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Abstract: This paper proposes a Path Planning with Collision Avoidance based on a Radial Basis
Function (RBF) trained with random points generated by a Probabilistic Roadmap algorithm.
Experiments were performed on a computational model of a SCARA manipulator. The
trajectory achieved was evaluated using computational cost, R2 (multiple correlation coefficient)
and root mean square error (RMSE). The results of the trajectory generated by the algorithms
in the Cartesian space and also the trajectories of each joint of the manipulator, calculated from
the inverse kinematics, show that RBF proved to be an efficient path estimator. The result was
compared with Artificial Neural Networks Multilayer Perceptron (MLP) algorithm, where the
RBF proved to be more efficient.

Keywords: Radial basis function, probabilistic roadmap, collision avoidance, path planning,
SCARA robot.

1. INTRODUCTION

Over the years, following the development of the industrial
revolution, robotics started to be inserted in the processes
of this sector in order to provide a productive gain. With
technological evolution, the use of robotics in the industrial
environment has increased and, therefore, several types of
robots were created with the purpose of helping or even
replacing man in certain tasks (Dias et al., 2021; Souza,
2008). In this way, the most diverse activities within the
industry started to be carried out by robots, and it is
necessary that they achieve their functions effectively and
safely.

In the industry, the execution of tasks by robots occurs
in classified areas, which may or may not involve the
construction of delimited areas to promote the separation
between machine and operators Batista et al. (2017).
Despite the growth in efficiency, there is still a difficulty in
interaction between operator and machine. The industry
aims at human-machine interaction, that is, man and
machine working together (Dias et al., 2021; Guerin et al.,
2019). However, the possibility of accidents at factories,
such as collisions, cannot be ruled out.

⋆ This work was supported by the program PIBIC/PIBIT 2021/2022
funded by the IFCE/CNPq/FUNCAP.

According to a study by Pedro (2013) and Haddadin et al.
(2008), in cases of impact with a human being, the speed of
the robot has a more significant role than its mass, and can
put the life of an operator at risk. Therefore, it is essential
that the robot is able to complete its activity, avoiding
obstacles and collisions with the human being.

In order to avoid these collisions and trace the best possible
trajectory, collision prevention algorithms are used. PRM
is a powerful method for generating collision-free paths for
manipulators with high degrees of freedom (DOF) in non-
dynamic environments (Safeea, 2020; Kavraki et al., 1996).
The method consists of generating random configurations
in the space where the manipulator is located. However,
as PRM is entirely based on random sampling, the search
path is random, so it is possible that the eventual search
path is not always the best path (Gang and Wang, 2016).
To work around this problem, there are ways to optimize
the algorithm.

In order to improve the result found with PRM, we can
use computational intelligence techniques such as Artificial
Neural Networks (ANN). Artificial neural networks were
developed as generalizations of mathematical models of
the biological nervous system (Abraham, 2005).

In this paper, the Probabilistic Roadmap (PRM) algo-
rithm provides input data to generate an estimator based
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on Radial Basis Function (RBF) and Multilayer Percep-
tron (MLP) Artificial Neural Network (ANN).This paper
aims to implement the artificial neural networks MLP and
evaluate the performance of the RBF ANN trained with
data from a probabilistic roadmap algorithm applied to
a SCARA (Selective Compliance Assembly Robot Arm)
manipulator in the generation of collision avoidance trajec-
tories in a scene with static obstacles. The implementation
of the method is demonstrated from two obstacles, in
which the algorithm is submitted to the challenge proce-
dure of identifying the obstacles and elaborating a safe
trajectory from the starting point (qinitial) to the final
point (qfinal). The result also shows the computational
costs, R2 (multiple correlation coefficient) and root mean
square error (RMSE).

The main contribution of this work is based on the im-
plementation of the RBF and MLP ANN with PRM for
collision avoidance trajectory generation. The ANN algo-
rithm learns the PRM so that the trajectories generated
by the PRM are improved of form optimally and with-
out collision, thereby spending less time to be executed.
Other contributions can be mentioned: optimized PRM
with RNA algorithm for collision avoidance trajectory
generation; application of the PRM algorithm to a SCARA
manipulator; PRM with RBF and MLP ANN algorithm
for collision avoidance trajectory generation.

The rest of the article breaks down as follows. Section 2
describes the characteristics of the SCARA manipulator
and the forward and inverse kinematics model. Section 3
presents the methodology used, as well as the description
of the PRM, MLP and RBF algorithms. The results are
presented in Section 4 and finally the conclusions are
mentioned in Section 5.

