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Abstract: The field of Algorithmic Art has been following technological advances in Artificial
Intelligence and, as Generative Adversarial Networks (GANSs) have become popular, applications
on art generation began to emerge. For most deep neural networks, large amounts of training
data are essential to achieve satisfactory model quality. But there are cases, such as in MIDI
musical melodies, where it is not trivial to acquire data in such a high volume. Data augmentation
strategies play an important role on these cases. This paper presents a data augmentation
pipeline, composed of three strategies, with the objective of improving the quality of a GAN-
based musical melody generator. The proposed data augmentation pipeline was compared with
a non-augmented dataset and a replicated dataset, which had the same size of the augmented
dataset, but composed only of replicas. From the statistical tests performed it can be stated that
the augmented dataset outperformed the non-augmented dataset and the replicated dataset,
when evaluating the Fréchet Inception distance (FID) score.

Keywords: Generative Adversarial Networks, Neural Network, Generative Music, Data
Augmentation, Algorithmic Music Composition, Agorithmic Art, Machine Learning.

1. INTRODUCTION

The use of Artificial Intelligence (AI) techniques for cre-
ating musical pieces has been gaining interest since early
1990s and it was already the theme of chapters and also
entire books, such as Miranda and Al Biles (2007) and
Romero et al.| (2008). It is a field with many approaches,
once art is not a deterministic problem to be solved. First
initiatives of using machine learning and evolutionary com-
puting for creating music date back to early 1990s, accord-
ing to |Loughran and O’Neill| (2020), [Horner and Goldberg
(1991) and in GenJam project, which aimed to generate
jazz solos using evolutionary computing (Biles et al.||1994]),
and now is an interactive improvisation system used in
jazz performances (Biles,|2013)). Another approaches to the
problem are present in the literature, such as in |Jhamtani
and Berg-Kirkpatrickl (2019]), where a generative model
with focus on self-repetition is proposed and in |Xu et al.
(2021), where the use of generative adversarial networks
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to create melodies is developed to serve as inspiration to
music composers.

A diverse set of methodologies has been applied to music
algorithmic composition. In |[Papadopoulos and Wiggins
(1999), the methodologies were divided into: Mathematical
Models, Knowledge Based Models, Grammar Models, Evo-
lutionary Models, Learning Systems and Hybrid Systems.
For some of the methodologies, there is need to have real
data to serve as training material to the model. Specially
in the case of Deep Neural Networks (which is the case
of this paper), the larger the training data, the better.
In this direction, data augmentation strategies play an
important role for increasing models performance. Data
augmentation can be interpreted as a set of strategies used
to increase the amount of data by creating modifications of
original samples. Such heuristics aim to enhance model’s
performance and generalization. They are specially valu-
able when original data availability is scarce.

This paper explores the effect of a set of data augmen-
tation strategies into improving the training performance
of a Generative Adversarial Network (GAN) for musical
melody composition. A GAN can be used alone for gen-
erating melodies or within an architecture, as shown in
Figure 1. The generated melodies can work as an initial
population for an evolutionary algorithm, which will se-
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lect melodies that fit best according to a fitness function
composed by weights inputted by the user.

2. RELATED WORK

The algorithmic music composition field is heterogeneous
regarding the technical approaches to the problem. There-
fore, data augmentation strategies appear in different ways
according to the problem modeling. For example, in Huang
et al| (2018) the authors proposed a system called Mu-
sic Transformer, an auto-regressive generative model that
used self-attention mechanisms to generate musical pieces
with recurring elements. For this system, the authors used
augmentation strategies such as pitch transposition and
time stretching. Later in Donahue et al.| (2019), the Trans-
former architecture was adapted to multi-instrumental
score generation. In this article, the authors introduced
two other augmentation strategies, in addition to the
previous ones: random instrument removal and randomly
putting one instrument to play other instrument’s melody.

There are examples of data augmentation in another ap-
proaches, as in [Yong et al.| (2019)), where three augmenta-
tion methods were proposed for improving automatic pi-
ano transcription (which is to process piano sound record-
ings and transcript the notes that were recognized). They
were: key transition, key change, and tempo change. In
Yang et al.| (2017)) the MidiNet, a convolutional generative
adversarial network for symbolic-domain music genera-
tion was proposed. The data augmentation strategy used
was shifting melodies to other chords, different from the
original one. In [Lopez and Fujinagal (2020), the authors
proposed a technique for data augmentation based on
roman numeral analysis annotations. They advocate that
such annotation style can generate harmonic reductions
by removing all musical features that do not interfere with
the harmonic movement of the piece. After extracting such
harmonic movement from the piece, new data could be
generated including musical features that differ from the
original one.

