
[

B̄ B̂
]

[

ψMk

ψRk

]

+B̂w(αk)ωk, (9)

with yk = Ĉ(αk)zk,

Â(αk)=

[

A(αk) B(αk)
0 I− Λ

]

, B̄=

[

0

Λ

]

, B̂=

[

0

I

]

,

B̂w(αk)=

[

Bw(αk)
0

]

, Ĉ(αk)=

[

C(αk)
0

]⊤

.

(10)

Because the resulting closed-loop system (9) is nonlinear,
the regional (or local) stability must be addressed, includ-
ing the characterization of a region of initial conditions
RA ⊆ R

n+nu , such that the trajectories initiating in such
a region converge asymptotically to the origin. We call RA

the maximal region of attraction. Furthermore, we need to
consider the energy of ω ∈ W with δ > 0, and the set of
initial conditions R0 ⊆ RA must be determined to ensure
that the closed-loop trajectories do not leave the region
RA. To guarantee regional stability in the presence of
energy-limited exogenous signals, the following definition
(Sontag, 2008) is considered.

Definition 1. Consider a positive scalar δ and any se-
quence ω ∈ W. The resulting closed-loop system is said
to be regional input-to-state stable (ISS) if for any ini-
tial state belonging to R0 the resulting state trajectories
remain bounded in RA for all k ≥ 0. Moreover, if the dis-
turbance is vanishing, then the state trajectories converge
towards the origin.

Due to the difficulties in determining the region of at-
traction, such as non-convexity and eventually not being
limited in certain directions (Tarbouriech et al., 2011, pp.
14), we search for an estimate RE ⊆ RA and RE0 ⊆ R0 as
large as possible. Therefore, we can describe the problem
investigated in this work as follows.

Problem 2. Determine a robust state feedback gain K̂ and
estimates RE0 ⊆ R0 and RE ⊆ RA such that the closed-
loop system (9) is regional ISS for all ω ∈ W and αk ∈ P.
In addition, the designed controller must ensure a certain
upper limit of the ℓ2-gain, denoted by γ, between the
disturbance signal ω and the regulated output y, such that

‖y‖2 =
√
γ(‖ω‖2 + o), (11)

where the bias term o is due to the non-null initial
conditions.

2.1 Auxiliary Results

The following two lemmas were presented in (Oliveira
et al., 2022) as an adaptation of the (Tarbouriech et al.,
2006, Lemma 1). These lemmas are used to obtain the
main conditions of this work, with the sets:

SM(ρM)=
{

zk∈ R
n+nu:

∣

∣

∣

∣

(

(

K̂ −GM

)

zk

)

(r)

∣

∣

∣

∣

≤ ρM(r)

}

, (12)

SR(ρR) =
{

zk ∈ R
n+nu , ψMk ∈ R

nu :
∣

∣

∣

∣

∣

(

( [

Λ̂ + ΛK̂ Λ
]

−GR

)

[

zk
ψMk

])

(r)

∣

∣

∣

∣

∣

≤ ρR(r)

}

, (13)

for r = 1, . . . , nu. The set SM(ρM) concerns the magnitude
saturation while the set SR(ρR) regards the rate saturation,
and presents nested saturation function, because the rate
saturation function is dependent on the magnitude one.

Lemma 3. If zk ∈ SM(ρM), then the nonlinearity ψMk satis-
fies the following inequality:

ψ⊤
MkTM(ψMk +GMzk) ≤ 0, (14)

for any diagonal matrix TM > 0 belonging to R
nu×nu .

Lemma 4. If zk and ψMk ∈ SR(ρR), then the nonlinearity
ψRk satisfies the following inequality:

ψ⊤
RkTR(ψRk +GR

[

z⊤k ψ⊤
Mk

]⊤
) ≤ 0, (15)

for any diagonal matrix TR > 0 belonging to R
nu×nu .

For the proof of these lemmas, see (Oliveira et al., 2022).

3. MAIN RESULTS

The following theorem provides a solution to Problem 2
through an efficient numerical feasibility procedure formu-
lated in terms of linear matrix inequalities.