2. SCARA MANIPULATOR

The SCARA (Selective Compliance Assembly Robot Arm)
manipulator is a 3-DOF robot shown in Figure 1. In this
work, we use only 2 DOF. The first two joints revolve
around the vertical axis (z1 and z2) performing together
parallel to the horizontal plane XE YE , thus behaving as
a 2-DOF planar robot (see Figure 2).

Figure 1. Robotic manipulator SCARA.

2.1 Forward Kinematics

We use the Denavit-Hartenberg (DH) convention to de-
velop the kinematic model and compute the parameters

α, a, d and θ using the manipulator coordinate system
presented in Figure 2 (Hartenberg and Danavit, 1964).

To find the direct kinematic model, it is used the Denavit-
Hartenberg (DH) convention. So, in order to calculate the
parameters α, a , d and θ the manipulator coordinate
system, presented in Figure 2, was adopted DH convention
(Hartenberg and Danavit, 1964).

Figure 2. SCARA robot joint coordinate systems.

Table 1. DH Parameters of the SCARA ma-
nipulator.

Link ai αi di θi
1 0.35 0 0.32 θ1
2 0.30 π 0 θ2
3 0 0 d3 0

The homogeneous transformation matrices of the coor-
dinate systems, composed of four basic transformations,
are found from the DH parameters. The positions in the
workspace can be achieved from the joints space coordi-
nates, as observed in equations (Romano and Dutra, 2002):

Px = 0.35cos(θ1) + 0.30cos(θ1 + θ2) (1)

Py = 0.35sen(θ1) + 0.30sen(θ1 + θ2) (2)

The equations (1) and (2) are the direct position kinemat-
ics problem solution for the SCARA manipulator.

2.2 Inverse Kinematics of SCARA

From the equations of direct kinematics (1) and (2) and
applying some trigonometric transformations we find the
inverse kinematics equations, given by (Batista et al.,
2020):

θ1 = tan−1

[
Py(L1 + L2cos(θ2))− PxL2sen(θ2)

Px(L1 + L2cos(θ2))− PyL2sen(θ2

]
(3)

θ2 = cos−1

(
P 2
x + P 2

y − L2
1 − L2

2

2L1L2

)
(4)
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where L1 = 0.35 m and L2 = 0.30 m, are the length values
of each manipulator joint, as shown in Figure 2.

3. METHODOLOGY

3.1 Probabilistic Roadmap Method

Probabilistic Roadmap (PRM) method provides motion
planning to find a collision avoidance path. It is success-
fully used in mobile robots in the presence of obstacles
(Mohanta and Keshari, 2019). This methodology is ex-
tremely efficient due to the ability to design paths quickly
and the prevalence of the shortest path. In this method,
a random sample of the configuration space is initially
generated using a uniform probability distribution. In se-
quence, the algorithm tests the sample for collision, if it is
not detected, the trajectory of the point will be generated
qinitial to qfinal (Sciavicco et al., 2011; Dias et al., 2021;
Siciliano et al., 2009).

PRM randomly generates a set of configurations, which
are represented as nodes. Then the planner connects these
nodes until a more efficient path is elaborated (Spong
et al., 2020). In the literature directed to PRM, these are
the main functions used to determine the best connection
between the created nodes, from the calculated distance:

||q′ − q|| = [

n∑
i=1

(q′i − qi)
2]

1
2 , (5)

maxn|q′i − qi|, (6)

[
∑

pϵA||p(q′)− p(q)||2] 12 , (7)

maxpϵA||p(q′)− p(q)||. (8)

The logic of the Probabilistic Roadmap (PRM) is based
on previously analyzing the robot’s trajectory from a pre-
determined map. Therefore, this knowledge of the location
that the robot will transit is possible for it to calculate the
route it will follow. Therefore, the SCARA manipulator
will calculate the route effectively, aiming to distance all
obstacles along the path.

In the PRM, the map described for the machine will
be analyzed, and verified, so that it is identified where
obstacles and open access roads are. The method is based
on random plotting of imaginary points. These points will
be fixed in places that were determined to be free, that
is, without obstacles. The trajectory developed by this
algorithm values not only collision avoidance movement,
but also the shortest path Sciavicco et al. (2011).

