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Abstract: Artificial Intelligence techniques, mainly machine and deep learning ones, are becom-
ing the most common approach for data prediction. In this context, using these techniques
instead of approaches based on classical statistics has shown interesting and important contri-
butions to weather prediction. The present paper discusses the prediction of rainfall and clouds
direction based on a sequence of 10 and 14 frames of radar images with a loss inferior to 0.06. Two
different Convolutional Long-Short Term Memory Networks configurations were tested and this
work presents the estimated frames resulting from these algorithms and presents comparisons
between them, real data, and with the performance of other works. The results show that these
algorithms can be suitable for short-term weather forecasting.

Keywords: Artificial intelligence; machine learning; ConvLSTM; image processing; weather
forecasting.

1. INTRODUCTION

Climate change is one of the most important concerns
of the 21st century and it is a well-known fact that
weather modeling and prediction are a mathematical and
computational challenge. Meteorological phenomena are
complex dynamic systems and involve different fields of
physics and mathematics.

According to Shi et al. (2015) and Kumar et al. (2020),
nowcasting, i.e. short-term prediction of rainfall intensity
in a local region, involves non-uniform modeling of mete-
orological phenomena over time. More precisely, rainfall
is a continuous but intermittent random process usually
recorded as a cumulative quantity over constant time in-
tervals as is declared by Ramesh (1998); Poornima and
Pusgpalatha (2019) while precipitation fields are complex
and irregular according to Rasmussen and Abbasnezhadi
(2014). All these features increase the difficulty of a precise
nowcasting.

⋆ The authors would like to thank Institut de Recherche pour le
Développement for the financial support.

Rainfall has an influence on ecosystems, agriculture, en-
ergy production, and even tourism. It is an important re-
source for human life: long drought periods, monsoons, and
floods have a significant impact on the economy and may
lead to real disasters. Hence, meteorological prediction
can help public managers and monitoring organizations to
make decisions to prevent such major impacts as is shown
in Poornima and Pusgpalatha (2019). The improvement
in predicting the behavior of hurricanes, for example, can
impact directly early warning systems in regions affected
by this kind of event and the anticipation of the behavior
of hurricanes can help local governments and emergency
teams in planning mitigation schemes for reducing im-
pacts, avoiding bigger tragedies, and loss of lives.

Until the end of the 20th century, the modeling and pre-
diction of meteorological events were based on classical
probability and statistics methods, such as Coxer process
and Neyman-Scott process as is shown in Smith and Karr
(1985); Ramesh (1998) (usually used to model frontoge-
nesis processes), Gaussian Random Field (GRF, used for
representing precipitation in time and space) as is shown
in Liu et al. (2019); Rasmussen and Abbasnezhadi (2014),
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fractals, as is discussed by Sivakumar (2000); Breslin and
Belward (1999); Lovejoy and Mandelbrot (1985); Pathi-
rana (2001), etc. For instance, the authors in Lovejoy and
Mandelbrot (1985) state that the projection areas on the
Earth of clouds and rain have shapes whose boundaries are
fractal curves while the spatiotemporal structure of rain
has frequently hyperbolically distributed features (random
variables), which also characterizes a fractal. The authors
in Gyasu Agyei and Pegram (2014) used GRF for interpo-
lating daily rainfall using simulated radar fields for realistic
hydrological modeling of spatial rain fields.

However, the use of artificial intelligence techniques is
becoming more and more popular in environmental moni-
toring and meteorological survey, mainly in weather fore-
casting and predicting the behavior of meteorological phe-
nomena such as hurricanes and typhoons as discussed in
Ruttgers et al. (2019). These methods were shown to be
simple, feasible, and present a good level of accuracy. In
this context, radar and satellite images play an important
role in addition to historical data.

The objective of the present work is to verify the perfor-
mance of Convolutional Long-Short-Term Memory (Con-
vLSTM) networks for digital image processing for predict-
ing the short-term path of clouds and rainfall obtained
from a sequence of frames of meteorological radar and/or
satellite images.

