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Abstract: Collaborative robots are becoming more present in various activities, inside and
outside the industry. The use of these robots allows greater precision and accuracy in carrying out
the tasks. However, it is important to take into account some factors to ensure the safety of the
system, such as the ability to avoid obstacles that may be present in the operating environment.
In this work, we propose a system for trajectory optimization of a robotic manipulator in
complex environments using the algorithms Covariant Hamiltonian Optimization for Motion
Planning (CHOMP) and Stochastic Trajectory Optimization for Motion Planning (STOMP),
and an RGB+D sensor for obstacle detection. The entire system was implemented based on
the open-source framework Robot Operating System (ROS). Performance of the algorithms was
analyzed based on their success rate, planning time, and duration of the generated trajectory.
Results indicate that the proposed system can generate feasible and collision-free trajectories in
static environments.
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1. INTRODUCTION

Robotic manipulators have been known to the industry
since the 1960s. The first one, the Unimate, was developed
by George Dovel and it worked on a vehicle production line
performing tasks considered dangerous to be performed
by human operators (IEEE, 2018). Over the years, several
other models of robotic manipulators have emerged, such
as the Stanford Arm, developed at Stanford University
in 1969 (Stanford InfoLab, 2019), and the ASEA IRB
6, developed by ASEA, today ABB, in 1975 (History
Information, 2021).

Nowadays, with the arrival of industry 4.0, a new model
of manufacturing it’s expected to be created, featuring
the collaboration of different systems working connected
and autonomously. This is only possible due to the devel-
opment of technologies, such as additive manufacturing,
blockchain, AI (Artificial Intelligence), IoT (Internet of
Things), and robotic systems (Olsen and Tomlin, 2019).

Differently of industrial arms, which usually work isolated
from humans, in smart factories, arms will be equipped
with perception sensors and AI to allow collaboration
with humans. The use of collaborative robots, also known
as “cobots”, allows for more safety, greater reliability,
repeatability, and quality in performed tasks (Evjemo
et al., 2020). One of the most popular cobots are the UR
series robots, Figure 1, from Universal Robots.

? This work was carried out with support from the Coordenação de
Aperfeiçoamento de Pessoal de Nı́vel Superior - Brazil (CAPES) -
Funding Code 001.

Figure 1. Collaborative UR Series from Universal Robots
(from left to right: UR3, UR5, UR10 and UR16)
(Universal Robots, 2021).

The manufacturing industry is responsible for most of
the applications for cobots, mainly related to pick and
place tasks, welding, and other activities that could be
dangerous or impossible to be realized by humans. The
use of these robots can result in better performance, higher
accuracy and reduced operational costs (Sherwani et al.,
2020). In these scenarios, it is important to have effective
motion planning that guarantees a feasible and smooth
path, free from obstacles and that also respects imposed
restrictions. This work proposes a system for the opti-
mization of trajectories using the algorithms Stochastic
Trajectory Optimization for Motion Planning (STOMP)
and Covariant Hamiltonian Optimization for Motion Plan-
ning (CHOMP) applied to manipulators inserted in an
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environment with obstacles, which are detected using an
RGB+D sensor.

2. RELATED WORK

Manipulator’s motion planning has received increasing
attention in the last years, with a large number of works
related to this theme being published (Meijer et al., 2017;
Pavlichenko and Behnke, 2017; Han et al., 2018; Bormann
et al., 2019; Xu and Duguleana, 2019; Yang et al., 2019;
Ye and Sun, 2020; Ferrentino et al., 2021) . In this
context, planners that use optimization techniques, such
as CHOMP and STOMP, can provide more consistent
and reliable results, this way gaining popularity among
the robotics community (Peng et al., 2021).

Solutions for collision-free operations and optimization
of defined cost functions have been developed based on
these algorithms, such as in Kaden and Thomas (2019).
In this paper, the authors used a combination of STOMP
and Gaussian Mixture Models for additional optimization
of trajectories generated by the algorithm RRT-Connect.
The system was developed in a simulated environment
and the results indicated that the proposed method pro-
vided a considerable rase of the robot’s manipulability. In
Pavlichenko and Behnke (2017), an optimization method
based on STOMP is presented, the STOMP-NEW. The
proposed system considered torque costs, orientation re-
strictions, obstacles, joint limits, and speed as state costs,
been possible the optimization of trajectory duration. Ex-
periments were carried out in a Momaro 7 DoF(Degrees
of Freedom) manipulator, and the results indicate the
proposed method is applicable in dynamic environments
that require frequent replanning .