For trajectory planning with PRM, the following steps are
necessary:

(1) The path is a graph G(V,E);
(2) The robot configuration q → Qfree is a vertex;
(3) The edge (q1, q2) implies a collision avoidance path

between these robot configurations;
(4) A metric is required to d(q1, q2) (for example, eu-

clidean distance);
(5) Use of coarse knot sampling and fine edge;
(6) Result: a path in Qfree.

The pseudo-code of the Probabilistic Roadmap Algorithm
1 presented below.

Algorithm 1. Algorithm Probabilistic Roadmap.

Input:
n: number of input nodes in the roadmap
k: number of neighbors for each configuration
Output:
A roadmap G = (V,E)
————————————————–
1: V ← ∅
2: E ← ∅
3: while |V | < n do
4: repeat
5: q ← a random configuration in Q
6: until when q is collision free
7: V ← V ∪ {q}
8: end while
9: for all q ∈ V do
10: Nq ← k neighbor’s q chosen from V
according to the distance
11: for all q′ ∈ Nq do
12: if (q, q′) /∈ E and ∆(q, q′) ̸= null then
13: E ← E ∪ {(q, q′)}
14: end if
15: end for
16: end for

3.2 Multilayer Perceptron (MLP) ANN

One of the benefits of using Artificial Neural Networks as a
method to solve the problem stated is the high possibility
of obtaining linear and nonlinear models. The Multilayer
Perceptron Artificial Neural Network (MLP ANN) is the
most commonly used type to solve multiclass or nonlinear
problems. This type of ANN’s is a supervised learning
network since it requires not only input but also output
data to perform learning of a mapping between input and
output variables (Rocha et al., 2021). The MLP network
has the main function of creating a model that correlates
the inputs and outputs of a system. Figure 3 shows an
MLP ANN.

Figure 3. Basic structure of the MLP ANN.

MLP ANN can learn from an algorithm called backprop-
agation. Therefore, an iteration of the input data in the

Sociedade Brasileira de Automática (SBA) 
XXIV Congresso Brasileiro de Automática - CBA 2022, 16 a 19 de outubro de 2022 

ISSN: 2525-8311 0934 DOI: 10.20906/CBA2022/3302



neural network is made, where in each loop the actual
output of the network is compared with the deed, thus
an error is obtained. The goal is to minimize this error
by adjusting the weights until a desired convergence is
achieved.

Algorithm 2. MLP ANN Training.

1: GenerateWaji randomly the weights and bias Bi, where
i = 1, ..., N of the N neurons;
2: Calculate the output of the hidden layer;
3: Calculate the output weights;
4: Error calculation;
5: Backpropagation Training.

The backpropagation algorithm is used in the training of
multilayer neural networks with one or more hidden layers.
A brief summary of MLP ANN retropropagation training
is presented. The neuron error response j in loop n is
represented by:

ej(n) = sj(n)− yi(n), (9)

where sj(n) is the desired response for neuron j of the
output layer. The instantaneous value of the quadratic
error for neuron j is defined by 1

2e
2
j (n). The sum of the

instantaneous quadratic errors of the network is then
defined by:

ϵ(n) =
1

2

∑
j∈C

e2j (n), (10)

where C is the set that contains all the neurons of the
network output layer. Let N be the total number of
training patterns contained in the training set. The mean
square error is then defined by:

ϵav =
1

N

N∑
n=1

ϵ(n) (11)

The Algorithm 2 show training process where the output
neuron (y = j) fed by the activation’s of all the neurons
of the immediately preceding layer. The activation func-
tion used was the logistic sigmoid. The level of internal
activation of neuron j is given by:

vj(n) =
P∑
i=0

wjiyi(n), (12)

where the variable j the amount of neurons in the hidden
layer P represents the number of entries without the bias.
Therefore the activation yj(n) of neuron j is given by:

yj(n) = fj(vj(n)), (13)

To minimize the mean square error first need to determine

the instantaneous gradient ∂ϵ(n)
∂wji(n)

. Applying the chain

rule one can express this gradient as (Rocha et al., 2021):

∂ϵ(n)

∂wij(n)
=

∂ϵ(n)

∂ei(n)

∂ej(n)

∂yj(n)

∂yj(n)

∂vj(n)

∂vj(n)

∂wji(n)
(14)

The adjustment rule is given by (Rocha et al., 2021):

wji(n+ 1) = wji(n)− η(n)
∂ϵ(n)

∂wji(n)
, (15)

where η(n) is the learning rate in iteration n.