The remainder of this paper is organized as follows. Section
II presents a literature review and the state of the art
related to weather prediction and other applications of
artificial intelligence, machine and deep learning, statistics,
probability, and stochastic processes on meteorology, as
well as an overview of key concepts related to this topic.
Section III presents in detail how Convolutional Networks,
LSTM, and ConvLSTM work and the methodology used.
Section IV presents and discusses the results. Finally, in
Section V, the paper presents the conclusions and some
perspectives for future works.

2. LITERATURE REVIEW AND STATE OF THE
ART

The authors in Shi et al. (2015) extended Fully Con-
nected LSTM networks (FC-LSTM) to have convolutional
structures in input-to-state and state-to-state transitions
(Convolutional LSTM - ConvLSTM). The results have
shown that ConvLSTM presents better performance than
using FC-LSTM, capturing spatiotemporal correlations.

Prediction of rainfall using intensified LSTM is discussed
in Poornima and Pusgpalatha (2019), comparing it with
Holt–Winters, Extreme Learning Machine (ELM), and
Autoregressive Integrated Moving Average (ARIMA). The
evaluation was based on the following parameters: Root
Mean Square Error (RMSE), accuracy, number of epochs,
loss, and learning rate of the networks.

Convolutional LSTM has been used with Wavelet decom-
position for solar irradiance forecasting in Wang et al.
(2018), presenting a high potential for future practical
applications, according to the authors.

In Kumar et al. (2020), the authors propose a precipita-
tion nowcasting architecture called ”Convcast” for short-

term predictions of precipitation using satellite images
composed by three Convolutional LSTM layers for spatial
and temporal feature learning followed by a 3D convolu-
tional layer. The training was done over NASA’s IMERG
precipitation data sets, which contain data from passive
microwave sensors of satellite precipitation measurements
comprising global precipitation. The algorithm can predict
the next frame of a 10-frames sequence, nowcasting the
precipitation of up to 150 minutes. The accuracy obtained
was 0,95 with and RMSE of 0.805 mm/h for 30 min, and
overall accuracy of 0.87 with RMSE of 1.389 mm/h for 150
min.

The use of convolutional Recurrent Neural Networks
(RNN) with limited training data for frame prediction is
explored by authors in Zhang (1999).

The authors in Gamboa-Villafruela et al. (2021) describe a
ConvLSTM architecture composed of three layers followed
by a 3DConvLSTM with ReLU activation function to
predict the 16th precipitation data from a sequence of 15
images and up to a time interval of 180 min. The authors
concluded that the increase in the number of layers and
the amount of training data enhanced the performance.

Image series prediction using convolutional LSTM applied
to precipitation nowcasting is also discussed in Wu (2019).

Some other recent results on deep learning-based ap-
proaches for precipitation nowcasting are summarized in
Gao et al. (2021), where the authors initially describe
mathematically the forecasting problem as a spatiotempo-
ral problem, present a literature review on the state of the
art and introduce a systematic benchmark for evaluating
the performance of the discussed works. Other approaches
related to video frame prediction are discussed in Hong
et al. (2017).

3. THEORETICAL INTRODUCTION

In this section, the key concepts of Convolutional, Recur-
rent, Long-Short Term Memory, and ConvLSTM networks
will be introduced.

3.1 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs), or ConvNets, are
feed-forward deep learning algorithms designed to work
with bi-dimensional data, particularly images, that present
many advantages such as less demanding pre-processing
and image reduction without loss of significant features.
It is used mainly for image processing due to its ability
to learn a large number of filters in parallel. It is usually
applied to predictions and image classification.

CNNs are multilayer architecture composed by connected
nodes. Each layer is composed of a two-dimensional plan
containing many different neurons. The input layer re-
ceives the initial data and each neuron extracts the local
features using a convolution kernel. The training process
does a continuous modification of this convolution ker-
nel weights. The convolution operation extracts high-level
features such as edges. The network is composed by one
or more pairs of convolutional layers and a max pooling
layer. The max pooling enhances the effect of translation
invariance and tolerance to deviations, reduces the spatial
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size (dimensionality reduction) of the convolved feature,
reducing the demanded computational power, and sup-
presses the noise. The max pooling returns the maximum
value from the portion of the image covered by the kernel.
The addition of a fully-connected layer is a simple way
to learn non-linear combinations of the high-level features.
The input image is flattened into a column vector and then
fed to a feed-forward neural network and backpropagated
in every iteration of training. Over a series of epochs, the
model can distinguish dominating and low-level features
and classify them using softmax classification.