The use of ROS (Robot Operating System) allows, among
a range of benefits, that the simulation of robots can be
evaluated with fidelity, reliability, and low cost. In Ye and
Sun (2020), the authors used ROS and Moveit for the
application of motion planning techniques in a simulated
7 DoF manipulator. A perception sensor was installed on
the manipulator, allowing obstacle detection and avoid-
ance. Simulation tests indicated the RRT algorithm is
capable of generating obstacle-free trajectories for redun-
dant manipulators (7DoF). A novel system for trajectory
planning based on learning by demonstration techniques
is proposed by Zhang et al. (2020). The system allows
users that are not familiar with programming languages
can easily send trajectories to the manipulator. Thanks to
the development based on ROS, the system is compatible
with different types of robots.

Pick and place of objects is one of the most related
application for robotic manipulators. In Jung et al. (2020),
a Gazebo simulation of a UR5 manipulator integrated
with robotiq’s 2F-85 gripper is presented. The authors
applied deep learning techniques for object detection and
used Moveit for solving the manipulator kinematics and
path planning. A system that combines Moveit with the
collaborative robot UR5 is also proposed by Kumar et al.
(2017). In this work, the authors developed an autonomous
system for pick and place tasks in warehouses. Tests were
performed with the robot in a real scenario, and the results
indicated an average task execution time of 24 seconds and
an accuracy of 90% for objects detection.

When talking about collaboration between humans and
robots, the robot must have the ability to plan its tra-
jectory free from collisions with obstacles. In Brito et al.
(2018), two path planning algorithms, RRT and PRM,
were compared in a virtual model of the collaborative
manipulator UR5. The proposed system uses a Kinect
sensor to perceive the environment. A novel motion plan-
ning algorithm based on RRT and Memory-Goal-Biasing
is proposed in (Han et al., 2018). The algorithm was im-
plemented on a simulation developed on ROS and Moveit,
using the redundant manipulator Baxter robot in different
scenarios with obstacles. Results indicated that the pro-
posed method has better optimization performance and
lower computation complexity than other RRT-based al-
gorithms.

3. THEORETICAL BASIS

The objective of trajectory optimization is to find a
feasible trajectory that minimizes a cost function and
respects defined constraints. In this section, optimization
algorithms, CHOMP and STOMP will be discussed, as
soon as the concepts of ROS framework and Moveit. The
computer vision system used in this work and the obstacle
collision detection pipeline will also be exhibited, as well
as the kinematic model of the collaborative robot UR5.

3.1 CHOMP

CHOMP (Zucker et al., 2013; Ratliff et al., 2009) is a
trajectory optimization algorithm that produces smooth
and collision-free trajectories between two specified points
qinit, qgoal. It uses a similar approach to the elastic bands,
where the trajectory is repelled from obstacles by forces.
However, unlike previous techniques, CHOMP dispenses
the requirement that the initial trajectory be collision-
free. By iteratively updating the trajectory, the algorithm
minimizes the cost functions, which contain obstacles,
acceleration and velocity costs. CHOMP uses gradient
techniques for optimization, so the cost function must be
differentiable.

Given a trajectory ξ : [0, 1] → C as a function mapping
time to robot configuration, the algorithm minimizes an
objective functional U : Ξ→ R which maps each trajectory
ξ in the space of trajectories Ξ to a real number. The
objective function is defined as follows

U (ξ) = Fobs (ξ) + λFsmooth (ξ) (1)

The term Fsmooth penalizes a trajectory based on joint
velocities and accelerations and, simultaneously, the term
Fobs penalizes proximity to objects in the environment. To
improve computational efficacy, the algorithm discretizes
the trajectory ξ into a set of n waypoints equally dis-
tributed in time q1,...,qn, excluding the end points qinit =
q0 and qgoal = qn+1, and computes velocities and acceler-
ations via finite differencing.

CHOMP uses a signed distance field as an environment
representation, which allows obtaining gradients even for
non-collision-free points of the trajectory (Pavlichenko and
Behnke, 2017). However, since CHOMP’s cost function
must be differentiable, as many gradient-based algorithms,
it can suffer from local minima problems.
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3.2 STOMP

STOMP (Kalakrishnan et al., 2011; Kalakrishnan, 2014) is
an algorithm based on CHOMP that also treats the motion
planning problem as an optimization problem. It uses a
stochastic approach for cost minimization, not requiring
that the cost function to be differentiable. The objective
of STOMP is to find a smooth, collision-free trajectory
that minimizes a predefined cost function that can contain
costs related to obstacles and constraints of the robot.