Theorem 5. Consider the uncertain and discrete-time-
varying system (1)-(6) under magnitude and rate satu-
rating actuators, and the saturation limits ρM and ρR for
the actuators’ magnitude and rate, respectively. Suppose
that there exist symmetric and positive definite matrices
P̃i ∈ R

(n+nu)×(n+nu), diagonal matrices LM, LR ∈ R
nu×nu ,

matrices Z, XM, XR1 ∈ R
nu×(n+nu), XR2 ∈ R

nu×nu ,

H̃ ∈ R
(n+nu)×(n+nu), i, j = 1, . . . , N , positive scalars µ

and δ, with matrices Âi, B̄, B̂, B̂wi, and Ĉi structured as
in (10), such that the following LMIs





Θ1 Θ2

⋆

[

−I 0

⋆ −γI

]



 < 0, (16)

[

−P̃i Z
⊤
(r) −X⊤

M(r)

⋆ −µρ2
M(r)

]

≤ 0, (17)
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−P̃i X⊤
M

H̃⊤Λ̂⊤
(r) + (ΛZ)⊤(r) −X⊤

R1(r)

⋆ −2LM LMΛ
⊤
(r) −X⊤

R2(r)

⋆ ⋆ −µρ2
R(r)






≤ 0, (18)

and
δ − µ ≥ 0 (19)

are feasible for ∀r = 1, . . . , nu, with

Θ1=−









P̃i H̃
⊤Âi

⊤
+ Z⊤B̄⊤ X⊤

M
X⊤

R1

⋆ −P̃j − H̃ − H̃⊤ B̄LM B̂LR

⋆ ⋆ 2LM X⊤
R2

⋆ ⋆ ⋆ 2LR









, (20)

Θ2=









0 H̃⊤Ĉi

⊤

−B̂w 0

0 0

0 0









. (21)

Then, the robust control gain (7) given by

K̂ = ZH̃−1, (22)

is such that, for all initial conditions belonging to the
estimated region of attraction RE = E(Pi, µ

−1),

(1) for ωk 6= 0 with ω ∈ W, the trajectories of the closed-
loop system do not leave the setRE = LV(µ

−1) ⊆ RA

for every initial state belonging to the set RE0 =
LV(β

−1) ⊆ R0, with β
−1 = µ−1 − δ−1, for all k ≥ 0

and αk ∈ P;
(2) ‖y‖22 ≤ γ(‖ω‖22 + V (z0, α0)), for k → ∞;
(3) for ωk = 0, the set RE = LV(µ

−1) ⊆ RA is a region
of attraction for the system (9), for all k ≥ 0.

Moreover, assuming E(Pi, µ
−1) = {zk ∈ R

n+nu : z⊤k Pizk ≤
µ−1}, for i = 1, . . . , N , an estimate of the region of
attraction is given by

LV(µ
−1) =

⋂

αk∈P

E(P (αk), µ
−1) =

N
⋂

i=1

E(Pi, µ
−1). (23)

Proof. The ISS is investigated by considering the follow-
ing parameter-dependent ISS-Lyapunov candidate func-
tion V (·, ·) : Rn+nu × P → R

+:

V (zk, αk) = z⊤k P (αk)zk, P (αk)=
N
∑

i=1

αk(i)Pi> 0. (24)

If (24) fulfills the following conditions for zk ∈ RE ⊆
R

n+nu and class K functions β1‖zk‖2, β2‖zk‖2, β3‖zk‖2,
and β4‖ω‖2, βi > 0, i ∈ {1, 2, 3, 4}:

β1‖zk‖2 ≤ V (zk, αk) ≤ β2‖zk‖2,
∆V (zk, αk) ≤ −β3‖zk‖2 + β4‖ω‖2,

(25)

for all allowed sequences of αk ∈ P, then it ensures
the regional stability of the closed-loop system, and the
following level set can be associated:

LV(µ
−1)=

{

zk∈R
n+nu :V (zk, αk)≤µ−1, ∀αk∈P

}

, (26)

with 0 < µ <∞.

