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Abstract: In this paper, an iterative procedure is proposed to design decentralized robust
controllers for multivariable systems, based on the effective transfer function (ETF). The
uncertainties in the process are taken into account using the multiplicative model, represented
by a weight transfer function matrix. An H∞ optimization is applied to the ETF of each
loop in order to obtain decentralized controllers that achieve robust stability and nominal
performance. In the iterative procedure, the ETF is calculated and a weight is adjust to improve
the performance of the system, in order to achieve better results. The procedure was validate
with simulation studies and an experiment performed on a temperature process.
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1. INTRODUCTION

Many industrial systems are multi-input and multi-output
(MIMO). They are subject to performance requirements
and physical constraints. Due to the interactions between
loops, the controller design is more complex than for a
single-input and single-output (SISO) system. Further-
more, the models used to represent system dynamics are
subject to uncertainties, caused by unmodelled dynamics
or external disturbances. A robust controller can be de-
signed to guarantee closed loop stability and performance
of the system under influence of this uncertainties.

There are a variety of methods to design robust controllers
for MIMO systems. They usually results in aH∞ optimiza-
tion problem (Mackenroth, 2004). However, the controllers
in this case are centralized, which is undesirable in some
applications. They are difficulty to maintain when com-
pared to a simple structure like a decentralized controller.

In Rosinova (2012) and Karimi et al. (2016), linear ma-
trix inequality (LMI) based techniques for decentralized
robust control of systems with uncertainties represented
by convex polytopes are proposed. This problem leads
to unfeasible LMIs, which requires some constraints to
approximate by feasible ones. Alternatively, iterative LMIs
have been used to design multivariable PID controllers for
linear time-invariant systems without delays (Lin et al.,
2004) and with time delays (Belhaj and Boubaker, 2017).

The effective transfer function (ETF) is an approach to
take account of the interactions between loops. The main
advantage is that the MIMO system can be decoupled
in a set of equivalent SISO loops. Some works have pro-

⋆ This work was supported by CNPq - Brazil.

posed iterative methods for decentralized control tuning
using ETF. In Jin and Liu (2014), it is proposed a non-
convex optimization problem to obtain optimal PI/PID
controllers with specific robustness indexes. In Silva and
Barros (2020) an iterative procedure is proposed to tune
decentralized PID controllers using gain and phase margin
specifications. However, there is no method where it is
possible to include system uncertainties in the controller
design.

In this paper, an iterative procedure is proposed to design
decentralized robust controllers for MIMO process. The
system uncertainty is represented by a set of transfer
function matrices, using a multiplicative model. The aim
is to obtain a controller that achieves robust performance,
taken account of the interactions between loops by means
of the ETF. At each iteration step, the performance
and uncertainty weights are defined for the system. The
controller is obtained by solving one H∞ optimization
problem for each loop.

This paper is organized as follows. In Section 2, the plant,
controller and effective transfer function are defined. The
H∞ optimization problem is presented in Section 3. In
Section 4, the iterative procedure is presented. In Sections
5 and 6, simulated and experimental studies are shown.
The conclusions are discussed in Section 7.

2. PROBLEM STATEMENT

Consider a n × n MIMO system represented by a stable
nominal transfer function matrix:
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G(s) =


G11(s) G12(s) . . . G1n(s)
G21(s) G22(s) . . . G2n(s)

...
...

. . .
...

Gn1(s) Gn2(s) . . . Gnn(s)

 , (1)

where Gij(s) represents the nominal system dynamics
between the jth input and the ith output.

It is assumed that the system may have uncertainties,
which can be represented using the multiplicative model:

G̃(s) = (I+∆(s)W2(s))G(s), (2)

where G̃(s) is one model with uncertainty, ∆(s) is a
variable and stable transfer function matrix which satisfies
∥∆∥∞ < 1, W2(s) is a fixed and stable transfer function
matrix, and I is the n × n identity matrix. From robust
control theory, is known that the uncertainty can be fully
characterized with a proper selection of W2(s) (Skogestad
and Postlethwaite, 2005).