The backpropagation training algorithm can be summa-
rized as: the partial derivative of the sum of the instan-
taneous errors with respect to the weight wji(n) that

connects neuron i to neuron j which can be shown below:

The calculation of the local gradient ηj(n) depends on
whether the neuron is an output or hidden neuron. The
parameters chosen for the MLP ANN configuration is 1
hidden layer, 50 neurons in each hidden layer, 1000 epochs
and 0.001 learning rate.

3.3 Radial Basis Function (RBF) ANN

Figure 4 presents the architecture of an RBF neural net-
work that is composed of 3 layers, input layer, hidden layer
and output layer. According to (Souza et al., 2019) the hid-
den layer operation is done by a nonlinear transformation
of the input layer data.

Figure 4. Architecture of RBF ANN.

Let an integer P<N (N = number of data of training). The
Equation (16) provides the output of the neural pattern of
Figure 4:

P∑
k=0

wkφ(x; tk) + wo, (16)

where tk represents the centers of radial basis functions.

Using regularization in the training of this neural network
the function ϵR to be minimized is described by:

ϵR =
N∑
i=1

(di − f(xi))
2 +

P∑
j=1

λjw
2j, (17)

Where the desired output vector is given by d = [d1, d2, ...,
dN ]T , the synaptic weight vector is given by w = [w0,w1,
w2, ..., wp]

T , the neural network response is given by f(xi)
and the regularization term is given by λj .

During training, the locations of the centers tk of the radial
basis functions are found. The radial basis function chosen
for the work was Gaussian as defined by:
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φ(x, tk) = exp (− 1

σ2
k

||x− tk||2), 6k = 1, 2, 3, .., P (18)

where σ represents the width of the radial function and tk
its center. The output of the RBF ANN is given by:

y =
P∑

k=0

wk exp (−
1

σ2
k

||x− tk||2) + wo (19)

The Φ wrappings where is the representation of the inter-
polation matrix.

Φ =


1 φ(x1, t1) φ(x1, t2) . φ(x1, tp)
1 φ(x2, t1) φ(x2, t2) . φ(x2, tp)
. . . . .
. . . . .
1 φ(xN , t1) φ(xN , t2) . φ(xN , tP )

 , (20)

The Equation (20) can be described as:

w = (ΦT .Φ+Q)−1Φ.d (21)

where Q is:

Q =

λ1 0 . 0
0 λ2 . 0
. . . .
0 0 . λr

 , (22)

For the training of the centers of the RBF network it
was used the kmeans unsupervised learning method. The
kmeans algorithm was proposed used in clustering ap-
plications. Let c(t)

m
j=1 be the centers of the radial basis

functions in iteration t. The kmeans algorithm can be
described as follows:

Algorithm 3. Training centers with kmeans.

1: Choice of distinct random values for the centers cj(t);
2: Take a random vector xi from the set of input patterns;
3: Determine the index k of the center closest to the input
pattern as: k(xi) = arg minj ||xj(t)− cj(t)||, j = 1...m;
4: Adjust the centers using the following rule of the
Equation (23), where γ ∈ (0,1) is the adjustment rate;
5: Repeat steps 2 to 5 for allN input patterns and until the
centers do not show significant change after each complete
presentation of the N patterns.

{
cj(t+ 1) = cj(t) + γ[xi(t)− cj(t)], k = k(xi)

cj(t),
(23)

3.4 Initial conditions

The Probabilistic Roadmap method is implemented on a
map that has two circular obstacles. The scenario is formed
by the initial position (0.4; 0.7), final position (0.4; 0.1)
of the manipulator, in Cartesian space. For obstacles, the
positions (0.3; 0.4) were used for obstacle 1 (which is more
to the left), and (0.5; 0.4) for the obstacle 2 (which is more
to the right) in the scene, positions that define their center
in the Cartesian space.

Figure 5 represents the application of the Probabilistic
Road map, which based on random points, elaborates a
collision-free trajectory.

Probabilistic Roadmap

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
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0
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0.2

0.3

0.4

0.5

0.6

0.7

0.8

Y
 [

m
e

te
rs

]

Figure 5. Trajectory elaborated by PRM.