Admitting the feasibility of (16), then LM and LR are

nonsingular. Also, from the positivity of P̃i and block (2, 2)

of Θ1, then H̃ is regular. Next, we do the replacements:
P̃i = H̃⊤PiH̃, P̃j = H̃⊤PjH̃, Z = K̂H̃, LM =

T−1
M
, LR = T−1

R
, XM = GMH̃, XR1

= GR1
H̃, and

XR2
= GR2

LM, multiply it by αk(i), αk+1(j), αk ∈ P, and
sum it for i, j = 1, . . . , N , and pre- and post-multiply

the resulting inequality by diag
{

H,H, TM, TR, I, I
}

, where

H = H̃−⊤, and its transpose (respectively). Then, we
apply the Schur’s complement and pre- and post-multiply

it by ξ =
[

z⊤k z⊤k+1 ψ
⊤
M
ψ⊤
R
ω⊤
k

]⊤
and its transpose, re-

spectively. Considering ∆V (zk, αk) = z⊤k+1P (αk+1)zk+1 −
z⊤k P (αk)zk, and replacing Ĉ(αk)zk for yk, we get

∆V (zk, αk)− 2ψ⊤
MkTMψMk

− 2ψ⊤
MkTMGMzk − 2ψ⊤

RkTRψRk − 2ψ⊤
RkTRGR1

zk

− 2ψ⊤
RkTRGR2

ψMk − ω⊤
k ωk + γ−1y⊤k yk < 0. (27)

Therefore, if (16) is verified and zk belongs to both
SM(ρM) and SR(ρR), i.e., conditions (14) are satisfied,

then (27) yields β1 = min eig(H̃−⊤P̃iH̃
−1), β2 =

max eig(H̃−⊤P̃iH̃
−1), with a small enough β3 > 0,

and β4 = 1. Therefore, the inequalities (25) are ver-
ified and V (zk, αk) is an ISS-Lyapunov function, since
∆V (zk, αk) ≤ 0 is checked. Also, the trajectories of
the closed-loop system (9) under the control law (7) are
bounded for any disturbance satisfying (2). Moreover,
there is an upper bound for the ℓ2-gain between the dis-
turbance and the regulated output.

It remains to demonstrate that the generalized sector
conditions (14)-(15) are in fact verified. The condition (17)
ensures the inclusion of the contractive level set given by
the Lyapunov function in SM(ρM). Assuming the feasibility

of (17), we apply the change of variables P̃i = H̃⊤PiH̃,

Z = K̂H̃, and XM = GMH̃, multiply it by αk(i) and sum
it up for i = 1, . . . , N . Next, we pre- and post-multiply it
by diag

{

H̃−⊤, 1
}

and its transpose, respectively. Applying
the Schur’s complement and pre- and post-multiplying by
z⊤k and zk, if is verified that z0 belongs to LV(µ

−1), it
follows that z⊤k P (αk)zk ≤ V (z0, α0) ≤ µ−1, leading to

ρ−2
M(r)|ΘMzk|2 ≤ µz⊤k P (αk)zk ≤ µV (z0, α0) ≤ 1. Thus,

|ΘMzk|2 ≤ ρ2
M(r), satisfying SM(ρM) given in (12).

Lastly, the feasibility of (18) ensures the inclusion of
the contractive level set given by the Lyapunov function
in SM(ρM) ∩ SR(ρR), since (17) has already been verified.

Then, replacing the following variables P̃i = H̃⊤PiH̃,
Z = K̂H̃, XM = GMH̃, XR1 = GR1H̃, XR2 = GR2T

−1
M

and LM = T−1
M

in (18), multiplying it by αk(i), and sum
it up for i = 1, . . . , N , pre- and post-multiplying by
diag

{

H̃−⊤, TM, 1
}

and its transpose, respectively, applying
the Schur’s complement and pre- and post-multiplying by
ζ⊤ = [z⊤k ψ⊤

Mk] and its transpose, respectively, it follows

that ΘR1(r) = Λ̂(r) + ΛK̂(r) − GR1(r) and ΘR2(r) = Λ(r) −
GR2(r)

for r = 1, . . . , nu, where ΘR1(r) = Λ̂(r) + ΛK̂(r) −
GR1(r) and ΘR2(r) = Λ(r)−GR2(r) for r = 1, . . . , nu. Similar
to the analysis above mentioned for equation (17), it can
be concluded that |ΘR1

zk +ΘR2
ψMk|2 ≤ ρ2

R(r) if z0 belongs

to RE ≡ LV(µ
−1), thus, z0 belongs to both sets SM(ρM) and

SR(ρR), given in (12) and (13), respectively, which ensures
the generalized sector condition. Hence, the convergence
to the origin of any trajectory of the closed-loop system
(9) starting inside LV(µ

−1) for ω = 0, is verified. ✷

Remark 6. The level set computation provided in (23) can
be viewed as a particular version of (Figueiredo et al., 2021,
Lemma 2, with g = 1) for Lyapunov functions affine on the

Sociedade Brasileira de Automática (SBA) 
XXIV Congresso Brasileiro de Automática - CBA 2022, 16 a 19 de outubro de 2022 

ISSN: 2525-8311 1088 DOI: 10.20906/CBA2022/3323



parameters. The main advantage of (23) is that the level
set are computed through finite dimensional conditions,
providing the estimates of the region of attraction and the
region of suitable initial conditions of system (9), called
respectively by RE ⊆ RA and RE0 ⊆ R0.