The decentralized controller structure is given by:

C(s) =


C1(s) 0 . . . 0
0 C2(s) . . . 0
...

...
. . .

...
0 0 . . . Cn(s)

 . (3)

In Fig. 1 is presented the block diagram of the decentral-
ized robust control problem, with the nominal plant G(s),
controller C(s) and weights W2(s) and W1(s), which is
the desired performance defined over the frequency do-
main (Mackenroth, 2004). The variables y, yr, e and u
are the measured outputs, setpoints, control errors and
plant inputs, respectively. For the controller design, we
define the error outputs z1 = W1(s)e = W1(s)S(s)yr

and z2 = W2(s)y = W2(s)T(s)yr, which are optimized
in order to loopshape the sensitivity function S(s) and
complementary sensitivity function T(s).

Figure 1. Block diagram of the robust control problem.

The problem consists in obtain C(s) such that the closed

loop system is stable for any G̃(s) in the model, and
guarantee the performance specified by W1(s). In other
words, the robust stability (4) and nominal performance
(5) conditions must be met:

∥W2(s)T(s)∥∞ < 1, (4)

∥W1(s)S(s)∥∞ < 1. (5)

In some applications, it can be also possible to achieve
robust performance:

∥|W2(s)T(s)|+ |W1(s)S(s)|∥∞ < 1. (6)

3. CONTROLLER DESIGN

In this section, the method for tuning the robust controller
is presented. The H∞ problem to be applied for the SISO

subsystems is stated. Then a solution using linear matrix
inequalities (LMIs) is presented.

3.1 H∞ optimization

The design of a robust controller for the system is made
using H∞ optimization (Mackenroth, 2004). Based on
structure represented in Fig. 1, for each loop, the general-
ized plant Pj(s) is the open loop transfer function matrix

between inputs yrj , uj and outputs zj = [z1j z2j ]
T
, ej ,

given by:

Pj(s) =

[
W1j(s) −W1j(s)Gj(s)

0 W2j(s)Gj(s)
1 −Gj(s)

]
. (7)

The closed loop function between input yrj and outputs
zj , Fzrj(s), corresponds to the weighted sensitivity and
complementary sensitivity functions:

Fzrj(s) =

[
W1j(s)S(s)
W2j(s)T (s)

]
. (8)

To obtain the SISO robust controllers for each loop, the
suboptimal H∞ optimization is applied. The goal is to find
a controller Cj(s) such that:

∥Fzrj∥∞ < γ. (9)

If it is possible to obtain a solution with γ = 1, then
the closed loop is guaranteed to have robust stability
and nominal performance. By doing a linear search of
γ with lower values, it is also possible to achieve robust
performance.

3.2 Formulation of optimization problem via LMIs

The H∞ problem can be formulated as a linear matrix
inequality (LMI) problem, by applying the Bounded Real
Lemma (Dullerud and Paganini, 2010). An advantage of
this approach despite classical Riccati equations method is
that it is less restrictive concerning the model structure, so
that it can be applied to more general cases. The solution
can then efficiently be determined by using interior point
method (Boyd et al., 1997).

Consider the state-space realizations of the generalized

plant (10), assuming outputs [z1j z2j ]
T
and y, and inputs r

and e, as well as the controller (11) and closed loop models
(12):

Pj(s) =

 A B1 B2

C1 D11 D12

C2 D21 0

 , (10)

Cj(s) =

[
AK BK

CK DK

]
, (11)

Fzrj(s) =

[
Ac Bc

Cc Dc

]
. (12)

The controller design can be divided in two steps. First,
LMIs (13) to (15) are solved to verify the existence of a
controller who satisfies the optimization problem. Then,
the controller can be obtained by solving (18).

There exists a controller such that ||Fzrj ||∞ < γ if, and
only if, exists two positive definite matrices X and Y who
satisfies the following LMIs:
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[
No 0
0 I

]T ATX+XA XB1 C1
T

B1
TX −γI D11

T

C1 D11 −γI

[
No 0
0 I

]
< 0, (13)

[
Nc 0
0 I

]T AY +YAT YC1
T B1

C1Y −γI D11

B1
T D11

T −γI

[
Nc 0
0 I

]
< 0, (14)

[
X I
I Y

]
≥ 0. (15)

Here, No e Nc are full rank matrices such that:

ImNo = ker [C2 D21] ,

ImNc = ker
[
B2

T D12
T
]
,

(16)

where Im(·) and ker(·) represents the image and null space
of a matrix, respectively.