There is also effort on developing frameworks for data
augmentation, as can be seen in [McFee et al| (2015)
where a framework called MUDA was proposed. It is a
software architecture for applying data augmentation into
music information retrieval tasks. The work was focused
on defining the framework principles instead of proposing
augmentation strategies, but during the examples the
following strategies were used to augment the audio data:
Pitch swift, Time stretch, Background noise and Dynamic
range compression.

As can be seen, the modeling possibilities of data aug-
mentation for music composition are diverse. But some
ideas of augmentation, such as changing note times and
changing pitch, have been present in a significant per-
centage of the approaches. This paper proposes a data
augmentation pipeline, with three strategies, for increasing
a GAN training data size and therefore increasing model’s
performance. It also explores the effect of time stretching
and pitch change, as previously used in other articles. But
it also implements a note addition strategy, which adds a
note five semitones up or down on a random chosen note.
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3. BACKGROUND

This paper is developed over some established concepts
and techniques which are reviewed in this section.

3.1 Generative Adversarial Network (GAN)

GANs were first proposed by |Goodfellow et al.| (2014)) and
are an unsupervised learning technique which is composed
by two networks — the Generator and Discriminator. The
Generator is a model that implicitly defines the probability
density function of the real dataset pioder(). It does not
necessarily have the ability to evaluate the density function
Pmeodel, but it can draw samples from this distribution. The
Generator function can be defined as G(z,0¢), where z
is a vector containing a random seed and g is a set of
learnable parameters. The main role of the Generator is
to make function G(z) transforms the random noise input
z into samples indistinguishable from real training data.
The Discriminator is a model that receives samples x and
returns value D(0p), which estimates if the input came
from real distribution or if it is a fake data made by the
Generator model. Discriminator model responds from 0 to
1, where 0 is evaluated as a fake data and 1 is evaluated
as real data (Goodfellow et al., [2020)).

The relation between Generator and Discriminator is
a game, where each player aims to minimize its own
loss function, which is Jg(0g,0p) for the Generator and
Jp(0q,0p) for the discriminator, as in (Goodfellow et al.
(2020). Jg is the cross entropy between the Discriminator’s
evaluation and the optimal result, which is 1. Therefore,
the Generator’s loss is lowest when Generator can make
the Discriminator evaluate its sample as 1. The Discrim-
inator loss Jp is the cross entropy between a real image
and 1 plus the cross entropy between a fake image and 0.

3.2 Fréchet Inception distance (FID)

GANSs are nowadays a popular method for generating data,
specially images. The field of quantitative GAN quality
evaluation has been emerging and there are some ap-
proaches on how to evaluate the quality of a trained GAN.
One of those methods is the Fréchet Inception distance
(FID) , available in Heusel et al. (2017), which aims to
compare generated images to real ones and evaluate its
similarity. This score is based on comparing the distance
between the probability distribution of real data p,,(.) and
the probability of generated data p(.). It is based on the
Inception Score (IS) proposed in [Szegedy et al| (2016),
which uses a third-party neural network, already trained
on a supervised classification task. But, different from
the IS, the FID compares the mean and covariance of a
deep layer from the network. The layers are then encoded
as multidimensional Gaussians and the distance between
them is measured by the Fréchet distance, introduced
by [Fréchet| (1957). The Fréchet Inception distance (FID)
d(.,.) between the Gaussian distribution with mean and
covariance (m,C') obtained from p(.) and the Gaussian
distribution with mean and covariance (m.,, Cy,) obtained
from p,(.) is then given by the following equation:
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Figure 1. Example of a possible architecture of melody musical composition using a GAN model. A trained GAN can
serve as a population generator for an Evolutionary Algorithm, which will tailor the melodies according with user

inputs.
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Figure 2. Relation between Generator and Discriminator models in a GAN. The Generator receives a random noise as
input and generates a melody that is evaluated by the Discriminator model, which evaluates if received melody is

real or generated.

d*((m, C), (M, Cu)) = [Im — mu |3+

Tr(C + Cy — 2(CC)Y?) (1)

The FID metric is widely used on evaluating the quality of

GANS, including high-resolution GANs as in
(2019) and Karras et al.| (2020)).

This paper compares GANs trained with augmented
dataset with GANs trained with non-augmented datasets.
For an statistically valid comparison, a suitable statistical
test needs to be selected. Since we cannot state that the
GAN accuracy samples follow normal distribution, a non-
parametric statistical test needs to be performed. The
Friedman test, developed by , is a non-
parametric test which repeatedly evaluate the variance
of ranks between samples. The Friedman Test indicates
that at least one of the groups contains a distribution
that differs from others. To know the relation between the
distributions, the Nemenyi test is applied.
It is a post-hoc test that makes pair-wise comparisons in
order to find the relation between groups of data.
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4. METHODOLOGY
4.1 Data representation

The choice of a suitable data representation strategy plays
an important role on algorithmic music composition, once
a representation can impose limitations to the model
and change complexity of all training and optimization
processes.