The algorithm takes as input the start and the goal pose
of the end effector (xs, xg) and outputs a path vector
θ ∈ RN for each joint. It starts the optimization with
a fixed duration trajectory, not necessarily feasible, and
discretized in n points equally distributed in time. The
STOMP trajectory cost function J(θ) is defined as:

J(θ) = Jx(θ) + Ju(θ) (2)

The first term in 2, Jx, represents the state-dependent
costs. It can contain obstacle costs, constraint violations,
and other objectives related to the task accomplishment.
Being q(θt) an arbitrary state-dependent cost function at
time t, the state costs can be defined as:

Jx(θ) =
N∑
t=1

q(θt) (3)

The second term, Ju(θ), represents the control costs of
the robot and it is quadratic in parameters θ. Being R a
positive semi-definite matrix that represents the control
costs, chosen in a way that Ju(θ) represents the sum of
squared accelerations along the trajectory, it is defined as:

Ju(θ) =
1

2
θTRθ (4)

STOMP allows that arbitrary costs can be optimized, even
those that are non-differentiable or non-smooth. Being θ̃
a noisy parameter vector with mean θ and covariance Σ,
the algorithm attempts to solve the following optimization
problem:

min
θ

E [J(θ)] = min
θ

E

[
N∑
t=1

q(θ̃t) +
1

2
θ̃TRθ̃

]
(5)

Based on probability matching and path integral rein-
forcement learning, STOMP estimates the gradient of 5
as the expectation of a noise ε in the vector θ under the

probability metric P ∝ exp
(
− 1
λJ(θ̃)

)
. So, the stochastic

gradient can be formulated as:

δθ̂G =

∫
ε dP =

∫
exp

(
− 1

λ
J (θ + ε)

)
ε dε (6)

In practice, the gradient is estimated by sampling a finite
number of trajectories:

δθ̂G =
K∑
k=1

P (θ + εk)ε (7)

P (θ + εk) =
exp

(
− 1
λJ(θ + εk)

)∑K
l=1 exp

(
− 1
λJ(θ + εl)

) (8)

At every iteration of the algorithm, the gradient update
shown in 7 is applied to the original trajectory. The
probabilities of each noisy parameter are computed per
time-step, as shown in 8. Lastly, the parameter λ is
calculated to regulate the sensitivity of the exponential
cost.

3.3 Kinematic model of UR5 collaborative robot

A robot manipulator can be described as a series of rigid
elements (links) connected by joints, e.g. prismatic joints
or revolute joints. These joints allow that links to move
with each other and the number of joints determines the
manipulator’s degrees of freedom.

The kinematic analysis of an n-link robot manipulator in
not an easy task and the use of conventions simplifies the
analysis. A commonly used convention in robotics appli-
cations is the DH (Denavit-Hartenberg) convention. DH
convention represents each homogeneous transformation
T i−1
i as a product of four basic transformations:

T i−1
i = Rotz,θiTransz,diTransx,aiRotx,αi

(9)

In 9, θi, αi, ai and di are parameters associated with link
i and joint i, also known as DH parameters. A common
representation of UR5 robot kinematic structure, with all
joint variables (θi) at 0, is shown in Figure 2.

The DH parameters for UR5 manipulator are shown in
Table 1. These parameters can be used to write 6 trans-
formation matrixes, one for each link, with their formats
following 9. The complete equation, from axis 6 to base,
can be obtained by multiplication of the 6 transformation
matrixes, generating The matrix T 0

6 , which represents the
homogeneous transformation from the end effector to base.

Table 1. DH parameters for UR5 manipulator.

i θ α d a

1 θ∗1 π/2 d1 0
2 θ∗2 0 0 a2
3 θ∗3 0 0 a3
4 θ∗4 π/2 d4 0
5 θ∗5 −π/2 d5 0
5 θ∗6 0 d6 0

* joint variable

3.4 ROS

ROS is an open-source framework that works between mul-
tiple platforms and provides a series of tools and databases
for robotics development. It has high compatibility, being
used with a wide number of robots, and we can say ROS
is one of the most popular robot development platform
nowadays (Xu and Duguleana, 2019).
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(a) Virtual model

(b) Kinematic chain

Figure 2. UR5 collaborative robot kinematic.