If there exists X and Y who satisfy (13) to (15), and a
matrix X2 such that X2X

T
2 = X−Y−1 ≥ 0, than Z is

given by:

Z =

[
X X2

X2
T I

]
, (17)

and the closed loop system matrices can be obtained by
solving the following LMI:Ac

TZ+ ZAc ZBc Cc
T

Bc
TZ −γ2I Dc

T

Cc Dc −I

 < 0. (18)

This way, the controller matrices in (11) can be obtained
using linear relationships with Fzrj . The proof of this
statements can be found in Mackenroth (2004).

4. PROPOSED ITERATIVE PROCEDURE

The robust control method presented applied for SISO
subsystems do not take into account the loop interactions.
So, the guaranteed stability and robustness conditions are
invalid in the MIMO decentralized control scenario. This
way, the proposed methodology consists in obtain the
controller for each loop using the effective trasfer function
(ETF), so that the loop interactions can be take into
account during solution.

4.1 Effective Transfer Function (ETF)

Consider the MIMO system G(s) in closed loop with the
decentralized controller C(s). For the jth loop, the ETF
(which will be called ETFj) is defined as the SISO transfer
function between output yj and input uj , when this loop
is open and every other loop of the system is closed (Xiong
and Cai, 2006).

In Silva and Barros (2020) is presented a procedure for
obtaining the ETFs for each loop of a MIMO system. The
diagram presented in Fig. 2 illustrate the structure of the
system in order to apply the procedure. The controller
outputs are denoted by uc and the matrices ∆ and ∆ are
defined as following:

∆ =

 δ1 . . . 0
...

. . .
...

0 . . . δn

 and ∆̄ =

 δ1 . . . 0
...

. . .
...

0 . . . δn

 .

Figure 2. Structure to obtain ETFs in a MIMO system
(Silva and Barros, 2020).

The values of δ1, · · · , δn and δ1, · · · , δn are adjusted
depending of the loop which we want to obtained the ETF.
For the jth loop, we set δj = 0, δi = 1, δj = 1 and δi = 0,
where i ∈ N, 1 ≤ i ≤ n and i ̸= j.

According to Fig. 2, the following equations can be ob-
tained:

y = G(s)u, (19)

y = G(s)∆uc +G(s)∆uc, (20)

y = G(s)∆C(s)(yr − y) +G(s)∆uc. (21)

The ETF is obtained by setting yr = 0, which results in:

y(I+G(s)∆C(s)) = G(s)∆uc, (22)

y = (I+G(s)∆C(s))−1G(s)∆uc, (23)

After replace the matrices ∆ and ∆ to obtain ETFj , the

entries of ∆C and ∆uc are:

∆iiCii(s) = Ci(s),

∆jjCjj(s) = 0,

∆iiuci = 0,

∆jjucj = uj .

This way, only the jth loop is open, and the ETF can be
obtained.

4.2 Algorithm

Given the C(0)(s) initial controller which results in stabil-
ity of closed loop, the goal is to find the ETFs for each loop
with this controller. Then, H∞ optimization is applied to
each ETF to find a new controllerC(1)(s), based on desired
specifications W1 and W2. This procedure can then be
repeated a number of times to improve the controller
performance specifications.