The representation chosen for this project is the Scaled
Piano Roll (SPR), created as a variation of the commonly
called Piano Roll representation. The Piano Roll is a
representation where each note is distributed over the y
axis while the time is disposed in the x axis. The Scaled
Piano Roll, as can be seen in Figure 3, can be interpreted
as the Piano Roll notes, translated in y axis according to
the chord key on which the melody phrase was recorded.

Such representation improves generalization, in compari-
son with the “Piano Roll”, because all the training process
happens without influence of the chord being played, since
all training inputs are shifted to the same key. The notes
are translated to the chord after melodies are generated
with GANs. Musical melody dynamics and intentions are
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Figure 3. Scaled Piano Roll (SCP) representation in com-
parison with the Piano Roll representation

composed regardless chords and tonalities. The relations
between notes is what makes a good or bad melody. There-
fore, such attributes do not need to be present for training
the GAN.

4.2 Data Augmentation Strategies

Data augmentation plays an important role in contexts
where training data is scarce or where sample perturba-
tions improve generalization, such as in images. The aug-
mentation strategies to be used in this model are described
next.

Time Change Strategy  Changes the duration of an ar-
bitrary note from the melody. It can increase or decrease
note time, clipping it to a suitable time division, as can be
seen in Figure 4. This strategy can be run multiple times
over the dataset to generate many configurations.

Octave Change Strategy Translate all melody up or down
(chosen randomly) one octave, as can be seen in Figure 5.
If this strategy runs more than one time, it can generate
duplicate melodies. Therefore, this augmentation strategy
is not recommended to be ran more than two times.

Fifth Addition Strategy  Add a note five semitones up
or down relative to a random chosen note. It is not
recommended to run such strategy more than 4 times
because it will generate melodies with multiple notes
being played at the same time and can create unnatural
melodies.

4.8 Data Augmentation Process

The augmentation process was designed to support aug-
menting the dataset multiple times with multiple strate-
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Figure 4. Time Change Strategy: Changes the time of
random notes.

Figure 5. Octave Change Strategy: Changes octaves of
entire melodies.

Figure 6. Fifth Addition Strategy: Adds notes five semi-
tones up or down on a random note.

gies. Every strategy i has an augmentation factor k;, which
is how many times that strategy will be applied into the
dataset. The augmentation pipeline can be seen in Figure
7. The following equation describes the augmentation pro-
cess influence over a dataset of size n, with ¢ augmentation
strategies.

Naug (1) = Naug (i — 1)(k; +1)
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where ng4,4(7) is the total data size after applying aug-
mentation strategy i, which has augmentation factor k;. A
dataset without any augmentation is as below:

Naug(0) =1

Therefore, for example, if there are 10 test samples and
the following factors:

e 1 - Time Change Strategy: k1 = 6
e 2 - Octave Change Strategy: ko =1
e 3 - Fifth Addition Strategy: k3 = 3

we will have the following:

Naug(0) =n =10

Naug(1) = 10(6 + 1) = 70
Naug(2) = 40(1 4+ 1) = 140
Naug(3) = 80(3 + 1) = 560

After all three augmentation strategies, the size of training
dataset would go from 10 to 560 samples.

5. MODEL ARCHITECTURE

GAN is an architecture composed by a Generator model
and a Discriminator model. The Generator’s topology
is according to Figure 8. It receives a random noise
with dimension noise_dim (which is in our case 100),
pass through a dense layer (layer where every neuron
receives input from all the neurons of previous layer),
a batch normalization layer, which aims to stabilize the
learning process by normalizing output from dense layer,
and a leaky ReLu layer, which is an activation layer
with linear positive values and also a negative value
propagation for training improvement. After that, there
are two convolutions, batch normalization and leaky ReLu
activation until it gets into output dimension, which is (48
x 64). The discriminator topology is according to Figure
9. It is a topology that receives a melody with dimension
(48 x 64), applies two convolutions and dimension changes
and responds a value between 0 and 1 indicating if the
input image is real or fake (1 for real and 0 for fake).

As can be seen in the GAN topologies of Figure 8 and
Figure 9, the GAN is modeled as if it was designed for
generating images. The result of the GAN is a matrix that
is then converted from the SPR format to a MIDI output.