In case of no external disturbance, i.e., ω = 0 for all k ≥ 0,
the following corollary can be stated as a special case of
Theorem 5.

Corollary 7. Suppose that there exist symmetric and pos-
itive definite matrices P̃i ∈ R

(n+nu)×(n+nu), diagonal
matrices LM, LR ∈ R

nu×nu , matrices Z, XM, XR1
∈

R
nu×(n+nu), XR2

∈ R
nu×nu , H̃ ∈ R

(n+nu)×(n+nu), for
i, j = 1, . . . , N , and a positive scalar µ such that, Θ1 < 0,
(17), and (18) are feasible for ∀r = 1, . . . , nu. Then, the
control gain matrices given by (22) yield the control law
(7), ensuring the closed-loop asymptotic stability for all
initial conditions belonging to RE = LV(µ

−1) ⊆ RA.

3.1 Optimization procedures

The conditions for controller synthesis and estimation of
the region of attraction can be explored in different objec-
tives through convex optimization procedures as follows.

Maximization of the disturbance tolerance: The proce-
dure’s objective is to determine the robust control gain
maximizing the set of admissible perturbations ω ∈ W
for a set of allowable initial states R0. An interesting
particular case can be investigated when the system is
in equilibrium, i.e., z0 = 0. In such a case, we have
δ−1 = µ−1, which allows us to formulate the next convex
optimization procedure:

Π1 :















min
P̃i,j , LM, LR, Z, γ

XM, XR1
, XR2

, H̃

µ

s.t. LMIs (16)–(19), ∀(i, j) = {1, . . . , N}2.
(28)

Minimization of the ℓ2-gain: The objective is designing
the robust control gain that minimizes the ℓ2-gain between
the disturbance signal αk and the output yk, for a given
disturbance energy limit, δ−1. Thus, the following convex
optimization procedure minimizes the ℓ2-gain:

Π2 :















min
P̃i,j , LM, LR, Z, µ

XM, XR1
, XR2

, H̃

γ

s.t. LMIs (16)–(19), ∀(i, j) = {1, . . . , N}2.
(29)

4. NUMERICAL EXAMPLES

4.1 Example 1:

Consider system (1) adapted from (de Souza et al., 2019)
as A = 2(1+θ), B = 1(1+θ), Bw = 0.1(1+θ), C = 0.1(1+
θ), where the uncertain parameter |θ| ≤ 0.1, the actuator
parameter Λ = 15, and the symmetric limits of magnitude
and rate saturation given by ρM = 0.7 and ρR = 0.3.

We used the optimization procedure Π1 in (28) to design
a robust feedback gain such that, assuming a null initial
condition, i.e., zk = 0, the set of admissible disturbances
is maximized. Thus, we have δ−1 = µ−1. Consequently, we

got µ = 1.6602, i.e., ‖ω‖22 ≤ δ−1 = µ−1 = 0.6023, and the

robust gain vector K̂ = [−0.1275 0.8738] .

Therefore, using the robust gain obtained, the closed-loop
responses were simulated for the application of an energy
disturbance vector with the form ω = [0.7761 0], i.e., with
the energy bound obtained by the optimization procedure
with different sequences of the varying parameters αk. In
Figure 2, the state trajectories are presented by the blue
lines; observe that all of them converge to the origin and
do not leave the RE region, defined by the intersection of
the ellipsoids E(P1, µ

−1) and E(P2, µ
−1) (solid and dashed

black lines, respectively), given by the matrices of each
vertex of the Lyapunov function

P1 =

[

53.4607 39.0182
39.0182 30.8344

]

and P2 =

[

56.2748 41.1667
41.1667 32.3278

]

.

Notably, the trajectories approach the limiting edge of the
region of attraction. When applying a perturbation vector
with energy 139% greater than the energy bound obtained
by the optimization procedure, i.e., ωk = [1.8549 0], with
different sequences of the varying parameters αk, yields the
trajectories presented by the magenta lines. Note that one
of the trajectories presents an unstable behavior, leaving
the region of attraction. Although some sequences of αk

may lead to (regional) stable behavior, our conditions
cannot guarantee ISS for all possible sequences of αk under
a disturbance with energy superior to δ−1.