The main goal of ROS is to make the components of a
robotic system easier to develop and share, so they can be
used on other robots with minimal changes, allowing code
reuse and improving code’s quality (Mahtani et al., 2016).
ROS provides essential functions for robots programming,
such as communication among heterogeneous hardware
and error treatment and it has been forming an ecosystem
that distributes packages made by users (Pyo et al., 2017).

A lot of research institutions and companies have been
developing projects in ROS by adding hardware drivers
and sharing code samples. In this work, we use ROS
packages to calculate UR5 forward and inverse kinematics,
get RBG+D sensor data and integrate it into the system,
and control the movements of the arm. The simulation
of the system was also developed based on ROS packages
and using the open source simulator Webots. The figure 3
shows the simulation containing the cobot, a 3D printer,
manufactured parts, and obstacles. ROS Melodic Morenia
distribution is used.

3.5 Moveit

Moveit is a framework that integrates a set of tools for
motion planning and control of robot arms. It supports
popular solutions for inverse kinematics, such as KDL,
IKFast and TRAC-IK (Beeson and Ames, 2015). It also
integrates advanced motion planning algorithms, including

Figure 3. Simulation environment.

OMPL (Sucan et al., 2012), CHOMP and STOMP. The
framework combines state-of-the-art algorithms for motion
planning, kinematics, control, perception and navigation.
Moveit offers a friendly interface for the development of
advanced applications, and it has been extensively used
with a wide range of robotic manipulators.

The figure 4 shows the move_group node, center of Moveit
architecture. This node integrates all the individual com-
ponents to provide ROS actions and services for users
(Moveit, 2018). From ROS Param Server, it collects the
robot kinematics data, such as URDF, SDRF and configu-
ration files. The SDRF and the configuration files contain
the parameters of the manipulator, such as joint limits,
kinematics and end effector. The move group node pro-
vides the state and control of the robot through ROS topics
and actions, e.g. the /joint_states topic and the Joint-
TrajectoryAction interface. It also enables an interface
to different motion planners that can generate trajectories
for desired locations of the end effector respecting con-
straints such as position, orientation or joint constraints.

Figure 4. The move group node.

In this work, Moveit is used to integrate TRAC-IK, for
inverse kinematics, with STOMP and CHOMP, for mo-
tion planning, allowing it to control a UR5 collaborative
manipulator and the Robotiq gripper attached to its end
effector, in a pick and place application at an environment
with obstacles. Additionally, point Cloud data obtained
by an RGB+D sensor is integrated into the framework for
obstacle and collision detection.
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3.6 Computer Vision

Computer vision is a common topic in robotic research
nowadays since vision sensors have become more accessi-
ble, and computers are getting smaller and more powerful.
In this work, we used a depth camera Intel Realsense D435,
mounted on the robot’s end effector, to provide point cloud
data for obstacle detection. Based on Moveit perception
tools, a schematic of the obstacle detection is shown in
Figure 5 as it contains the following stages:

(1) The initial state Si of the robot is stored.
(2) Point cloud data Pi is obtained by RGB+D sensor.
(3) Based on acquired information, a Planning Scene

is generated with geometrical representation of the
objects in the environment.

(4) If some link of the robot is assumed to be in contact
with any object, the mesh in contact is represented in
the color red, and the movement is not allowed to be
executed. Examples of collision detection with objects
(4a) and printer (4b) are shown.

Figure 5. Obstacle collision detection schematic.

4. RESULTS AND DISCUSSION

All the experiments were conducted in an additive manu-
facturing unit composed of an UR5 robotic manipulator,
from Universal Robots, controlled by ROS/Moveit and a

3D printer. The CPU platform used is an Intel R© Core
TM

i7-7050H CPU @ 2.60GHz, 8GB memory, and the GPU
platform is NVIDIA R© GeForce R© GTX 1650 4GB.

In this work, the experiments were performed with the
objective of achieving a pick and place task, avoiding colli-
sion with static obstacles in the scene. After the execution,
the cobot must return to its initial position. First, the
experiments were conducted in different simulation envi-
ronments, varying the amount and positioning of obstacles
within the scenes. After the simulated experiments, the
system was validated in a real additive manufacturing cell.

4.1 Simulated Experiments

We developed four simulation scenes, each one with dif-
ferent complexity of obstacles, as shown in Figure 6. The
execution routine on each scene is similar, in which the
cobot must pick a manufactured piece of known location,
and place it on the table, while avoiding collisions with
obstacles. The execution routine for the simulated scene
III is exhibited in Figure 7.