3.2 Long-Short-Term Memory Networks (LSTM)

Recurrent Neural Networks are networks with a feedback
loop that allows information to persist. So, from an archi-
tectural point of view, it is a kind of densely connected
neural network with the output layer on the recurrent
neural network connected to itself and with the output
of the hidden layer passing through a delay block. We can
create a chain of these blocks with multiple copies of these
structures. Denoting by U and V the matrices connecting
inputs and recurrent outputs, and with xt, ht−1 denoting
an input and the output of the previous cell, we have:

ht = σ(Uxt +Vht−1). (1)

Long Short-Term Memory (LSTM) networks are a type of
recurrent neural network used in deep learning and widely
applied tn time-series analysis. The main feature which
distinguishes it from other types of neural networks is the
introduction of a forget gate that controls which states are
remembered or forgotten.

A gate is a structure that adds, removes, or transmits
information. They are composed of a layer of a sigmoid
neural network (here denoted by σ) and a Hadamard
product (denoted by ◦). The sigmoid layer outputs a
number within the interval [0, 1], where 0 denotes not allow
the transmission of any information, and 1 denotes that all
information is re-transmitted. Each cell is composed of five
parts:

• Cell state (ct): represents the internal memory of the
cell that stores short and long-term memories.

• Hidden state (ch): decides to retain short and/or long-
term information on cell state to make the prediction;

• Input gate (it): conditionally decides which input
values will be updated on memory state, or, in other
words, decides which information to forget and which
will be set on the input of cell state;

• Forget gate (ft): decides how much information of
current input and from previous cell state is for-
warded to current cell state;

• Output gate (ot): conditionally decides which will be
the output according to input and memory block.

So, the first step of LSTM is to decide which information
will be ignored and then which new information will be
stored.

The previous cell ct−1 is updated into a new cell ct and
then the old state is multiplied by a forgetting factor ft.
A new candidate value is generated, so it is necessary to
decide what will be transmitted to output based on the cell
state by applying a sigmoid layer. The tanh layer puts the
value on the interval [−1, 1]. Denoting Ug,Vg the weights

for input and previous cell output, respectively, and bg an
input bias, we have:

g = tanh(bg + xtUg + ht−1Vg). (2)

The input gate is basically a hidden layer of sigmoid
activation nodes with weighted inputs xt,ht−1. So, the
expression for the input gate is given by:

i = σ(bi + xtUi + ht−1Vi). (3)

Denoting by st the internal state of a LSTM cell, the forget
gate is a set of sigmoid activation nodes multiplied by st−1

to determine what must be remembered (output of forget
gate close to 1) and what must be forgotten (output of
forget gate close to 0). So, LSTM can learn according to
the context and the forget gate expression is given by:

f = σ(bf + xtUf + ht−1Vf ). (4)

Then, the output of the forget gate acts as a weight for the
internal states. So, the output of this state st is expressed
by:

st = st−1 ◦ f + g ◦ i. (5)

The output gate is the final stage of the LSTM cell. The
output gate has two components: a sigmoid layer and a
hyperbolic tangent (tanh) layer (which creates a vector
with new candidates to be added to a c̃t state). The output
is expressed by:

o = σ(bo + xtUo + ht−1Vo). (6)

So, the final expression for cell output is:

ht = tanh(st) ◦ o (7)

A piece of information is forgotten only when a new entry
takes its place.

Figure 1. LSTM architecture.