The algorithm elaborates a collision-free trajectory based
on random points in Cartesian space. Based on the points
chosen by the PRM, these will be used as input data
for the MLP and RBF networks. In addition, the inverse
kinematics for the trajectory generated by the PRM will
be calculated, resulting in the output that will be used to
train the neural networks. Thus, using the acquired data,
the networks will be trained to elaborate a collision-free
trajectory based on the PRM method.

In the present study, the architecture of ANN MLP and
RBF based on PRM was used to learn or collision-free
path to generate collision-free costumes of the SCARA
manipulator. Furthermore, the parameters chosen for RBF
ANN configuration was 1 hidden layer, 10 centers and
1000 epochs, for MLP ANN the parameters chosen was
50 hidden layers and 1000 epochs.

3.5 Evaluation metrics

All methods were evaluated by root mean square error
(RMSE) in Equation (24) and multiple correlation coeffi-
cient (R2) in Equation (25).

RMSE =

∑T
t=1(ŷ(t) − y(t))

2

T
(24)

where ŷ is the prediction, y is the observed variable and T
is the number of data points used for testing.

R2 = 1−
∑n

i=1(y(i) − ŷ(i))
2∑n

i=1(y(i) − ȳ(i))2
(25)

where:
y(i): is observation;
ŷ(i): is prediction;
ȳ(i): is average of observations.

4. RESULTS AND DISCUSSIONS

To generate a trajectory in cartesian space using PRM,
2500 points were used with a distance of 0.03 between
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them. These points chosen by PRM to form the collision-
free path are used as input data for MLP and RBF
networks.

4.1 MLP Results

Figure 6 presents the real and estimated path generated
by MLP based on PRM collision free.
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Figure 6. Trajectory generated by MLP based on PRM.

Figure 7 show the trajectory of joints 1 and 2 of the
manipulator for the collision-free path of the MLP network
found from the inverse kinematics model (equations (3)
and (4)) and from the points found in Figure 6.
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Figure 7. Joints trajectory generated by MLP based on
PRM.

4.2 RBF Results

Figure 8 presents the real and estimated trajectories gen-
erated by RBF based on PRM.

Figure 9 show the trajectory of joints 1 and 2 of the
manipulator for the collision-free path of the MLP network
found from the inverse kinematics model (Equations (3)
and (4)) and from the points found in Figure 8.
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Figure 8. Trajectory generated by RBF based on PRM.
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Figure 9. Joints trajectory generated by RBF based on
PRM.

4.3 Discussions

A comparison was made between the algorithms of the
two ANN. The Root Mean Square Error, R2, number
of neurons and computational cost for each ANN were
analyzed.

Table 2. Comparison of algorithms through
evaluation metrics.

ANN RMSE R2 Comp. coast [s]

MLP 3.2 e-09 0.9999 12.7432

RBF 9.7834 e-05 1.0000 0.200434

Table 3 presents the epochs number, hidden layer number,
and number of neurons in the hidden layer (h-l) and in the
output layer (o-l).

Observing the source data in Table 2, it is possible to see
that in terms of RMSE, for the same number of neurons in
the hidden layer, the MLP network has the lowest value.
However, observing the computational cost, it can be seen
that the RBF network has a higher speed than the MLP
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Table 3. Comparison of ANN algorithm param-
eters.

ANN Epoch Hidden layer Neurons h-l Neurons o-l

MLP 1000 1 50 1

RBF 1 1 50 2

network, since its execution time was considerably lower.
The computational cost is important when it comes to
real-time implementation, as it is this time that informs if
it is possible for the algorithm to do the collision avoidance
with the manipulator in motion.

5. CONCLUSIONS

The MLP and RBF algorithms, based on PRM, are
efficient in applications where a collision-free trajectory
is required, and it can be afirmated that this study has
a contribution in this context. This article compared the
use of two collision-free path algorithms in a SCARA
manipulator. Based on the results of trajectory elaboration
by random points of the PRM, both neural networks
obtained satisfactory results.

In carrying out the trajectory from the data generated by
the PRM, the variable that stood out in the difference
between the MLP and the RBF was the computational
cost, for the MLP the time was 12.7432 s, while for the
RBF it was 0.2004s. For the RMSE, the MLP had a
low value of 3.2 e-09, while the RBF had a value of
9.7834 e-05. For R² the difference was minimal. Therefore,
both algorithms are satisfactory in collision avoidance for
the manipulator under study. However, the RBF network
presented a much better computational cost.

As future work we intend to: Implement algorithms that
develop collision-free trajectories, for the SCARA manip-
ulator, based on computer vision.
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