-0.4 -0.2 0 0.2 0.4 0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 0.1 0.2

-0.3

-0.2

-0.1

0

xk

x̄
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Figure 2. Trajectories of the system subject to the maxi-
mum admissible disturbance energy (blue lines) lim-
ited by RE and to a disturbance whose energy exceeds
the disturbance limit (magenta lines), for different
sequences of the varying parameters.

In the top plot of Figure 3, we see the plant state, and
the bottom plot shows the actuator’s output during the
simulation for the stable cases respecting the disturbance
limit determined by the optimization procedure and for
different sequences of αk. It is noticed that the applied
disturbance leads the actuator near to the limit of the
variation rate, but not reaching it, and the system stays
stable in the presence of the exogenous signal.

Sociedade Brasileira de Automática (SBA) 
XXIV Congresso Brasileiro de Automática - CBA 2022, 16 a 19 de outubro de 2022 

ISSN: 2525-8311 1089 DOI: 10.20906/CBA2022/3323



0 5 10 15

-0.2

-0.1

0

0 5 10 15

0

0.05

0.1

0.15

0.2

x̄
k

k

k

x
k

i

ii

iii

Figure 3. Simulations of the plant states (top) and actu-
ator’s outputs (bottom) in the presence of the maxi-
mum admissible disturbance for distinct sequences of
the varying parameters, such that i. αk(1) = 0.01k;
ii. αk(1) = abs(sin(1 + k)); iii. αk(1) = abs(sin(2 +
k/0.01)). In all cases, αk(2) = 1− αk(1).

4.2 Example 2

Consider the precisely known discrete-time pendulum
model given by (1) investigated by Gomes da Silva Jr.
et al. (2007), with matrices

A =

[

1.0013 −0.0500 −0.0013
−0.0500 1.0025 0.0500
−0.0013 0.0050 1.0013

]

, C =

[

1 0 0
0 1 0

]

,

B = Bw = [−0.0021 0.1251 5.0021]
⊤ × 10−2, with the

actuator parameter Λ = 20, the magnitude and rate limits
ρM = 1.25 and ρR = 2, respectively. Assuming a null
initial condition, i.e., zk = 0, we used the optimization
procedure Π2 given in (29) in order to design robust
controllers that minimizes the ℓ2-gain for different values
of maximum admitted perturbation energy (δ−1), and
compared the results with those obtained in (Gomes da
Silva Jr. et al., 2007). For δ−1 = {1, 2, 4, 8} we got the
ℓ2-gains as γ = {2.8284, 4.5576, 10.1845, 57.7117}. For
the same disturbance limits, (Gomes da Silva Jr. et al.,
2007) got γ = {2.2508, 4.7053, 14.5536, 211.8103}. As we
can see, unless for δ−1 = 1, our approach yields better
results, resulting in control gains that better mitigates high
disturbance effects.

In cases where the pendulum model may present un-
certainties, consider that A = A + FθW , with F =

[1 0 1], W = [0.05 0 0.01]
⊤
, and |θ| ≤ 0.001. For δ−1 =

{1, 2, 4, 8} for the same maximum disturbance limits used
before, the optimization procedure Π2 yields to the ℓ2-
gains γ = {2.8471, 4.5927, 10.3391, 62.036}. Predictably,
the values of the ℓ2-gains slightly increased, resulting in
less effective disturbance attenuation than the precisely
known system. However, see that the Theorem 5 can be
used in uncertain systems, while the method in (Gomes da
Silva Jr. et al., 2007) does not apply for such a case.

5. CONCLUSIONS

We have presented new LMI conditions that efficiently
solve the robust controller design that ensures the regional
input-to-state stability of time-varying discrete-time sys-
tems under magnitude and rate saturating actuators. By
handling exogenous energy signals, the feasibility of the
proposed conditions allows computing an estimate of the
region of attraction, RE . Moreover, it allows handling
some practical control issues, including minimizing the ℓ2-
gain between the measured output and the disturbance
signal or maximizing the tolerable disturbance energy. Our
approach has been compared with other results from the
literature with the aid of two numerical examples. The
results suggest better performance of our proposal.
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