A gentle introduction tn LSTM networks using Python can
be found in Brownlee (2017). Further discussions on RNN
can be found in Medsker and Jain (2001); Koutńık et al.
(2014); Josefowic et al. (2015), stochastic RNN in Bayer
and Osendorfer (2015), Depth-Gated RNN in Yao et al.
(2015), RNN for image generation in Gregor et al. (2015),
about LSTM in Hochreiter and Schmidhuber (1997); Greff
et al. (2017) and Grid LSTM in Kalchbrenner et al. (2015).

Other works deal with the problem of prediction using
other approaches. Predictive Recurrent Neural Networks
(PredRNN) are introduced in Wang et al. (2017). Pre-
dRNN is based on the idea that prediction strategies
should store spatial and temporal data on a unique mem-
ory pool. This idea demands a new network architecture
called Spatiotemporal LSTM (ST-LSTM) that extracts
and memorizes spatiotemporal representations simultane-
ously. The authors in Kwon and Park (2019) use Genera-
tive Adversarial Networks for predicting video frames.
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3.3 Convolutional LSTM (ConvLSTM)

Convolutional LSTM is an adequate approach to spa-
tiotemporal prediction: while LSTM is used for a sequence
of collected data along time that is modeled as a temporal
series, Convolutional Neural Networks are widely used for
image processing. Thus, for a sequence of images, a Con-
volutional LSTM (ConvLSTM) combines the features and
advantages of LSTM and CNN, which makes ConvLSTM
the best approach for image prediction.

Cell outputs, hidden states, and gates of the ConvLSTM
are represented by 3D tensors whose last two dimensions
are spatial dimensions (rows and columns). ConvLSTM
calculates the future state of a cell by the inputs and past
states of its local neighbors using convolution in the state-
to-state and input-to-state transitions. The convolution is
preceded by a padding operation to ensure the dimension
compatibility between states and inputs as is stated in Shi
et al. (2015).

The first step in frame prediction is the visualization and
analysis of files, extracting rainfall image data. An input
example for estimators is shown in Figure 2, contain-
ing meteorological radar images obtained from Cearense
Foundation of Meteorology and Hydric Resources (Fun-
dação Cearense de Meteorologia e Recursos Hı́dricos -
FUNCEME), website accessed on April 23rd, 2021.

Figure 2. Sequence of frames obtained from meteorological
radar (Quixeramobim) images from FUNCEME (ac-
cessed on April 23rd, 2021).

This work uses ConvLSTM to predict the next frame
of a sequence of satellite / meteorological radar images
through two different approaches to data processing and
ConvLSTM parameter selection.

4. METHODOLOGY

Two approaches were used and compared, with different
settings applied to a dataset composed of 14 colored and
10 grayscale images of rainy days.

4.1 Application of ConvLSTM Models, First Approach

In the present work, two different scenarios were tested,
during February 2019 and February 2020 for the Fortaleza
region with slightly different Convolutional LSTM archi-
tecture configurations for frame prediction given an image
sequence.

On the first approach, the selected coordinates were
7°00’00.0”S 40°00’00.0”W, 2°00’00.0”S 37°00’00.0”W, and
the samples were obtained between February 1st, and 2nd
2019.

Three 2D convolutional LSTM networks using tanh acti-
vation function and a convolution window of size 7 × 7
were used. The number of output filters in the convolution
for the first network was 128 and for the remaining was
64. A last 3D convolutional LSTM network using only
one output filter and with a convolution window with
dimension 1×1×1 and using ReLU activation function was
used, as precipitation level assumes only values equal or
superior to zero, so, the negative activations were mapped
to zero.

Adam algorithm was used as optimization function. Adam
optimization is a stochastic gradient descent technique
used for large data and parameter problems based on
adaptive estimation of first and second-order moments. It
is computationally efficient, demanding low memory. It is
invariant to diagonal re-scaling of gradients according to
Kingma and Ba (2015).