In Fig. 3 is presented a flowchart with the steps required
to apply the algorithm. Some remarks concerning the
procedure:

• obtain the ETF analytically for a system with un-
certainties represented by (2) is not a trivial task,
because of the difficulty in represent the ETF uncer-
tainty in terms of the plant uncertainty. One alterna-
tive way is using an identification procedure to obtain
a set of models of the ETF for each loop;

• the specification of weightsW1(s) can be done as pre-
sented in Mackenroth (2004). The transfer function
must be stable, but a pole close to the origin may be
included to guarantee integral effect. Parameters like
gain and cut-off frequency are defined to loopshape
the sensitivity function;
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• specification of weights W2(s) can be done as pre-
sented in Skogestad and Postlethwaite (2005). A set
of models is needed to obtain the error of a transfer
function G̃(s) in relation to the nominal model;

• the integral of absolute error (IAE) can be used to
test the algorithm convergence. Because it accounts
for the load disturbance rejection in controllers with
integral action, it is a good measure of interaction
between loops (Silva and Barros, 2020). It can be
calculated by using time data of the closed loop
system, using:

IAE =

∫ ∞

0

|e(t)|dt. (24)

Figure 3. Flowchart of proposed iterative procedure.

5. SIMULATION RESULTS

In this section, the proposed procedure is evaluated at the
Wood-Berry distillation column (Wood and Berry, 1973).
The transfer matrix is:

GWB(s) =

 12.8e−s

16.7s+ 1

−18.9e−3s

21s+ 1
6.6e−7s

10.9s+ 1

−19.4e−3s

14.4s+ 1

 . (25)

For the design specifications, because the system is uncer-
tainty free, W2(s) was set to 0. The performance specifi-
cation of each loop was defined as the following first order
filter:

W1j(s) =
1

S∞

s+ ωc

s+ 0.001ωc
, (26)

where S∞ is used to weight the sensitivity function gain
at high frequencies and ωc is the cut-off frequency. For the
first iteration, the values were:

S∞1 = S∞1 = 10, ωc1 = 2π0.4 and ωc2 = 2π0.1.

After three iterations, there was no more significant im-
provements in performance, so the procedure was stopped.
The values of γ for each loop were γ1 = 0.449 and
γ2 = 0.134 The obtained controller was:

C1(s) = 1.075
(s+ 2.03)(s+ 0.03)

s(s+ 3.43)(s+ 0.04)
,

C2(s) = −0.120
(s+ 0.68)(s+ 0.07)(s2 + 0.56s+ 0.22)

s(s+ 0.1)(s2 + 1.10s+ 0.70)
.

The closed loop step response for each loop is presented
in Fig. 4. The proposed controller is compared with the
methods proposed by Chen and Seborg (2001) and Silva
and Barros (2020). As can be seen, the application of
proposed controller results in a faster response than the
other, with less oscilation and smaller overshoot for loop
2.

Figure 4. Step response for Wood-Berry process simula-
tion.

To verify the interaction between loops, the IAE was
computed to account the load disturbance rejection, whose
values are presented in Table 1.

Table 1. IAE values calculated for step re-
sponses of Woody-Berry process.

Controller Method IAE

Chen-Seborg 2.26
C1(s) Silva-Barros 2.43

Proposed 1.63

Chen-Seborg 7.70
C2(s) Silva-Barros 6.15

Proposed 5.15

6. EXPERIMENTAL RESULTS

In this section, it is presented the application of proposed
procedure to a MIMO temperature process. The system
was proposed in Lima et al. (2018), and consists in two
transistors and two temperature sensors. In Fig. 5 is
presented a schematics with component disposition in the
temperature module.

The inputs are duty cicles of PWM signals apllied to each
transistors, while the outputs are the measured tempera-
tures of each sensor. Because of constructive characteris-
tics, the system is non linear and with highly coupled.
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Figure 5. Temperature module schematic.

The initial controllers C0
1 (s) and C0

2 (s) used were:

C0
1 (s) = 0.07

(s+ 0.072)(s+ 0.005)

s(s+ 0.062)(s+ 0.043)
,

C0
2 (s) = 0.06

s+ 0.099)(s+ 0.006)

s(s2 + 0.085s+ 0.003)
,

which results in a stable closed loop system, but poor
performance.

Then, the ETF set of models for each loop was obtained by
doing a identification of the system in different operation
points. This was done by apllying a sequence of steps with
the same amplitude in different operating points, as shown
for the loop 1 in Fig. 6, where PV1 and PV2 are the
temperatures of loop 1 and 2, respectively.

Figure 6. Step test to obtain the ETF set of models for
loop 1.