6. EXPERIMENTS
6.1 Setup

The training dataset used in this article was composed by
a group of MIDI files, with a total of 55 bars, manually
recorded by the author. It is available in this training data
repository. The language used in the project was Python
(Van Rossum and Drake Jr|(1995)). The GAN architecture
was implemented with support from TensorFlow pack-
age (Abadi et al. (2015)) and MIDI files importing was
made by using the Mingus package (Spaans| (2015))). For
statistical tests, the Scikit Posthocs package, available in
Terpilowski| (2020), was used.

ISSN: 2525-8311

0698

6.2 Test Design

The same GAN architecture, described in previous sec-
tions, was trained with three different datasets. The Orig-
inal Dataset, which was a dataset that contained only the
recorded data, the Augmented Dataset, which contained
the original data plus the data that was augmented, and
the Replicated Dataset, which had the same size of the
Augmented Dataset, but contained only copies of original
data. The Replicated Dataset was important to be on the
test in order to evaluate if augmenting the dataset would
cause the same effect than simply replicating it.

The following augmentation strategy pipeline was applied:

e 1 - Time Change Strategy: k1 = 6
e 2 - Fifth Addition Strategy: ko = 3
e 3 - Octave Change Strategy: ks = 1

Therefore, for a training dataset of 55 samples, the aug-
mented dataset had 3080 samples.

The GAN specification for the test was the one below:

e FEpochs: 60

e Batch size: 50

o Mazimum samples used for quantitative quality mea-
surement: 100

Each epoch represents one training session, where all sam-
ples, divided in batches, were used for optimizing the losses
of both Generator and Discriminator models. There was
the need of setting a value for mazimum samples used
for quantitative quality measurement, because the Fréchet
Inception distance (FID) calculation can consume all avail-
able memory. Therefore, a maximum sample number must
be fixed with the objective of preserving computer mem-
ory.

The training process was executed 55 times for all three
datasets. The results are shown next.

6.3 Results and Discussion

The box plot of the distribution of all FID evaluation
scores computed after each training process can be seen
on Figure 10. It indicates that the Augmented Dataset
achieved better FID scores in comparison with the other
two. But a another test was needed in order to identify if
the difference was statistically significant.

Table 1 presents the average FID for each dataset training
and Table 2 shows the p-values of the Nemenyi Test.

Table 1. Training results

Dataset Dataset size | Fréchet Inception distance (FID)

Original 55 72.4334+6.44
Augmented 3080 21.7541+12.26
Replicated 3080 39.5702£20.15

Table 2. p-values of posthoc Nemenyi Test

(FID)
datasets Original | Augmented | Replicated
Original 1 0.001 0.001
Augmented 0.001 1 0.001
Replicated 0.001 0.001 1
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Sample size Naw(0) = n

SAMPIE SIZE Maug{1) =11 " (1 + K1)
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Augmentation Strategy 1 Augmentation Strategy 2 Augmentation Strategy n

Figure 7. Proposed augmentation pipeline: Augments the data sequentially, k; times for each strategy i, with the final
sample size ngy4(7) being defined as nguq(i —1)(k; + 1)
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Figure 8. Generator Topology: receives a random noise (seed) with dimension noise_dim, pass through a dense layer, a
batch normalization and a leaky RelLu layer. After that, there are two convolutions, batch normalization and leaky
ReLu activation until it gets into output dimension.
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Figure 9. Discriminator Topology: Receives a melody with dimension (48 x 64), applies two convolutions and dimension
changes and responds a value between 0 and 1 indicating if the input image is real or fake (1 for real and 0 for
fake).
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Figure 10. Distribution of the FID evaluation for 55
executions of each dataset type

By analyzing the p-values presented on Table 2, it is pos-
sible to state with 99% confidence that the three distribu-
tions differ from each other. The Augmented Dataset had
the best FID value, followed by the Replicated Dataset,
and at last the Original Dataset. By the results presented,
we can notice the positive effect of the data augmentation
strategies proposed in this article, which surpasses the
effect of simply inflating the dataset by presenting copies
of the original data.

7. CONCLUSION

In this paper, a data augmentation pipeline composed by
three strategies was proposed and it was demonstrated
that this method outperformed no augmentation and repli-
cation, when looking for the Fréchet Inception distance
(FID) quantitative GAN evaluation score. The improve-
ment in the FID metric stated by the statistical test gives
a strong evidence that data augmentation improves the
GAN melody generation. Future works can be done to also
make qualitative evaluations, using humans to evaluate the
musical quality of the piece. The next step will be about
evaluating the complete architecture, such as described in
Figure 1, with a GAN generating populations for an evolu-
tionary algorithm which will optimize melodies according
to users inputs. By interacting with this system, the user
will be able to also evaluate generated melodies and, with
such results, more evidence will be collected to evaluate
the real efficiency of the complete model.
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