In neural networks, we aim to minimize error, so, in this
scenario, the objective function (in the optimization sense)
is referred as a cost function, and the result of this cost
function is called loss. Let x denote the error (ypredicted −
yreal), the loss function is defined as the logarithm of the
hyperbolic cosine of the prediction error:

log(cosh(x)) = log

(
ex + e−x

2

)
(8)

The algorithm runs during 1000 epochs. The code was
developed using Python, Keras and Tensorflow libraries. It
initially defines latitude and longitude limits and separates
the dataset into training and test datasets and then starts
getting the current day as a copy (datetime object), gets
the oldest day, and set as current day. A slice (latitude /
longitude) data is captured for the current day, getting the
precipitation matrix. For each pair of matrices, two periods
(k as t and k + 1 as t + 30min) are registered as X and
Y . The batch size was set to 2. Then the training period
starts and a model is generated and stored. The training
history is transformed into a dataframe and saved in a
”.csv” format. Then the algorithm advances to the next
training day, setting the training dataset to its original
state.

4.2 Application of ConvLSTM Models, Second Approach

For the second method, reflectivity data from the X-band
radar in Fortaleza, Brazil, obtained from FUNCEME was
used to create the dataset.

The selected coordinates were 5°00’00.0”S 40°00’00.0”W,
3°00’00.0”S 37°00’00.0”W, and 184 sample data points
separated by a time-step of 7 to 8 minutes were obtained
every day for 11 days between February 1st, 2020 and
February 11th, 2020.

For pre-processing, we first retrieved radar images of
size 360 × 360 from the raw data file and transformed
the intensity values into gray-level pixels. To address
computational limitations and the absence of data in the
outer edges of the images, we decided to crop and cut the
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images. For each image, we retrieved the inner square of
dimensions 256 × 256, which we then cut in four squares
of equal dimension.

Patches from the same position were used to create se-
quences of 10 images. Such a sequence is shown in figure
4. Each sequence was then added to the final dataset,
which was saved as a N-dimensional array of shape
(808,10,128,128,1).

Figure 3. Sequence of frames obtained from meteorological
radar (Fortaleza) images from FUNCEME (accessed
on June 15, 2021).

The model was constructed using three 2D convolutional
LSTM (ConvLSTM2D) layers with batch normalization,
followed by a 3D Convolutional (Conv3D) layer for the
spatiotemporal outputs. For the three ConvLSTM2D lay-
ers, the number of output filters was 64 and the ReLU
activation function was used. The kernel sizes were the
following: 5 × 5 for the first layer, 3 × 3 for the second
layer, and 1×1 for the third layer. The Conv3D layer used
one output filter, a kernel size of 3×3×3, and the sigmoid
activation function.

Similarly to the first model, the Adam optimization func-
tion was used. The loss function used was binary cross
entropy. A cross-entropy loss increases the performance
(in terms of learning rate and generalization) of a model
with sigmoid and softmax output when compared with
the mean squared error loss, which presents problems such
slow learning rate and saturation.

Data from the first 8 days were used for training and
validation. The trained model was then evaluated on
testing data for the following 3 days. The algorithm was
run for 15 epochs, using batch sizes of 4 instead of 2 to
reduce the computational cost.

5. RESULTS AND DISCUSSION

The results for both approaches are shown below, including
discussions of qualitative and quantitative aspects and
comparisons with the performance of some works pre-
sented in Section 2.

5.1 Results for the First ConvLSTM Approach

Figure 4 shows the comparison between real and predicted
frames at the same moment for different time instants (30,
60, 90, 120 minutes).

The losses were under 0.02. As it is possible to see,
ConvLSTM can predict with good accuracy the dynamic
behavior of the frame sequence.

Figure 4. Frame prediction of the first ConvLSTM
approach: comparison between real and predicted
frames. The observed (left) and predicted (right)
frames are compared side-by-side for 30 and 60 min-
utes ahead (first row) and 90 and 120 minutes ahead
(second row).

5.2 Results for the Second ConvLSTM Approach

The trained model was able to predict images up to 30
min ahead based on 50 minutes of previous data. Figure 6
shows the comparison between real and predicted frames
at the same moment for different time instants (8, 15, 23,
30 minutes).

The predicted images all had grey backgrounds; for this
reason, we decided to apply filters to each image, thus
matching the observed images and allowing for more
accurate comparisons. Figure 7 illustrates such changes.