For each step, the input and output data were used to
estimate a set of models for the ETF. To account the
observed overshoot in the curves, a second order transfer
function was used, with the following structure:

ETFj =
K

as+ bs+ 1
e−sL (27)

whereK is the gain, L the time delay, a and b are constants
related with the poles. Using this procedure, a set of 12
models are obtained for each loop. The nominal model is
obtained by take the mean value of each parameter in (27).

With the set of models, W2(s) was obtained using the
procedure in Skogestad and Postlethwaite (2005). The
performance weight W1(s) was defined using (26).

The IAE was calculated for the closed loop at each
iteration to verify the load disturbance rejection, and the
values of γ for each iteration. The values are presented

in Table 2. Using the required performance leads to a
controller with can achieve robust stability and nominal
performance, but not robust performance. To achieve it,
the performance weight needs to be very conservative,
leading to poor results. After the third iteration, there was
no notable improvement on the IAE, so the algorithm was
stopped. The final controller transfer functions were:

C3
1 (s) = 0.710

(s+ 0.272)(s+ 0.031)(s+ 0.023

s(s+ 1.325)(s2 + 0.105s+ 0.006)
,

C3
2 (s) = 0.123

s+ 0.162)(s2 + 0.049s+ 0.001)

s(s+ 0.126)(s2 + 0.075s+ 0.005)
.

Table 2. IAE values calculated for the con-
trollers of ETF for each iteration.

Controller Iteration IAE (×103) γ

1 3.86 0.825
C1(s) 2 3.26 0.861

3 2.89 0.928

1 3.93 0.846
C2(s) 2 2.61 0.932

3 2.50 0.974

A closed loop experiment was performed using the decen-
tralized controller obtained in the last iteration. A set of
steps with amplitude of 2.5 ◦C were applied to each loop
individually. The goal was to evaluate the reference track
in different operation points and the decoupling between
loops. The result of this test for the loop 2 is presented
by the time data shown in Fig. 7. It can be seen that the
system follows the setpoint and the disturbance caused by
coupling is zero in the steady-state.

Figure 7. Closed loop experiment with setpoint change on
loop 2, using the decentralized controller obtained in
the last iteration.

To compare the performance in closed loop, two other
controllers were tested. First was the initial decentralized
controller C0(s). Then, a centralized controller was de-
signed by applying theH∞ optimization to the full system,
using suitable weights W2(s) and W1(s) to achieve robust
stability and nominal performance.

In Figs. 8 and 9 are presented snapshots of one of the steps
applied in each loop. The IAE was calculated for each case
and is presented in Table 3. As expected, the centralized
controller has the best performance in the decoupling,
because of the off-diagonal terms in its transfer function
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matrix. The final decentralized controller results in better
performance in comparison with the initial.

Figure 8. Closed loop experiment with setpoint change on
loop 1 and comparison between controllers.

Figure 9. Closed loop experiment with setpoint change on
loop 2 and comparison between controllers.

Table 3. IAE and γ values calculated for each
iteration of the closed loop experiments.

Controller Method IAE (×103)

Centralized 0.89
C1(s) Decentralized Initial 2.78

Decentralized Final 1.71

Centralized 1.31
C2(s) Decentralized Initial 2.26

Decentralized Final 1.84

In the reference tracking the performance of both the
centralized and decentralized final were approximately
equal, even though the latter has a more simple structure.
This was possible because the lesser complexity of control
problem, which made possible to obtain a solution to H∞
optimization with better performance weights W1(s).

7. CONCLUSION

An iterative procedure was proposed to design decentral-
ized robust controllers for MIMO systems. It takes the
ETF to account for interaction between loops. The con-
troller is obtained by applying the H∞ optimization for

each loop, using weights to account model uncertainties
and desired performance. The methodology was validate
with a simulation example and an experiment. In the
simulations, it was verified the performance in comparison
with other similar techniques. The application on the tem-
perature module shown that good results can be achieved
for decoupling and reference tracking.

As future work, it can be explored the analytical determi-
nation of the ETF for a system with uncertainties repre-
sented by a set of models, instead of using identification
procedures at each iteration.
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