(a) Sim Scene I (b) Sim Scene II

(c) Sim Scene III (d) Sim Scene IV

Figure 6. Simulation scenes in order of obstacles complex-
ity.

Figure 7. Execution routine for simulated scene III.

We made 10 executions using each algorithm, CHOMP
and STOMP, by scene. Additionally, for comparison, we
have also executed the routine using the algorithm RRT-
Connect, from OMPL, the default planner on Moveit. The
metrics used to compare the performance of the algorithms
were: Success Rate, Planning time(s), and Trajectory
Duration(s). The results for each metric can be seen in
Table 2, and Figures 8 and 9.

Table 2. Success rate on simulated scenarios.

CHOMP STOMP RRT-Connect

Success 96.66% 96.66% 93.33%
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Figure 8. Planning time by scene and algorithm on simu-
lated scenarios.

Figure 9. Trajectory duration by scene and algorithm on
simulated scenarios.

Results indicate that CHOMP, STOMP, and RRT-Connect
have similar success rates in the routine execution, gener-
ating feasible trajectories for the collaborative robot. All
the algorithms also have similar average planning time,
with STOMP presenting some variation in the obtained
data, which can be a reflex of its stochastic approach.

When analyzing the duration of the trajectory obtained by
each algorithm, we can see that STOMP produces a trajec-
tory of shorter duration than CHOMP and RRT-Connect.
It is also notable that, in all simulated scenarios, RRT-
Connect generated trajectories of longer duration than
the others, consequently increasing the risk of executing
trajectories that could cause some type of damage to the
manipulator.

4.2 Real Experiments

After the execution and validation of the system in the
simulation scenes, tests were carried out in a real envi-
ronment, on three different scenes, each one with different
complexity of obstacles, as shown in Figure 10. The routine
execution for the real scenes are similar, in an approach
task for a 3D printed part, while avoiding collisions with
obstacles in the workspace. Figure 11 shows the execution
routine for the real scene III.

(a) Scene I (b) Scene II

(c) Scene III

Figure 10. Real scenes in order of obstacles complexity.

Figure 11. Execution routine for real scene III.

Similarly to simulated scenarios, we made a series of
executions using each algorithm, CHOMP and STOMP,
by scene. On simulation tests, we observed that RRT-
Connect generated trajectories of longer duration, which
often led the cobot to some kind of self-collision during the
execution. This way, for security, we decided not to use the
algorithm on real executions.

We also used the same metrics to compare the performance
of the algorithms: Success Rate, Planning time(s), and
Trajectory Duration(s). The obtained results for success
rate can be seen in Table 3, and we can note they were
satisfactory for both algorithms, indicating that they are
able to generate feasible trajectories for all the scenarios.

Table 3. Success rate on real scenarios.

CHOMP STOMP

Success 93.33% 93.33%

Results on Figures 12 and 13 indicate that STOMP can
generate trajectories of shorter duration than CHOMP, in
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Figure 12. Planning time by scene and algorithm on real
scenarios.

Figure 13. Trajectory duration by scene and algorithm on
real scenarios.

a scenario with obstacles, despite needing more planning
time. In this way, the trajectories generated by STOMP
prevent the cobot from performing unnecessary move-
ments, reducing risks and efforts on its joints. Therefore,
the collected data allow us to conclude that STOMP
delivers smoother trajectories than the others analyzed
algorithms analyzed in this work.

5. CONCLUSION

In this work, we proposed a system for trajectory opti-
mization of a collaborative robot UR5 in a scenario with
obstacles, using the algorithms CHOMP and STOMP, and
an RGB+D sensor for obstacle detection and collision
avoidance.

According to the results, all studied algorithms presented
similar and satisfactory performances for planning time
and success rate. However, analyzing the duration of
the trajectory, the STOMP algorithm showed better re-
sults, indicating that it has a greater capacity to deliver
smoother trajectories to the robot, avoiding possible col-
lisions with the environment, thus guaranteeing safety to
the device and the operator.

Furthermore, due to STOMP stochastic optimization
method, several other costs can be optimized, whether
or not they are differentiable. Finally, it is important to
note that the use of a trajectory planner to generate
the initial trajectory to be optimized by STOMP can be
an alternative that reduces the algorithm planning time,
contributing to better performance.
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