The losses were the following: training: 0.0538, validation:
0.0577, testing: 0.0542.

This ConvLSTM model was able to get relatively accurate
results with little data and training. We found these results
to be transposable, as the model did not need to be trained
on the same days used to make the predictions.

Figure 5. Frame prediction of the second ConvLSTM
approach: comparison between real and predicted
frames. The observed frames are shown on the first
row and the respective predicted ones are shown on
the second row for 8, 15, 23 and 30 minutes ahead.
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Figure 6. Frame prediction of the second ConvLSTM
approach with filters applied: comparison between
real and predicted frames.

5.3 Discussion

The tables 1, 2 and 3 summarize the architecture and
parameters for the 1st and 2nd approach and ConvCast
according to discussed in Kumar et al. (2020). As is
possible to see, the 1st architecture has the smallest loss,
followed by the 2nd approach and ConvCast. It is possible
to compare this performance indicator with the present
one shown in Shi et al. (2015), where it is used a Mean
Square Error (MSE), resulting in 1.4. However, the 1st
approach demands a significantly larger number of epochs
(1,000 against 15 of 2nd architecture and ConvCast). Is
important to note that the prediction of 2nd approach was
based on less than one hour of observations. In addition
to a reduced loss, the number of inputs necessary is
expressively smaller: from 10 up to 14 against the values
presented on the table 3 of ConvCast.

Table 1. Summary of architecture and param-
eters for the 1st approach

1st Approach

Structure

3 ConvLSTM layers
Activation function: tanh

Convolutional window: 7× 7
28, 64, 64 output filters respectively

1 3DConvLST:
Activation function: ReLU

Convolutional window: 1× 1× 1
1 output filter

Batch
size

2

Optimization
function

Adam

Loss
function

logcosh(x)

Input 14 coloured images

Number
of epochs

1,000

Loss 0.02

Table 2. Summary of architecture and param-
eters for the 2nd approach

2nd Approach

Structure

3 2DConvLSTM layers
Activation function: ReLU

Kernel Sizes: 5× 5, 3× 3, 1× 1
64 output filters

1 3DConvLSTM
Activation function: sigmoid

Kernel size: 3× 3× 3
1 output filter

Batch
size

4

Optimization
function

Adam

Loss
function

Cross-entropy

Input 10 grayscale images

Number
of epochs

15

Loss 0.05

Table 3. Summary of ConvCast architecture
and parameters according to Kumar et al.

(2020).

ConvCast

Structure

Activation function:
tanh (ConvLST)

ReLU (3DConvLSTM)
4 hidden layers

128 input-to-state filters
64 state-to-state
kernel size: 7× 7

Batch
size

2

Optimization
function

Adam

Loss
function

MSE

Input
1,276 in the training set
319 in the validation set

242 for the test set.

Number
of epochs

15

Loss 0,6049

CONCLUSION AND FUTURE WORKS

The ConvLSTM algorithms were shown to provide feasible
results with a reduced number of inputs for training
and testing, with predicted and actual frames presenting
similar profiles. In one of the presented configurations,
the number of necessary epochs is equal to the presented
in Kumar et al. (2020). The method can be used, for
example, for hurricane and typhoon monitoring, allowing
early warning on regions under the constant presence of
these phenomena.

A possible subject to explore is the use of Adversarially
Learned Inference (ALI) and Generative Adversarial Net-
works (GAN). A second alternative would be the use of
Physics Informed Neural Networks, discussed in Raissi
et al. (2019). As a next step, a second line of study is
the use of a stochastic process based-approach to find
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a generalized model (probably an α-stable like process)
- more precisely, a Probability Density Function (PDF)
for climatological phenomena that converges to fractal
representation on small scale, Gaussian Random Field on
a medium scale and Generalized Neyman-Scott Process
and Coxer process to model large scale phenomena such as
frontogenesis. This PDF can be used to extract important
statistical features that can be used for weather prediction
as well.

Another possibility is the use of stochastic resonance to
improve the quality of radar/satellite images.
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